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Abstract. The problem of finding the information-extremizer distribution with a set of given constraints
(partial information) has a relevant role from both physical and chemical points of view, specially when
working within a density functional theory framework. Beyond the variance, there exist different measures
of information susceptible of being extremized, such as the Fisher information and the Shannon and Tsallis
entropies. Each one possesses its own properties which make their use more or less convenient according
to the systems and/or the process we are dealing with. In this work, we analyze the main information
measures of the electron densities of neutral atoms throughout the periodic table, in the two conjugated
position and momentum spaces. It is shown how these measures display shell-filling patterns, within a
level which depends on the information measure and the space considered. Additionally, the values of all
these measures for the solution of various atomic information extremization problems (MaxEnt, MaxTent,
MinInf), using radial expectation values as constraints, are analytically obtained, numerically evaluated
and also interpreted and discussed in terms of physical characteristics of the atomic systems, such as
periodicity and shell structure.

PACS. 31.15.+q – 02.30.Gp Special functions – 03.65.Db Functional analytical methods

1 Introduction

Many different methods have been considered in the liter-
ature whose main aim is to provide an optimal (in some
sense) distribution ρ(�r) in a D-dimensional space, com-
patible with a discrete and finite set of constraints (in-
cluding normalization to unity). This is the case of the or-
thogonal expansions or reference density methods [1], the
recursion or continued fractions [2] methods, the Stieltjes-
Chebyshev method [3], the moment preserving splines
technique [4], and Pollaczek-polynomial-based method [5],
among others.

The so-called ‘maximum-entropy (MaxEnt) tech-
nique’ [6,7] is one of the most popular. It is very usual [8]
to deal with constraints given by expectation values (e.g.
moments) and/or other density functionals of the distribu-
tion we are looking for. The resulting maximum-entropy
distribution (whenever it exists) is not necessarily unique,
i.e. the only optimal one determined by the finite set of
constraints.

The MaxEnt technique is based on the variational
problem of determining, from all those distributions com-
patible with the constraints, that which maximizes the
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‘Shannon entropy’ of ρ(�r), defined as [9]

S[ρ] ≡ −
∫

ρ(�r) ln ρ(�r)d�r, (1)

which is a well-known measure of randomness and uncer-
tainty. For continuous distributions (as those we are going
to deal with), it ranges from −∞ (for ρ(�r) highly concen-
trated around a single point, approaching a Dirac-delta)
to +∞ (for distributions spreading almost uniformly over
their domain). So, there is no solution to the MaxEnt
problem for continuous distributions with an unbounded
domain, unless considering a number (in principle, arbi-
trary) of the aforementioned constraints.

The main aim and achievement of the MaxEnt tech-
nique is the estimation of an unknown distribution when
only partial data on it is available or known. The maxi-
mum entropy solution is the ‘least-biased’ (minimally prej-
udiced) one among all those compatible with the known
data, which are the constraints to be imposed in the vari-
ational problem when solving it by determining the values
of the associated Lagrange multipliers. Attending to the
number and kind of constraints involved in the variational
process, it is not guaranteed in general the existence and
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uniqueness of the solution to this problem, except for some
specific cases [10,11].

The usefulness of the MaxEnt technique has been
widely analyzed in many different fields, such as radioas-
tronomy [12], parameter spectral estimation [13], particle
physics [14], atomic and many-fermion physics [15] and
other scientific and engineering situations [11,16,17], of-
ten providing accurate estimations of the unknown distri-
bution. Nevertheless, there exist many cases in which the
MaxEnt does not lead to an appropriate distribution [18].
Later on, this variational technique has been extended and
generalized, mostly by considering other relevant informa-
tion measures, such as the ‘Tsallis entropy’ [19,20]

Tq[ρ] ≡ 1
q − 1

(
1 −

∫
[ρ(�r)]qd�r

)
(q > 0). (2)

The allowed range of values of the parameter ‘q’ (neces-
sarily positive) is strongly dependent on the short- and
long-range behaviors of the distribution ρ(�r). This quan-
tity is closely related to the ‘Renyi entropy’ [21],

Rq[ρ] ≡ 1
1 − q

ln
(∫

[ρ(�r)]q d�r

)
(q > 0). (3)

In what follows, we will keep in mind that results on Tsallis
entropy easily translate on Renyi entropy according to the
so simple relationship between them.

