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Generalized Renyi complexity measures are defined and numerically analyzed for atomic one-particle
densities in both conjugated spaces. These complexities provide, as particular cases, the previously
known statistical and Fisher–Shannon complexities. The generalized complexities provide information
on the atomic shell structure and shell-filling patterns, allowing to appropriately weight different regions
of the electronic cloud.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

The study of complexity in physical, chemical, biological and
social systems or processes is a topic of great contemporary re-
search interest. A quantitative measure of complexity is useful to
estimate the ability of systems for organization and it is also pro-
posed as a general indicator of structure or correlation. Its contro-
verted and difficult quantification has lead to a variety of
definitions, e.g., algorithmic complexity [1,2], effective complexity
[3], logical [4] and thermodynamical [5] depths, and computational
[6] or statistical [7] complexities, but most of them share formal
similarities with the others as well as with Bayes and information
theories. Fundamental concepts such as entropy or information are
frequently present in the proposals for characterizing complexity,
but it is known that other ingredients capturing not only random-
ness are also necessary. In fact one would wish also to detect, for
instance, clustering or pattern.

Recent proposals for a quantitative study of complexity try to
formulate this magnitude as a product of two factors taking into
account order/disequilibrium and disorder/uncertainty, respec-
tively. These are the cases of the statistical complexity of
López-Ruiz, Mancini, and Calbet (LMC) [7], the closely related
two-parameter complexity of Shiner, Davison, and Landsberg
(SDL) [8] or other product complexities [9].

The LMC complexity measure was originally defined as the
product D � S of two important information-theoretic quantities:
the disequilibrium D, which quantifies the departure of the proba-
bility distribution from uniformity [7,10] and the well known
Shannon entropy, S, which is a universal measure of uncertainty
or randomness [11]. On the other hand the SDL complexity is de-
fined as the product of two factors, both constructed by using

Shannon entropy, taking into account order and disorder, respec-
tively, [8].

These product complexity measures, which satisfy the usual
boundary conditions of minimum values in the extreme ordered
and disordered limits, have been criticized and consequently mod-
ified leading to powerful estimators successfully checked in a wide
variety of fields [12–15]. In particular the LMC complexity has been
modified leading to the definition of ‘shape complexity’
CðLMCÞ ¼ DeS [16–18] which satisfies several desirable properties
of boundness [16,19] as well as invariance under scaling, transla-
tion and replication. The utility of this improved complexity has
been shown in many fields [13,15,20,21] and also allows reliable
detection of quasiperiodic and linear stochastics, and nonlinear
dynamics [18].

Recently some other product complexities have been also stud-
ied. Such is the case of the so called Fisher–Shannon complexity
CðFSÞ ¼ I � J ¼ I � ð1=2peÞe2S=n of n-dimensional distributions, which
incorporates an important magnitude of local character: the Fisher
information I [22,23]. This information measure quantifies the gra-
dient content of the probability distribution and therefore explores
deeply the internal changes it suffers. Numerical factors in the FS
complexity are chosen to have the rigorous bound CðFSÞP n [24].

The above LMC and FS complexity measures, their components
and some other related magnitudes have been applied recently to
the study of multielectron systems by means of their monopartic-
ular electron densities in conjugated spaces [9,25–27].

The FS complexity has been applied only in very few fields, in
spite of their success, including the pioneering work on analysis
of signals [24], a study of electron correlation [28] and some other
works studying atomic systems and ionization processes [29,30].
Very recently additional analytic works in the field of quantum
mechanics have also used the FS complexity [31–34].

Some complexity studies in atoms were carried out, but most of
them only for non-heavy systems (nuclear charge up to Z ¼ 54
[35]) or only in the usual position space [36]. It has been very re-
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cently that studies on the electronic structural complexity of atom-
ic systems, taking into account momentum space, were reported
[9,37]. It has been shown that it is not sufficient to study the above
measures only in the usual position space, but also in the comple-
mentary momentum space, in order to have a complete description
of the information theoretic internal structure and the behavior of
physical processes suffered by these systems. Some other new pro-
posals of product-type complexity measures (e.g., Cramer–Rao
complexity) have been also constructed and computed for multi-
electronic systems [9].

In this work we study a generalization of these product-like
complexities by replacing the Shannon entropy functional by a
more general and powerful magnitude as the Renyi entropy. There-
fore we deal with a one-parameter (to be denoted by a) general-
ized complexity which weights different regions of the position
or momentum spaces according to the value of a. The LMC and
FS complexities are particular cases of these so-called Renyi
complexities.

