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ABSTRACT rn 
The present knowledge of the monotonicity properties of the spherically averaged 
electron density p ( r )  and its derivatives, which comes mostly from 
Roothan-Hartree-Fock calculations, is reviewed and extended to all Hartree-Fock 
ground-state atoms from hydrogen ( Z  = 1) to uranium ( Z  = 92). In looking for electron 
functions with universal (i.e., valid in the whole periodic table) monotonicity properties, 
it is found that there exist positive values of ct so that the function g o ( r ;  ct) = p( r ) / r a  is 
convex, and g l ( r ;  a) = - p'(  r ) / r  a is not only monotonically decreasing from the origin 
but also convex. This is, however, not the case for the function g J r ;  a) = p " ( r ) / r " .  
Additionally, the conditions which specify values for p such that the function gn( r; p ) = 

(- l )"p '" ) ( r ) / r  
n = 0 , l  in all neutral atoms below uranium. The last property is used to obtain 
inequalities of general validity involving three radial expectation values which generalize 
all the similar ones known to date, as well as other relationships among these quantities 
and the values of the electron density and its derivatives at the nucleus. 
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is logarithmically convex are obtained and numerically calculated for 
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Introduction 

he one-electron density of an N-electron sys- T tem in a physical state described by the 
quantum-mechanical wave function q ( r l , .  . . , r,; 
al, . . . , a,), where (r,, an) denotes the spatial-spin 
coordinates of the nth-electron, is the fundamental 
cornerstone between the chemical and physical 
properties of the system at that state. However, the 

analytical features of this density are almost fully 
unknown from a general and rigorous point of 
view. Even in the ground state, where the one- 
electron density p(r) is given by 

p ( r )  = N C 
+1/2  

err= -1 /2  

2 
j \ q o ( r l  ,..., r N ;  a1 ,..., aN)I d r ,  

X . . . dr ,  

(qo denotes the normalized-to-unity ground-state 
wave function), the structural properties of p(r)  
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and its spherical average ( p ( r )  = (4m)F1jp(r) do, 
are very poorly known in spite of the fact that it is 
the basic variable for the modern density func- 
tional theory (DFT) initiated by Hohenberg and 
Kohn [l]. 

Rigorously, apart from the quantum-mechanical 
nonnegativity and the Hoffmann-Ostenhof‘s dif- 
ferential inequality [2,3], the only known analyti- 
cal properties of p ( r )  are as follows: 

The cusp condition, which gives the loga- 
rithmic derivative of p ( r )  at the nucleus 
[41, 

The behavior at large distances [5-81, 

p ( r )  == y 2 b e - 2 a r  (2) 

where b = ( Z  - N + l)/a - 1, a = 6, E 

and Z being the negative of the highest 
occupied orbital energy and the nuclear 
charge of the atom under consideration, 
respectively. 
The function p ( r )  is monotonically de- 
creasing and convex for values of r 2 Z / E  
[21. 
The one-electron function p(  r ) / r a  is con- 
vex everywhere [9] with 

(Y 2 $[(l + 4z2/€)1’2 - 11. 

Numerical calculations, which use Roothan- 
Hartree-Fock atomic wave functions [ 10,111, have 
led to the identification of a few other properties: 

(v) Monotone decreasing or first-order mono- 
tonicity (see Appendix A) of p(r ) ,  i.e., 
p r ( r )  < 0 everywhere. This property was 
recognized only in the early 1970s [ 12,131 
and carefully studied in the late 1980s by 
the Kingston group 1141 and others [15]. 
The rigorous proof of this property is an 
amazingly open problem. 

Moreover, it has been shown [ 16,171 that 
the electron cusp inequality 

p ’ ( r >  2 -2Zp(r), r 2 0, ( 3 )  

holds in all neutral atoms with 1 I Z I 92, 
which generalizes Kato’s condition at the 
nucleus (1) and its (rigorously proven) 

spatial generalization for the bare Coulomb 
field model [MI. 