Tsallis entropy can be considered as an extension
or generalization of the Shannon entropy functional, as
shown by the limiting relation lim

q→1
Tq[ρ] = S[ρ], which is

also verified by Rq[ρ]. The extremization of such a func-
tional gives rise to the ‘maximum-Tsallis-entropy’ (Max-
Tent, or q-Maxent in other contexts) problem [20,22], re-
cently found to be the basis of the modern non-extensive
statistical mechanics [23]. The main characteristics of the
associated variational technique can be described similarly
as in the Shannon case [24].

More recently, the ‘Fisher information’ I[ρ] has been
also used as the information measure within the vari-
ational extremization technique, by determining the
‘minimum-Fisher-information’ (MinInf) distribution com-
patible with the given constraints [25]. The MinInf process
is known [26,27] to provide the fundamental wave equa-
tions and/or the conservation laws of numerous natural
systems at small and large scales. The Fisher information
(also called Fisher channel capacity or vector Fisher infor-
mation) is defined as [27,28]

I[ρ] =
∫ |�∇ ρ(�r)|2

ρ(�r)
d�r, (4)

which gives a measure of narrowness and oscillatory be-
havior of the distribution ρ(�r). It is a ‘local’ measure, be-
cause of its strong sensitivity to density variations over
very small regions due to its gradient-functional form. The
Shannon and Tsallis entropies are considered as ‘global’
quantities because they are much more informative on the
average behavior of the density over its whole domain.

As occurs with the MaxEnt problem, it still remains
open the determination, in general, of existence and
uniqueness conditions for the MaxTent and MinInf prob-
lems to have a solution. The corresponding conditions are
only known for some particular cases [22,25,29]. The use
and extremization of the previous spreading/information
measures is a subject of high current interest in many
different fields such as, for instance, the study of multi-
electronic systems, particularly by means of density func-
tional methods [30].

There also exist other information functionals which
play a relevant role in the description of the spreading
properties of a distribution. The most familiar one is the
‘variance’, which provides a measure of the averaged devi-
ation of the distribution from the mean value (being also
a ‘global’ measure in the sense pointed out above). It is
defined as

V [ρ] ≡ 〈r2〉 − 〈r〉2 (5)

(with r = |�r|), expressed in terms of ‘radial expectation
values’ of first (mean value) and second order, defined as

〈rk〉 ≡
∫

rkρ(�r)d�r. (6)

The integral-convergence conditions (i.e. the existence of
radial expectation values) according to the kth order are
determined by both the behavior of the distribution and
the dimensionality D of the space.

In the present work, we will center our attention on
the information provided by some of the aforementioned
spreading measures when dealing with many-electron sys-
tems, as well as on analyzing the relationship between
their values and relevant physical properties of those sys-
tems. Among them, specially relevant are the structural
characteristics of the electron densities in position and mo-
mentum spaces, as well as the nuclear charge. For atomic
systems, it is well known that different radial expectation
values (in both conjugated spaces) are physically relevant
and/or experimentally accessible.

To the best of our knowledge, this is the first time that
such a study on information measures of extremizer dis-
tributions is carried out for many-electron systems (i.e.
three-dimensional densities of atoms throughout the pe-
riodic table) in both conjugated position and momentum
spaces. Recently a similar study has been performed for
the D-dimensional Hydrogen atom in position space [24].

The work is structured as follows. In Section 2, the
main characteristics of the extremizer distributions as-
sociated with different variational techniques will be de-
scribed. In Section 3, the aforementioned distributions will
be considered for the study of the electron densities of
neutral atoms in the conjugated position and momentum
spaces (and, consequently, for the particular dimensional-
ity D = 3). This study includes the analysis of different
existence conditions for the two-constraints MaxEnt prob-
lem. For each specific measure, a subsection is devoted to
the interpretation of those results, including in some cases
their analysis in terms of the density structure as well as
the shell-filling process; moreover, the dependence of the
extreme information values on both the atomic nuclear
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charge and the order of the radial constraints is empha-
sized. Finally, a brief description of related open problems
and the appropriate conclusions on the present work will
be also given.