In concrete the so-called ‘Shape Renyi complexity’ (SR), charac-
terized as a difference between the a-order Renyi entropy and the
second-order one (expressed in terms of the disequilibrium, D), has
been extended to continuous systems [14], theoretically studied,
and tested for the binary symmetric channel (BSC) and the logistic
map [20]. A more extended family of generalized complexity mea-
sures has been proposed, and rigorous bounds, geometrical proper-
ties and several applications have been also studied [38].

Moreover, the ‘Fisher–Renyi complexity’ (FR) is defined by sim-
ply replacing the Shannon entropy by the Renyi entropy in the
expression of the Fisher–Shannon complexity. Some rigorous prop-
erties for this entropic product, also called Fisher–Renyi product,
and similar ones have been recently obtained [39].

Previous applications of both the SR and FR complexities within
the framework of the present manuscript, i.e. their interpretation
according to the shell structure of atomic systems, are very scarce
in the literature. To the best of our knowledge, in fact, this is the
first time in which the SR complexity is considered and analyzed
for atoms. The same also occurs with the FR complexity, apart from
recently derived results [39], mainly concerning uncertainty-like
relationships but not the atomic structure and the shell-filling
process.

In this work we use both generalized Renyi complexities, SR and
FR, to study the behavior of simple quantum-mechanical systems,
but strongly organized and hierarchical, such as the neutral atoms
throughout the whole Periodic Table of elements. In Section 2 a
complete numerical study of these complexities at the Hartree–
Fock level is done for the atomic position and momentum one-par-
ticle densities, revealing the complementary and fundamental
roles of both conjugated spaces. Complex patterns and localiza-
tion–delocalization planes are also investigated within Section 3
in both spaces, and conclusions and main results are collected in
the last section.

2. Fisher–Renyi and Shape Renyi complexities

The concept of Renyi complexity arises from the delocalization
or entropy measure of identical name, widely used in the literature
when affording many different problems within an information-
theoretic framework [40]. The Renyi entropy plays a similar role
to those of other density functionals as descriptors of the uncer-
tainty on a distribution. Among them, very well-known ones are
the Shannon [11] and the Tsallis [41] entropies. However, the com-
plexity of a given system also provides information on its level of
localization or order, by means of information measures such as,
e.g., the disequilibrium or the Fisher information.

The Renyi entropy of order a for a distribution qð~rÞ defined over
the three-dimensional space is defined as

RðaÞ � 1
1� a

ln xa ð1Þ

where the quantity xa is the so-called ‘a-order frequency moment’
of qð~rÞ, given by

xa �
Z

qað~rÞd~r; ð2Þ

which have been also employed in diverse fields, specially remark-
able being their meaning for some specific a values in the develop-
ment of the Density Functional Theory [42] (e.g., Thomas–Fermi
kinetic and exchange energies) as well as the own disequilibrium
[7,10]. The normalization to unity of the distribution can be ex-
pressed as x1 ¼ 1.

The allowed range of values for the characteristic parameter a
of the Renyi entropy is determined by the convergence conditions
on the integral in Eq. (2), being imposed by the short- and long-
range behaviors of the distribution qð~rÞ. Apart from the necessary
(but not sufficient) condition a > 0 for the finiteness of RðaÞ, the
particular value a ¼ 1 appears as a limiting case, because both
the numerator and the denominator in Eq. (1) vanish, the limit giv-
ing rise to

Rð1Þ ¼ S ¼ �
Z

qð~rÞ ln qð~rÞd~r; ð3Þ

that is, the Renyi entropy of order 1 is the Shannon entropy S or, in
other words, the Renyi entropy RðaÞ represents an extension or gen-
eralization of the Shannon entropy.

The power a of the distribution in Eq. (2), where xa is defined,
allows to enhance or diminish, by increasing or decreasing its va-
lue, the contribution of the integrand over different regions to
the whole integral and, consequently, to the frequency moments
and the Renyi entropy RðaÞ. Higher values of a make the function
qað~rÞ to concentrate around the local maxima of the distribution,
while the lower values have the effect of smoothing that function
over its whole domain. It is in that sense that the parameter a pro-
vide us with a powerful tool in order to get information on the
structure of the distribution by means of the Renyi entropy.

A relevant particular case of the Renyi entropy and the fre-
quency moments corresponds to a ¼ 2, from which arises the def-
inition of ‘disequilibrium’ D as the second-order frequency
moment x2, namely

D �
Z

q2ð~rÞd~r; ð4Þ

which is a well-known descriptor of the ‘level of departure from
uniformity’ of the distribution [7,10]. According to its definition
and that of RðaÞ it is immediate to observe that Rð2Þ ¼ � ln D, estab-
lishing a link between the Renyi entropy and the disequilibrium.