(vi) Convexity of p ( r ) ,  i.e, p ” ( r )  2 0. It has 
been shown that the atoms with Z values 
of 1-2, 7-15, and 33-44 (group 1) have a 
convex (i.e., monotonic of second order) 
electron density [19]. The remaining atoms 
of the periodic table with nuclear charge Z 
of 3-6, 16-32, and 45-92 (group 2) have a 
p ( r )  with a small but physically significant 
radial region wherein p ” ( r )  < 0 [19,20]. 
Moreover, it appears that the electron den- 
sity is strictly convex in the atoms of group 
1 and strictly pseudoconvex (see Appendix 
A) in the atoms of group 2 [20]. Then, 
since strict convex functions are also strict 
pseudoconvex, it seems that strict pseudo- 
convexity is a general structural property 
of the one-electron density of all neutral 
atoms [21]. 

It is worthy noting that in the atoms 
belonging to group 2 the second derivative 
of p( Y presents pairs of local maxima and 
minima [ 15,171 so that (a) the number of 
which never decreases with increasing nu- 
clear charge and (b) the occurrence of new 
local minima and maxima always corre- 
sponds to the addition of an electron in a 
new subshell. Furthermore, it seems [201 
that electron correlation does not seriously 
affect the curvature of p ( r )  and that the 
bare Coulomb field of the nucleus is the 
main element responsible for the appear- 
ance of nonconvex regions in atoms. How- 
ever, this point needs further investiga- 
tion. 

Also, let us mention that plausible argu- 
ments [21] and numerical results [20] indi- 
cate that the total electron density of an 
arbitrary number of closed shells is convex 
in the bare Coulomb field model. 

(vii) Higher order monofonicity of p(  r ). The maxi- 
mal order k of monotonicity of p ( r )  in 
each atom of group 1 is not known. Nu- 
merically it depends on the approximate 
wave functions that you use. Indeed, in 
helium one obtains k = 15 with the 
near-Hartree-Fock wave functions of 
Clementi-Roetti and k = 6 [22] with the 
highly accurate 204-term Hylleras wave 
functions of Koga et al. [231. Should k be 
known, (a) one can represent the electron 
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density as [221. 

where 4 s )  is a nonnegative measure, and 
(b) simple compact and (at times) accurate 
relationships among local and global 
quantities can be derived. 

Complete monotonicity of p(r),  i.e., 
monotonicity with k -+ ~0 (see Appendix 
A), has also been investigated [24] within 
the near-Hartree-Fock framework of 
Clementi-Roetti. It was found that, apart 
from hydrogen, in which it is rigorous, 
there is no neutral atom which has a com- 
pletely monotonic electron density. How- 
ever, the assumption of this property al- 
lows us to obtain very good approximate 
expressions for and among local and global 
properties such as, eg., the electron den- 
sity at the nucleus and various radial ex- 
pectation values [24,251. 

(viii) Log-convexity of p( r ) .  This property has 
been investigated in all neutral atoms with 
nuclear charge Z I 54 [26]. This study is 
extended in the second section to the re- 
gion 55 < Z < 92 of the periodic table. 
Briefly, it is found that hydrogen, in which 
it is rigorous, and helium are the only two 
atoms with a log-convex electron density. 

Additionally, in searching for electron density 
functions of a universal nature (i.e., valid for all 
ground-state atoms) with a degree of monotonicity 
higher than that of p ( r )  but keeping its simplicity 
and being physically meaningful, we have investi- 
gated [9] in a Hartree-Fock framework the mono- 
tonicity properties of the function 

as well as the log-convexity property of the func- 
tion [26] 

(5) 

Specifically, we have indicated [91 how to calcu- 
late the minimal values a n p  and Po of the positive 
parameters a and p, respectively, so that the func- 

tion gn(r ,  a )  is pth-order monotone, i.e., 

and the function go( r; p > is logarithmically convex 
(shortly, log-convex), i.e., 

Then, the functions gJr, a n p )  and go(r; P o )  are 
monotone of p th-order and log-convex, respec- 
tively. A physical analysis of the go-like electron 
functions and its corresponding function in mo- 
mentum space has been recently carried out [27]. 
The values of ao2, all, a12, a21, and a22 as well as 
the value of Po have been recently tabulated [ 9,271 
for all Hartree-Fock ground-state neutral atoms 
with nuclear charge 1 5 Z I 54. 