2 Variational extremization of information
measures

In this section we face the problem of extremizing an
information measure F [ρ] on a D-dimensional distribu-
tion function ρ(�r) when a set of M expectation values
{gi(�r)} (i = 1, . . . , M) on such a distribution is known.
This problem has been recently investigated in refer-
ence [24] for the functionals F [ρ] where the extremization
problems were associated with Shannon’s entropy S[ρ]
(MaxEnt), Tsallis’ entropy Tq[ρ] (MaxTent) and Fisher’s
information I[ρ] (MinInf).

At this point, knowledge of existence conditions for
these extremization problems appears highly relevant. The
first step in the extremization process usually provides the
form of the extremum information distributions subject
to the given constraints. But determining the involved
Lagrange multipliers from the values of the constraints
is not, in general, an easy task. Even more so, the ex-
istence of a solution to that problem is not guaranteed.
This is a subject on which many authors have worked
as shown by the numerous articles devoted to this ques-
tion [10,11,16,17,25,29,31].

Once the existence and determination of the extrem-
izer distribution is under control, there still remains the
performance of a systematical analysis of its spreading
properties. This would be a relevant achievement in the
study, as pointed out by many authors, of diverse sys-
tems and processes in science, finances and engineer-
ing [16,30,31].

The extremization method associated with a
generic information measure F [ρ] requires its maxi-
mization/minimization preserving the constraints of
normalization to unity, as

∫
ρ(�r)d�r = 1, (7)

and the expectation values {ci} of the functions {gi(�r)},
namely

∫
ρ(�r)gi(�r)d�r = ci, (i = 1, . . .M), (8)

understanding in what follows (in order to simplify no-
tation) that g0(�r) ≡ 1 (and, consequently, c0 = 1). Em-
ploying the Lagrange multipliers method for the varia-
tional problem, the extremization process requires to find
the solution of a coupled set of M + 1 equations (given
by the constraints) and M + 1 unknowns (the Lagrange
multipliers), which determine the extremum information
probability density.

Let us restrict ourselves to the extremization problem
involving one radial expectation value 〈rα〉 (M = 1), apart

from normalization. The analytical solution to this prob-
lem is known for radial expectation order α > 0 in the
MaxEnt and MaxTent problems, and for α = −1 in the
MinInf one. The corresponding extremizer distributions
will be denoted by ρS (maximum S), ρT (maximum Tq)
and ρI (minimum I). The analytical forms of all these
distributions allow one [24] to determine their associated
information measures, namely Shannon entropy S, Tsallis
entropy Tq, Fisher information I and variance V , which
are the main objects of this work. That is, these four in-
formation measures are analytically known for the three
extremizer distributions described above. They will be de-
noted so that, for example, VI gives the variance V of the
minimum-Fisher-information distribution ρI(�r), the sub-
script denoting the extremized measure, and similarly for
the other measures and distributions.

Taking into account that the applications of the
present study will be carried out by considering the three-
dimensional (D = 3) one-particle atomic distributions in
position and momentum spaces, we will discuss in what
follows, for the sake of simplicity, the expressions corre-
sponding to that particular dimensionality.

Also in order to avoid a too high number of equa-
tions, and considering the main purposes of this work,
we will omit the detailed analytical expressions describing
the variational solutions and their associated information
measures (which can be found in Ref. [24]).

Attending to the strong relationship between Shannon
and Tsallis entropies, which allows one to roughly (but
not strictly) consider the Shannon entropy as a particu-
lar case of the Tsallis one (according to the limiting value
as q → 1), we will firstly discuss the MaxTent problem,
because, as will be checked later, many of the conclusions
obtained from the analysis of this problem will be also
valid in the MaxEnt one, especially those associated with
the global character of both measures. Nevertheless, it
is worthy to remark that there also exist relevant differ-
ences between them, mainly due to the functional form
of the extremizer distribution. And finally, as should be
expected according to the strongly different characteris-
tics of the Fisher information measure, such a difference
will be also clearly displayed when studying the associated
MinInf problem, which deals with a local measure, in an
opposite way to the previous entropy maximization prob-
lems. For the sake of simplicity, we will restrict ourselves
in this case to the particular order α = −1, due to the
involvement of the problem for any other value.