The study of these kinds of monotonicity prop 
erties has been proven [9,16,19,24,26] to be very 
useful in the theoretical determination, estimation, 
and correlation of several physically relevant 
and/or experimentally measurable quantities (e.g., 
local values of the density or radial expectation 
values, as defined in the fourth section) as well as 
in setting up rigorous bounds to numerous func- 
tionals to the one- and two-particle densities, which 
play an important role in the modern density func- 
tional theory. Additionally, some of these proper- 
ties allow us to also reveal the atomic shell struc- 
ture and other physical and chemical phenomena 
[17,20,21]. 

Here we want to extend the work done in [9] 
and [261 by calculating the values of aO2, all, aI2,  
a21r and a22 as well as Po and p1 in all 
Hartree-Fock ground-state neutral atoms with nu- 
clear charge 1 < Z < 92. Notice, then, that the 
log-convexity property [ 281 of the function gn( r; /3 ) 
will be considered. In doing all this, we will use 
the Clementi-Roetti wave functions [lo] for all 
atoms up to xenon ( Z  = 541, and the similar 
McLean-McLean atomic wave functions [ 111 for 
the atoms with nuclear charge 55 < Z 5 92. Addi- 
tionally, we compare these values with those ob- 
tained with the improved Roothan-Hartree-Fock 
wave functions of Koga et al. [291 and Bunge et al. 
[30] in a few atoms. 

At this point we should mention that the 
Clementi-Roetti wave function for Z = 45 [31,321 
and McLean-McLean wave functions for Z = 67, 
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68 [33] are erratic, so more accurate calculations of 
those atomic functions and consequently of the 
associated monotonicity parameters a, and p, 
need to be done. 

This article is structured so that, first, in the 
second section, the aforementioned monotonicity 
properties of g,(r; a )  are investigated and then, in 
the third section, the log-convexity of the similar 
function g,(r; p )  is examined. Finally, some log- 
convexity effects on the radial expectation values 
are discussed in the fourth section, and then some 
concluding remarks are given. 

Monotonicity Properties of the 
Electron Function g ,  ( R; a 

In this section, the monotonicity properties of 
the general electron density function g,(r; a) given 
by Eq. (4) will be studied. That is, the minimal 
value a of the parameter a so that the inequality 
(6) is fulfilled will be numerically investigated for 
a given order of monotonicity p by use of the 
Clementi-Roetti and McLean-McLean (CR and ML 
heretoforth) ground-state wave functions in all 
atoms with nuclear charge 1 I Z I 92. Then, to 
know how confident the subsequent results are, 
we compare then with the corresponding values 
obtained by use of the Roothan-Hartree-Fock 
wavefunctions of Koga et al. [29] and Bunge et al. 
[30] in a number of atoms. The expressions of the 
first few a n P  are [91 

"P. 

with 

A finite value of anP indicates that the function 
g , ( y ;  a n P )  = (-l)"p(")(r)/r"np is monotone of pth 
order. Extensive use of the near-Hartree-Fock 
ground-state wave function of Clementi-Roetti 1101 
and McLean-McLean [ll] have allowed us to cal- 
culate the values of the parameters anp ,  with n = 

0, 1,2 and p = 1,2, in all neutral atoms with nu- 
clear charge Z I 92. First, we find that aol = 0 
everywhere, which means that the electron density 
go(r ;  0) = p ( r )  is monotonically decreasing from 
the origin in all atoms. This is a well-known fact 
pointed out by Sperber [12] and Weinstein et al. 
[13] for Z I 54 and by Simas et al. 1141 and 
Angulo [15] for the remaining atoms up to ura- 
nium. 

The values that we obtain for the rest of param- 
eters anP considered in this work are shown in 
Figures 1-5, which are to be discussed in the 
following. The values of aO2 shown in Figure 1 
indicate that 0 5 ao2 < 0.6 in all atoms, hydrogen 
through uranium. Then the electron function 
go(r ;  ao2) = ~ - ~ o z p ( r )  is convex everywhere. Such 
a small value of ao2 shows that the electron den- 
sity p ( r )  is "almost" convex in all atoms. In fact, 
the only atoms with a strictly convex p ( r )  are the 
members of the aforementioned group 1 (i.e., Z 
values of 1-2, 7-15, and 33-44), since then ao2 
vanishes. It is observed that the main peaks of the 

0 0  I ,  ,=. I I I I I I I I I I 1  I I , I  
20 40 60 60 LOO 

q i ( r )  = 

1 
{2~p' '+ ')(r)  - p " ) ( r )  + A:"'} Z 

FIGURE 1. Values of the parameter ao2 obtained by 
use of the Clementi -Roetti and McLean -McLean wave 
functions in all atoms, hydrogen through uranium. Recall 
that for c1 2 aO2 the electron function g,,(r; a) = p ( r )  / r a  
is convex. 

2 p(')( r ) 

0 
if A,  2 0, 

if A, < 0, 
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0 0  ' ' ' ' I ' ' x- ' 1 A a ' ' I ' ' ' ' I ' ' 1 ' 
0 20 40 60 60 100 

2 

FIGURE 2. Values of the parameter all obtained by 
use of the Clementi -Roetti and McLean -McLean wave 
functions in all atoms, hydrogen through uranium. Recall 
that for cx 2 all the electron function gl(r; a) = - p ' ( r )  / 
f a  is monotonically decreasing from the origin. 

figure correspond to Z = 4,16,20,57. So, it seems 
that there is no apparent connection between the 
values of ao2 and shell structure, although further 
investigation is needed at this point. A similar 
comment about the location of the peaks should be 
done for the rest of the figures. 

The values of all given in Figure 2 show that 
0 2 all I 1.8 in all neutral atoms below uranium. 
Then, the electron function gl(r ;  a l l )  = 

- r-ul lp'(  r )  is monotonically decreasing from the 
origin. Notice that vanishes for the atoms 

a12 ::[ 1 
1 X I  
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t .  

t 
0 " " ~ " " ~ " " ~ " " ~ " "  

0 20 40 60 80 I00 

Z 

FIGURE 3. Values of the parameter aI2 obtained by 
use of the Clementi -Roetti and McLean -McLean wave 
function in all atoms, hydrogen through uranium. Recall 
that for 2 a12 the electron function gl(f; a) = - p ' ( r )  / 
f a  is convex. 

Z 

FIGURE 4. Values of the parameter azl obtained by 
use of the Clementi -Roetti and McLean -McLean wave 
functions in all atoms, hydrogen through uranium. Recall 
that for a 2 aZl the electron function g2(r ;  a) = p" ( r )  / f a  

is monotonically decreasing from the origin. Notice that 
most atoms do not present finite values for a*,, which 
indicates lack of this monotonicity property. 

belonging to group 1, which again shows the con- 
vexity of the electron density p ( r >  of these atoms. 
It seems clear that the convexity property (see 
Appendix) of the ground-state electron density 
p ( r )  is too strong for all neutral atoms. Therefore, 
the electron density p ( r )  of all atoms might have a 
certain analyticity property stronger than the first- 
order monotonicity and weaker than the second- 