Let us briefly describe the main characteristics of the
three-dimensional (D = 3) extremizer distributions sub-
ject to the normalization and the α-order constraints:

• MaxTent distribution: the solution is a power-like func-
tion, with a finite-size support (a sphere which radius
depends on 〈rα〉).

• MaxEnt distribution: the solution has an exponention-
ally decreasing behavior over the non-negative real line
r ≥ 0, namely on the distance ‘r’ from the origin. As
pointed out just before discussing the extremizer solu-
tions, the functional form of the MaxEnt solution (i.e.
exponential over the whole space) strongly differs from
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that of MaxTent problem (i.e. power-like over a finite
radius support), in spite of the limiting relationship
between the involved entropies.
It is worthy to mention that, also in reference [24],
the existence conditions for the MaxEnt problem when
adding an additional constraint 〈rβ〉 (i.e. M = 2) were
also obtained. We will also check those conditions in
Section 3 for atomic systems.

• MinInf distribution: as remarked above, we restrict
now the problem, for the sake of simplicity, to the
particular case α = −1. The solution is (in a similar
fashion as in the MaxEnt problem) an exponentially
decreasing function.

Next section is devoted to the study, in these three extrem-
ization problems, of the information measures for atomic
systems throughout the periodic table by means of their
one-particle densities ρ(�r) and γ(�p) (position and momen-
tum spaces, respectively), by applying the aforementioned
results (which are valid for any distribution function), to
those specific densities.

3 Atomic spreading measures in position
and momentum spaces

The measures described in previous sections are defined
(whenever being possible) for normalized-to-one distribu-
tions ρ(�r) defined over the three-dimensional space R3.
Consequently, the vector �r consists of 3 components, which
can be expressed equivalently in Cartesian or spherical co-
ordinates, namely �r = (x, y, z) = (r, θ, φ), where r = |�r|.

In principle, it is not guaranteed that those informa-
tion measures be well-defined for any arbitrary distribu-
tions, because their definition requires the involved inte-
gral to be convergent and, for the Fisher information, the
distribution to be differentiable. For illustration, the def-
inition of the variance V requires appropriate short- and
long-range behaviors of the distribution for the involved
first- and second-order radial expectation values to be fi-
nite, namely r4ρ(r) → 0 as r → 0 and r5ρ(r) → 0 as
r → ∞. Similar requirements need also to be verified in
the Tsallis entropy case (determined by the considered
value of the Tq parameter), as well as the aforementioned
differentiability over the whole domain when considering
Fisher information I. Nevertheless, all these convergence
and differentiability conditions are verified by the atomic
distributions analyzed in the present work.

One of the basic ingredients in the study of many-
fermion systems (e.g. atoms, molecules) is the one-particle
density ρ(�r) on the three-dimensional space, as revealed
by the so-called ‘density functional theory’ (DFT). Such
a density describes the distribution of the electron cloud
around each position �r in R3, and it plays the main role
within the DFT for describing many different properties
of the system, such as kinetic, exchange and correlation
energies, among others [32].

It is very usual to deal additionally with the corre-
sponding distribution in the so-called conjugated space.
This is the case in which the �r-space distribution of a

N -particle system is defined from an initial wavefunction
Ψ(�r, �r2, . . . , �rN ) by integrating |Ψ |2 on all variables except
�r, giving rise to ρ(�r). If one considers the Fourier transform
Ψ̃(�p, �p2, ..., �pN ) to build up the associated distribution γ(�p)
(preserving normalization), many properties and charac-
teristics of both densities ρ(�r) and γ(�p) are well-known
to be strongly related. As mentioned above, this is the
case, for instance, of the so-called one-particle densities of
many-particle systems (e.g. atoms, molecules). Similarly
as ρ(�r) (position space density, in what follows) provides
the mass density around location �r, the ‘momentum space
density’ γ(�p) quantifies the linear momentum distribution
around the momentum vector �p. Different relationships
involving quantities associated with both complementary
densities are of capital importance through the concept of
uncertainty of the system.

In what follows, atomic units (a.u.) will be con-
sidered for variables, densities and functionals (i.e.
� = me = e = 1 and, consequently, also the Bohr radius
a0 = 1) when carrying out the numerical analysis for
atoms. Fixing the system of units is essential for a proper
description of different quantities, according to their defi-
nition.

It is worthy to point out that, for atomic systems in the
absence of external fields, it is sufficient to deal with the
spherically averaged densities ρ(r) and γ(p) for a complete
description, the independent variable (r or p) ranging over
the non-negative real line [0,∞).

Some radial moments (in both spaces) are specially
relevant for atomic systems from a physical point of view.
It is well known, for instance that 〈r−1〉 is essentially
the electron-nucleus attraction energy, 〈r2〉 is related to
the diamagnetic susceptibility, 〈p−1〉 is twice the height of
the peak of the Compton profile, and 〈p2〉 is twice the ki-
netic energy and 〈p4〉 its relativistic correction. So, those
physically relevant and/or experimentally accessible quan-
tities provide also information on the spreading measures
of the system.

The previously introduced notation on extremum in-
formation measures will refer to the position-space den-
sity ρ(�r), adding above the symbol ‘∼’ (in a similar
fashion as done for the wavefunction in the conjugated
space) when dealing with the momentum or �p-space den-
sity γ(�p) (e.g. ĨS is the Fisher information I of the distri-
bution γS(�p) which maximizes Shannon entropy S).

The main aim in the present section is the study for
ground-state neutral atoms throughout the periodic ta-
ble, with nuclear charge Z = 1−103, of the information-
theoretic measures S, Tq, I and V for the extremizer
distributions (i.e. the solutions of the MaxEnt, MaxTent
and MinInf problems), constrained by normalization and
an α-order expectation value, in position and momentum
spaces. For carrying out the numerical calculations, the ac-
curate near-Hartree-Fock wavefunctions of Koga et al. [33]
will be employed. Such a study will be done by ana-
lyzing the dependence of the measures in both the nu-
clear charge Z and the constraint order α for each con-
jugated space. The associated radial expectation values
are defined for α > −3 in position space and within
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the range −3 < α < 5 in the momentum one, due to the
rigorously known short- and long-range behaviors of the
densities. Concerning the information measures, all them
are finite-valued for these systems (taking into account
the differentiability of the densities at any point as well as
the aforementioned behaviors at zero and infinity), with
the only constraint q > 3/8 in momentum space as a con-
sequence (in order to the integral appearing in the defi-
nition of Tq be convergent) of the long-range behavior of
the one-particle density γ(p) as p−8 [34].

For completeness, the existence conditions for the two-
moment (α, β)-MaxEnt problem will be also checked for
these systems by means of their radial expectation val-
ues obtained with the aforementioned near-Hartree-Fock
framework.

3.1 The MaxTent atomic problem

As mentioned in the introduction, Tsallis entropy Tq

definition constitutes an extension or generalization of
Shannon entropy S, or equivalently, S can be considered
as a particular value of Tq having in mind the limiting
equality S = T1. In spite of this equality, the maximizer
distributions of both entropies are significantly different,
as described in Section 2. For the MaxEnt problem, it has
an exponential-like decreasing behavior as increasing the
distance from the origin over the whole space, while the
MaxTent solution (for q 
= 1) has a finite-size support,
being a sphere centered at the origin. So, the MaxEnt
problem cannot be seen as a mere particular case of the
MaxTent one, but a very special case as described later on.

This is the reason for being so interesting to carry out,
for the spreading measures associated with both the Max-
Tent and the MaxEnt problems, a similar study concern-
ing the dependence on the nuclear charge Z and the con-
straint order α of the corresponding information measures,
in both conjugated spaces. For illustration, the q = 1.7
value of Tsallis parameter will be considered in order to
perform the numerical calculations, but similar conclu-
sions are derived from the results obtained considering
other values. Additionally, when dealing with a fixed con-
straint order α, most comments are also valid indepen-
dently of its value.