200 I , , ,  , , , ,  , , , ,  , , , ,  , , , ,  

a22 

150 

100 

50 

n 
0 20 40 60 80 I00 

2 

FIGURE 5. Values of the parameter az2 obtained by 
use of the Clementi -Roetti and McLean -McLean wave 
functions in all atoms, hydrogen through uranium. Recall 
that for a 2 a22 the electron function g2(r ;  a) = p " ( r )  / 
r a  is convex. Notice that most atoms do not have finite 
values for azz (or they are too large), which indicates 
lack of convexity. 
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order monotonicity (i.e., convexity); that property, 
which cannot be expressed in the differential form 
(Al), has been recently found: It is pseudoconvex- 
ity (see Appendix) [20,211. 

Then, in Figure 3, the property of convexity of 
the function gl(r; a )  is investigated by plotting the 
parameter aI2 against Z ;  it is found that 0 I a,2 < 
4.8. One observes that the only atoms with vanish- 
ing a,2 are H and He; so, they are the only neutral 
atoms with a Hartree-Fock ground-state electron 
density p ( r )  of monotonicity of third order. 

Finally, in Figures 4 and 5, the first- and 
second-order monotonicity properties of the elec- 
tron function g 2 ( r ;  a )  = r - a p ” ( r )  are investigated, 
respectively. It is observed that aZ1 = aZ2 = 0 oc- 
curs only in H and He. In addition, the remaining 
atoms of the periodic table seem not to have these 
two properties except those of the regions with 
nuclear charge Z values of 7-15 and 33-44. Thus, 
the atoms of group 1 are the only ones which have 
a convex electron function g 2 ( r ;  0 ~ ~ ~ ) .  

To know how much we should trust in the 
calculated CR and ML a values, we compare them 
with the corresponding ones obtained by use of 
other Roothan-Hartree-Fock atomic wave func- 
tions, such as those of Koga et al. [291 and Bunge 
et al. [30]. This is done in Table I for a number of 
atoms. It is observed that the a values obtained 
with the three sets of wave functions are very 
similar except in the case of aZ1 and aZ2 of the Rb 
atom ( Z  = 37), which is in the atomic region with 
33 4 z 544.  

To understand the relative behavior of the re- 
sulting values a n p  represented in Figures 1-5, we 
have done a simple and analytical study of the 
monotonic condition (Al) of the electron function 
gn(r ;  a )  given by Eq. (4). We obtain [9] 

which gives, in particular, 0 5 ao2 4 aI2 (notice 
that the results shown in Figs. 1 and 2 are consis- 

TABLE I 
Comparison of values for monotonicity parameters aoz, all ,  a12, az l ,  and az2 and log-convexity parameters 
Po and pl, obtained by use of three sets of ground-state wave functions (CR = Clementi and Roetti 1101; 
KOG = Koga et al. 1291; BUN = Bunge et al. [301) in atoms with nuclear charge Z = 3,6, I 1,18,26,37,47,54. 

Set z a 0 2  

CR 
KOG 
BUN 

CR 
KOG 

BUN 

CR 

KOG 
BUN 

CR 
KOG 
BUN 

CR 
KOG 
BUN 

CR 
KOG 
BUN 

CR 
KOG 
BUN 

CR 
KOG 
BUN 

3 
3 
3 
6 
6 
6 

11 
11 
11 
18 
18 
18 
26 
26 
26 
37 
37 
37 
47 
47 
47 
54 
54 
54 

0.24823 
0.24616 
0.2431 8 
0.02018 
0.01 758 
0.01695 
0.00000 
0.00000 
0.00000 
0.28743 
0.29574 
0.29582 
0.17517 
0.16864 
0.1 6943 
0.00000 
0.00000 
0.00000 
0.24300 
0.24603 
0.24835 
0.5371 2 
0.53081 
0.52489 

0.76968 
0.76257 
0.75237 
0.05747 
0.05000 
0.04822 
0.00000 
0.00000 
0.00000 
0.85459 
0.881 85 
0.88208 
0.49588 
0.47634 
0.47876 
0.00000 
0.00000 
0.00000 
0.6751 1 
0.68502 
0.69123 
1.621 76 
1.59963 
1.57862 