In Figure 1, variance, Fisher information and Shannon
and Tsallis entropies of the MaxTent distributions are dis-
played (employing some scaling factors in order to better
compare among themselves) for the ground-state neutral
atoms with nuclear charge Z = 1−103 in position (Fig. 1a)
and momentum (Fig. 1b) spaces, with constraint order
α = 1 (the expectation value being calculated within the
aforementioned Hartree-Fock framework, employing the
wavefunctions provided in Ref. [33]). Some comments are
in order:

1. A first comparison between Figures 1a and 1b reveals
the strong structural differences according to the space
we deal with. There appears a very rich piecewise
structure on curves corresponding to information mea-
sures in position space (Fig. 1a), while much softer
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Fig. 1. Variance, Fisher information and Shannon and Tsallis
entropies of the MaxTent (maximum Tsallis entropy) solution
for q = 1.7 with radial constraint order α = 1 in (a) position
(3 × VT , IT /26, ST /3 and TT (q = 1.7)), and (b) momentum
(ṼT /3, ĨT , S̃T /2 and T̃T (q = 1.7)) spaces, for all ground-state
neutral atoms with nuclear charge Z = 1−103. Atomic units
are used.

shapes are displayed in momentum space (Fig. 1b).
Centering our attention upon position space, the spa-
tial relationship among the atoms is checked for the lo-
cations of extrema and for the process of filling atomic
subshells. In this sense, different periods throughout
the periodic table are represented by apparent pieces
of the curves. Within each period, the global measures
decrease (in overall) when adding an electron while, on
the other hand, the local Fisher information increases.
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Fig. 2. Shannon entropy (ST ) of the MaxTent (maximum
Tsallis entropy) solutions in position space with radial con-
straint orders α = 1, 2, 3, 4, for all ground-state neutral atoms
with nuclear charge Z = 1−103. Atomic units are used.

Moreover, other structural properties, such as the
anomalous shell-filling, are also revealed by the ad-
ditional peaks associated with the corresponding ele-
ments. This is the case, for instance of systems with
Z = 24, 29 (3d subshell), Z = 41−42, 44−47 (4d sub-
shell) and Z = 78, 79 (5d subshell).

2. As mentioned in the Introduction, the Fisher func-
tional is a local measure of information, contrary to
the variance and Shannon and Tsallis entropies, which
are quantities of global character. This fact is clearly
appreciated in Figure 1a, where local maxima of the
global measures appear at the same position as lo-
cal minima of the local measure, and conversely (e.g.
maxima of global measures occur, with very few excep-
tions, for noble gases, namely systems with completely
filled valence orbitals). Such a behavior indicates that
a higher spreading of the distribution raises the global
measures but decreases the local one, as should be ex-
pected according to the meaning and the definitions of
the different information quantities.

3. A similar comment can also be done by analyzing Fig-
ure 1b (momentum space), now in terms of monotonic-
ity properties instead of location of extrema. In this
sense, it is worthy to remark that curves correspond-
ing to global measures are monotonically increasing
with the nuclear charge Z as well as concave, while
the behavior in the Fisher case is just the opposite
one, namely it decreases with Z displaying a convex
shape.

It is also interesting to consider the dependence of the in-
formation measures on the constraint order α of the chosen
constraint, as illustrated by Figure 2 for the Shannon en-

tropy ST of the Tsallis extremized distribution in position
space, again for Z = 1−103. As clearly observed, the quan-
tity ST provided by the particular values α = 1, 2, 3, 4 be-
haves in a similar fashion independently of the constraint
order, differing among themselves only (roughly) by a scal-
ing factor. According to the global character of Shannon
entropy and its relation with the Tsallis one, most com-
ments concerning location of extrema and its interpreta-
tion in terms of periodicity and shell structure, as well
as the relevant structural differences between the position
and the momentum space studies, can be also obtained
from those of Figure 1, being valid for any α.