2.62585 
2.61 746 
2.60341 

1.5871 8 
1.57572 
1.57273 
0.56060 
0.56384 
0.56016 
3.031 37 
3.07966 
3.07930 
2.54223 
2.51 571 
2.5201 1 
1.78299 
1.85460 
1.84437 
-3.12643 
3.12595 
3.14234 
4.43855 
4.39790 
4.37665 

a21 

2.04749 
2.06294 
2.04562 

24.94840 
50.42587 
41.7621 2 

a 2 2  

4.49399 
4.51 727 
4.491 17 

36.6981 9 
72.62506 
60.40800 

P O  

2.7431 0 
2.73377 
2.72376 
1.99999 
2.00000 
2.00000 
4.00000 
4.00000 
4.00000 
6.00000 
6.00000 
4.00000 
6.00000 
6.00000 
6.00000 
8.00000 
8.00000 
8.00000 
8.00000 
8.00000 
8.00000 
8.00000 
8.00000 
8.00000 

P I  

8.2681 4 
8.2491 7 
8.20967 
5.62091 
5.58460 
5.57105 
4.56483 
4.50779 
4.45202 

10.88796 
1 1.091 83 
11.09031 
9.78024 
9.69990 
9.71040 
8.5031 6 
8.451 82 
8.38922 

13.1 691 8 
13.061 06 
1 3.1 9799 

17.85890 
17.6701 6 
17.62283 
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tent with these bounds) and cxo2 I ao3 2 a12, 
which predicts that all atoms have a Hartree-Fock 
ground-state electron function g o ( r ;  ao3) = 

rp*03p(r) which is monotone of third order. Taking 
into account the values of cxo2 and a12 given by 
Figures 1 and 2, respectively, one already knows 
that 0 I ao3 4 4.8. 

Log-convexity Properties of the 
Electron Function g N (  R; p) 

Here the logarithmic convexity of the electron 
function g , ( r ;  p )  given by Eq. (4) will be investi- 
gated. That is, we will look for the minimal value 
p, of the parameter p so that the nonnegativity 
condition 

d 2  
- log gn( r ;  p )  2 0 
dr  

for all Y and P 2 p, 

is fulfilled for a given n by use of the CR and ML 
atomic wave functions in all atoms with nuclear 
charge Z I 92. 

Straightforwardly one obtains 

In particular, for n = 0 and n = 1 one has 

A finite value of p, indicates that the function 
log g n ( r ;  p,) is monotone of second order, i.e., 
convex. In particular, the existence of the values 
po and p1 would mean that the electron functions 
g J r ;  pol = p ( r ) / r P o  and gl(Y; P1> = - p ' ( r ) / r p l  
are logarithmically convex. 

The resulting values Po and p1 obtained by the 
use of the CR and ML wave functions are plotted 
against the atomic nuclear charge Z in Figures 6 
and 7, respectively. Note that the values of Po are 

F 
lo i 

I 
20 40 60 80 100 

z 

FIGURE 6. Values of the parameter po obtained by 
use of the Clementi -Roetti and McLean -McLean wave 
functions in all atoms, hydrogen through uranium. Recall 
that for p 2 Po the electron function gO(r ;  p )  = p ( r )  / r p  
is logarithmically convex. 

piecewise constant. This can be understood theo- 
retically because the asymptotic behavior of p ( r )  
is determined by the most diffuse Slater basis 
function of the given atom and then the asymp- 
totic behavior of the CR and ML p ( r )  is given by 
p ( r )  2: (with m integer), which differs 
from the theoretical one given by Eq. (21, i.e., the 
values of the parameters m and y are different, 
respectively, from those of the parameters a and b 
appearing in Eq. (2). When calculating Po, it hap- 
pens that the maximum of the function appearing 

15 
x 

o o 0  20 40 60 80 100 

2 

FIGURE 7. Values of the parameter pi obtained by 
use of the Clementi -Roetti and McLean -McLean wave 
functions in all atoms, hydrogen through uranium. Recall 
that for p 2 p, the electron function gi(r; p )  = - p ' ( r )  / 
f a  is logarithmically convex. 

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 17 



ANGULO ET AL. 

in the definition of Po usually occurs at large Y, so 
that the asymptotic behavior of p ( r )  is strongly 
important in the determination of the parameter 
Po. In Figure 7 we observe that the values of 
are in the range 0-19 with a Z behavior similar to 
that of aI2 as given in Figure 3. Again, the highest 
peaks are located at Z = 4, 16, 20, 57, 64, and 89. 

To shed light on the behaviors of Po and pl, as 
shown in Figures 6 and 7, one should remember 
that (i) the logarithmic convexity of p ( v )  is a 
property stronger than convexity and weaker than 
complete monotonicity, which implies that cin2 _< 
p, 5 an= and, in particular, p1 2 aI2; and (ii) the 
asymptotic behavior of p ( r )  is given by Eq. (21, so 
that Po 2 max{b, 01. 

Log-convexity Effects on Radial 
Expectation Values 

To identify analyticity properties in the electron 
density p ( r )  or any related function is of great 
physical relevance because those properties may 
often be used to calculate or to correlate local 
and/or global quantities of the system under con- 
sideration, which would be very difficult, if not 
impossible, to obtain otherwise. In this section, the 
log-convexity of the electron function 

is used to derive relationships among radial expec- 
tation values ( Y " ), i.e., 

(Y") = /r"p(r) dr = 47-r r " " p ( r )  dr /6" 
and/or the values of the electron density and its 
derivatives at the nucleus ~'"'(0). To obtain these 
relationships, we employ the property (A5) of the 
log-convex function g , ( Y ;  p = p,). The modified 
moments A p  = AP, ,  of this function are 

Then, property (A5) allows us to find, in particu- 
lar, the following three-term recurrence relations 
among the radial expectation values: 

( y a p + b q - p n - - n - 2  

r ( a p  + b9 + 1) 

y p -  P" - n  - 2  

r ( p  + 1) 

which is valid for p ,  9 2 p + n - 1 and a, b 2 0 
provided that a + b = 1, and the symbol C de- 
notes the constant 

This general relationship extends considerably 
similar and simpler inequalities previously en- 
countered [26-28/34-36]. In particular, notice that 
for n = 0 the constant C is equal to unity and the 
relation (10) reduces as 

( y ' P + b q - P O - 2  ) < [ ( y p - P o - 2 )  Î[ ( y q - p o - 2 )  l b  
r ( a p + b q +  1) - r ( p +  1) r(9 + 1) ' 

(12) 

which was previously obtained and thoroughly 
discussed by the authors [26]. The cases with n > 0 
of relationship (10) are fully new. Here we will 
study these cases comparatively with the case n = 

0, although, for simplicity, only for a = b = and 
9 = p + 2. Then, relation (10) with the change p + 
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s : s = p - p, - n transforms into 

( S  + 2)(s + n + INS + p, + n + 2 )  
(s  + l ) ( s  + n + 2)(s + p, + n + 1) 

( r S ) ( r S - 2 )  2 

for s 2 - f i n  - n. Some subcases are 

We have seen in the previous Hartree-Fock calcu- 
lations that p1 2 Po (compare Figures 6 and 7); so, 
the bounds given by Eqs. (14)-(16) with n = 1 
obtained from the log-convexity property of the 
electron function gl(r; pl) = - p ' ( r ) / r o 1  are more 
accurate than the corresponding ones known up to 
now [26,36] in all Hartree-Fock ground-state neu- 
tral atoms below uranium, at least within the 
aforementioned Hartree-Fock framework. 