3.2 The MaxEnt atomic problem

Having in mind, as previously mentioned, the similar in-
terpretation of the Z dependence for both the MaxTent
and the MaxEnt problems, let us now analyze in more de-
tail the dependence of the measures associated with the
MaxEnt distribution on the constraint order α in both
conjugated spaces, by considering the maximal Shannon
entropy in position space (SS) and Fisher information in
momentum space (ĨS), that is, a global and a local mea-
sure. Nevertheless, additional comments will be also done
concerning other quantities in both spaces, apart from
those appearing in the figure. Specially interesting is the
different behavior displayed by these quantities (the other
global measures behaves in a similar way as Shannon en-
tropy) attending to the space we are dealing with, not
only in the level of structure but also in the way the global
measures appear ordered.

For illustration, a comparison of these quantities as
functions of α is carried out for different ground-state
atomic systems (Z = 10, 19, 25, 33, 38, 48, 70, 83) in Fig-
ure 3. The selection of those systems is not arbitrary, but
made in order to include a variety of valence subshells and
occupation numbers. It is worthy to remark that (i) the
‘global’ position space Shannon entropy SS monotonically
increases while the ‘local’ momentum space Fisher infor-
mation ĨS monotonically decreases; and (ii) both quan-
tities also differ on higher order monotonicity properties,
namely the position space Shannon entropy SS is a con-
cave function of α, the Fisher information ĨS (momen-
tum space) being convex. Concerning other information
measures in the two conjugated spaces, let us also point
out that, except for very small values of α, (i) the three
global measures here considered (variance and Shannon
and Tsallis entropies) monotonically increase in the two
conjugated spaces, the local one (Fisher information) be-
ing monotonically decreasing in both them; and (ii) the
four measures in momentum space, as well as the vari-
ance and the Fisher information in position space, dis-
play convex shapes, while Shannon and Tsallis entropies
in position space are (in overall) concave functions of the
constraint order α.

Another relevant difference between Figures 3a and 3b
concerns ordering of curves (from above to below) attend-
ing to the space considered. While in momentum space
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Fig. 3. (a) Shannon entropy in position space (SS), and (b)
Fisher information in momentum space (ĨS), of the MaxEnt
(maximum Shannon entropy) solution with the radial con-
straint 〈rα〉 as a function of α, for ground-state neutral atoms
with nuclear charge Z = 10, 19, 25, 33, 38, 48, 70, 83. Atomic
units are used.

they are ordered according to the nuclear charge Z, or-
dering in position space is governed by the electronic con-
figuration of the valence subshell. The same comment is
also valid for all other information measures considered in
this work.

Finally, and for completeness, let us mention that we
have checked the existence conditions of MaxEnt solu-
tions (provided in Ref. [24]) when adding a second radial
constraint (i.e. with M = 2). In doing so, we have con-
sidered radial expectation values of integer-order within
the range −2 to 4. The analysis carried out reveals that

they are not verified neither in position nor in momentum
space, independently of the pair of constraints considered.
Consequently, there does not exist MaxEnt solution under
those conditions for atomic charge and momentum densi-
ties, at least for those systems.

3.3 The MinInf atomic problem

As compared to the previous variational problems, the
minimization of Fisher information under some given con-
straints presents different characteristics from the concep-
tual and mathematical points of view. As its own name
indicates, now the aim is to find a minimizer informa-
tion distribution instead of a maximizer one. The reason
is the kind of functional to extremize, namely the Fisher
information which, contrary to the convex functionals Tq

and S (Tsallis and Shannon entropies), is a concave one.
This rigorous property has been previously pointed out
when discussing the maximization problems.

Also the local character of I, opposite to the global one
of S and Tq, justifies the replacement of a maximization
by a minimization problem. The fact that the gradient of
the distribution appears in the definition of I makes that
minimum values to be reached for highly spread distribu-
tions, according to the concept of ‘least-biased’ functions.