Finally, property (A5) together with expression 
(9) of the modified moments A, can readily pro- 
vide us with other important three-term recursion 
relations among the values of the atomic electron 
density and its derivatives at the nucleus, p(k) (0) ,  
and/or some radial expectation values which will 
be separately discussed. 
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Summary and Concluding Remarks 

To summarize, the present knowledge of the 
monotonicity and log-convexity properties of the 
spherically averaged electron density p ( r )  of the 
ground-state atomic system and of the related 
electron functions g,(r; y )  = ( -  l)"p'")(r)/rY has 
been reviewed and extended from Xe ( Z  = 54) 
through U ( Z  = 92). The minimal values of y nec- 
essary for the function gn(r;  7) and its logarithm 
to have a property of monotonicity of a given 
order p are numerically investigated within a 
Roothan-Hartree-Fock framework. In particular, 
it is argued that (i) H and He are the only two 
neutral atoms where the electron functions p ( r ) / r Y  

and - p ' ( r ) / r Y  are logarithmically convex and (ii) 
all neutral atoms have an electron function 
go(r;  y )  = p ( r ) / r Y  with a monotonicity property 
of third order, being 0 4 y 4 5. Then, the way to 
extract information from all these properties on 
local and global quantities of the system is illus- 
trated by finding three-term recurrence relation- 
ships of global validity among radial expectation 
values ( r k > .  It is shown how to obtain other simi- 
lar relationships among central values of the 
electron density and its derivatives and/or the 
quantities ( r k ) .  Finally, let us emphasize that more 
accurate wave functions should be calculated in 
order to obtain more precise values of the parame- 
ters anP and P n p ,  as it is revealed in Table I, in 
which, in particular, the values a21 and a22 seem 
to be very large for some atoms. 

Appendix 

Some mathematical notions used in the present 
work are summarized below. 

Monotonicity of kth order. A continuous func- 
tion f( x) on (0, m) is monotone of order k if 
all its successive derivatives up to that of 
kth order alternate in sign, i.e., 

( -  l)"f'"'( x) 2 0, 
x ~ [ O , m ) , n = O , l ,  ..., k. 

(Al l  

Then, f(x)  is nonnegative if k = 0, mono- 
tonically decreasing if k = 1, convex if k = 2, 
etc., and it is called completely monotone 
[37] if k --f m. 
For convenience, let us recall here another 
way to define convexity [21,28]. A finite- 
valued f (x)  is convex on a set C if it satis- 
fies the Jensen inequality 

where xl, x 2  E C are such that the real- 
valued f (x)  is also defined at Ax, + (1 - 
A)x2 for all real values x1 and x2 with 
0 i A 5 1. For differentiable functions, this 
inequality can also be expressed as 
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Moreover, the function f ( x )  is said to be 
strictly convex if the inequalities in Eqs. (A2) 
and (A31 are strict for x1 # x 2  or, equiva- 
lently, if f ’ ( x )  > 0. 
Pseudoconvexity. Several other classes of con- 
vexity have been defined in the mathemati- 
cal literature [38,39]. Here we consider only 
that which has been shown particularly rele- 
vant to atomic densities up to now: pseudo- 
convexity [ 20,211. 

A function f ( x )  is pseudoconvex if 

In addition, f ( x )  is said to be strictly pseu- 
doconvex if the two inequalities in (A4) are 
strict. 

It is worth noting that if f ( x )  is convex, 
then it is pseudoconvex but the converse is 
not true. 
Log-convexity. A continuous function f( x ) ,  
0 s x < m, is logarithmically convex [28] if 
its logarithm is convex, i.e., if 

9 

d 2  

dx 
- log f (  x )  2 0. 

Karlin et al. [40] have shown that the modi- 
fied moments A, of a function f( x),  i.e., the 
quantities 

are also log-convex for p 2 0, which means 
that they satisfy the inequality 

h a p + b q  

for p ,  q s 0, a, b 2 0, and a + b = 1. 
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