Affording the associated variational problem mathe-
matically is more involved than the previous ones, mainly
due to the above mentioned gradient operator in the
Fisher information definition. The only case (to the best
of our knowledge) for which an analytical solution has
been obtained is that corresponding to a unique constraint
(apart from normalization) of order α = −1. Neverthe-
less, for our present purposes (namely the application of
the MinInf information measures to the study of atomic
systems), such an order is specially relevant and mean-
ingful from a physical point of view in both position and
momentum spaces, because the associated constraints in
conjugated spaces, namely 〈r−1〉 and 〈p−1〉 are propor-
tional (as previously mentioned) to the electron-nucleus
attraction energy and to the height of the peak of the
Compton profile, respectively.

The analysis of the information measures associated
with the minimizer distributions is carried out below
according to their dependence on the atomic nuclear
charge Z for both the position and momentum spaces,
as displayed in Figure 4 (employing some scaling factors
in Fig. 4a for a better comparison of the position spaces
quantities). For illustration, the value q = 0.9 has been
chosen for the characteristic parameter of the Tsallis en-
tropy Tq.

As in preceding maximization problems, the different
structures displayed in the given space by all the infor-
mation measures of the minimized Fisher information are
clearly revealed. However, the most remarkable point is
that momentum space is now the one which provides a
higher level of structure, again displaying a high number
of local extrema whose location is determined by the shell-
filling process and showing periodicity patterns.
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Fig. 4. Variance, Fisher information and Shannon and Tsallis
entropies of the MinInf (minimum Fisher information) solution
with radial constraint order α = −1 in (a) position (10 × VI ,
II/50, SI and TI(q = 0.9)), and (b) momentum (ṼI , ĨI , S̃I

and T̃I(q = 0.9)) spaces, for all ground-state neutral atoms
with nuclear charge Z = 1−103. Atomic units are used.

The shell-structure properties of atomic systems are
mainly characterized by the valence orbital, usually the
outermost subshells. The aforementioned results on all
extremization problems allow one to conclude that the
information-theoretic apport of the valence orbital to the
global measures is much more significant in position space,
while Fisher information appears to be more sensitive to
valence contribution in momentum space.

Summarizing, it has been clearly revealed the comple-
mentary usefulness of global and local information mea-

sures, as well as their values in both conjugated spaces
(position and momentum), in order to get a complete de-
scription of the information content of the atomic systems,
as well as its interpretation in terms of relevant physical
properties and their main structural characteristics.

4 Conclusions and open problems

After clarifying the role played by different information
measures on an arbitrary distribution, and the associ-
ated extremization problems (MaxEnt, MaxTent and Min-
Inf) when a given set of constraints (expectation val-
ues) is known, we have analyzed the mutual dependence
among the one-constraint solutions and the values of
their information-theoretic measures for real physical sys-
tems, namely neutral atoms throughout the periodic ta-
ble. The behavior in terms of the nuclear charge Z and
the constraint order α has been studied in both conju-
gated spaces, displaying in some cases the shell-structure
patterns (including anomalous shell-filling) according to
the global or local character of the involved spreading
measure. The characteristic atomic periodicity appears
strongly related to the location of maxima and minima
in the information curves. In this sense, it is worthy to re-
mark that, while the information measures of the MinInf
solution are much more sensitive to valence orbital oc-
cupation number for the momentum space density γ(�p),
the same is true for the MaxEnt and MaxTent ones but
in the conjugate space, i.e. for the charge density ρ(�r).
Other properties, such as ordering among themselves,
monotonicity (strict or piecewise) and convexity on the
Z and α variables have been considered. Additionally, for
the MaxEnt case it has been checked that, in the present
Hartree-Fock framework, the existence conditions for the
two-constraint problem, which has been recently deter-
mined analytically in reference [24], do not hold for any
neutral atom neither in position nor in momentum space,
at least for integer-order constraints.

For future work, it is expected (i) to afford the
three (and higher) constraints problem; (ii) to establish
uncertainty-like relationships for the extremization prob-
lems, working within the product or phase space; (iii) to
study the dependence of the aforementioned measures
on additional physical and chemical properties (ioniza-
tion potential, electron affinities); (iv) to impose different
kinds of constraints, such as short- and long-range be-
haviors; and (v) to deal with other many-fermion systems
(e.g. molecules) and distributions (e.g. form factors and
Compton profiles, whose moments are strongly related
to the one-particle densities in position and momentum
spaces).
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