All quantities defined in the present section, playing a relevant
role within an information-theoretic context, posses a ‘global char-
acter’, in the sense that they are very little sensitive to strong
changes on the distribution over a small-sized region. Such is not
the case of another information functional, known as ‘Fisher infor-
mation’ I, which constitutes a measure of the gradient content of
the distribution, being much more sensitive to those strongly local-
ized perturbations. It is defined as [22]

I �
Z

qð~rÞj~r ln qð~rÞj2d~r; ð5Þ

where the gradient operator significantly determines the contribu-
tion of the aforementioned variations of the distribution over its do-
main to the value of the Fisher information. This is the reason of
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such a measure I being usually referred as a ‘local’ descriptor,
according to its sensitivity to local characteristics of qð~rÞ.

As described in Section 1, the main complexity measures are
usually built up as the product of two factors, such being the case
of the LMC and FS complexities. In both of them, the Shannon en-
tropy S is employed as measure of information in one factor, the
other factor (measure of order) being the disequilibrium D and
the Fisher information I for the LMC and FS complexities, respec-
tively. The first aim of this section is to define and analyze a gen-
eralized version of the aforementioned complexities, where the
Shannon entropy contribution is replaced by the Renyi entropy
RðaÞ, giving rise to generalized complexity measures which will
be referred as ‘Shape Renyi complexity’ SRðaÞ and ‘Fisher–Renyi
complexity’ FRðaÞ, defined as

SRðaÞ � D � expfRðaÞg; ð6Þ

with the exponential Renyi entropy being also denoted as
LðaÞ � expfRðaÞg, and

FRðaÞ � I � JðaÞ; ð7Þ

where

JðaÞ ¼ 1
2pe

exp
2
3

RðaÞ
� �

ð8Þ

is the ‘a-order power entropy’ for the three-dimensional case.
Some comments are in order: (i) the particular cases SRð1Þ and

FRð1Þ corresponding to a ¼ 1 provide, respectively, the expressions
of the LMC and FS complexities, (ii) all relevant invariance proper-
ties of LMC and FS also remain for arbitrary a > 0, (iii) the weight-
ing effect of the parameter a over specific regions, as previously
mentioned for the Renyi entropy, now translates into the associ-
ated complexities, and (iv) attending to its definition, the compos-
ing factors of the second-order Shape Renyi complexity are one the
inverse of the other, and consequently SRð2Þ ¼ 1.

Other Renyi products have been also considered in the litera-
ture, for which different properties such as, e.g., bounds and uncer-
tainty-like relationships are known for very specific a ranges [39].
The analysis of those properties is not within the aims of the pres-
ent job, in which a much wider interval for the a parameter is
considered.

The next purpose is to analyze numerically the Shape Renyi and
Fisher–Renyi complexities of the one-particle densities in position
and momentum spaces, qð~rÞ and cð~pÞ, respectively, for neutral
atoms throughout the Periodic Table, their nuclear charge ranging
from Z ¼ 1 to Z ¼ 103. In doing so, the accurate near Hartree–Fock
wavefunctions of Koga et al. [43] are employed. For atomic systems
in the absence of external fields, as in the present case, it is suffi-
cient to deal with the spherically averaged densities qðrÞ and cðpÞ.

The Shape Renyi complexity in position and momentum spaces,
to be denoted by SRðaÞr and SRðaÞp , respectively, are shown for these
atomic systems in Fig. 1a (position) and b (momentum), for diverse
values of the parameter a within the range 0:4 6 a 6 3:6, corre-
sponding to the different curves displayed. It is worthy to point
out that for atomic systems the exponential long-range behavior
of the position space density [44] allows any non-negative value
a > 0, while the momentum space one as p�8 [45] imposes the con-
straint a > 3=8 ¼ 0:375.

A first look at Fig. 1 allows to observe relevant differences be-
tween the structural characteristics of the Shape Renyi complexity
SRðaÞ after comparing the curves corresponding to both conjugated
spaces. The position space measure SRðaÞr (Fig. 1a) displays a much
richer structure when dealing with very low values of a, reaching a
higher smoothness and monotonicity as a increases. In those cases
where the presence of local extrema is more apparent, a detailed
analysis of their location reveals that they correspond either to

closed shell systems or to atoms suffering the so called ‘anomalous
shell-filling’. These two characteristics depend on the occupation
number of the outermost or the valence atomic subshell, where
the aforementioned exponential behavior of qðrÞ makes the den-
sity values to be very small as compared to those of the core region.
Consequently, powering the density to a small a value enhances
the contribution of the valence region, revealing the properties
associated to the shell-filling process. Specially relevant is the
strength for systems with ‘s’ valence subshell as compared to other
values of the angular momentum quantum number. It is addition-
ally observed that changes of the SRðaÞ in both spaces when
increasing the nuclear charge (i.e. between consecutive systems)
become smaller as far as considering heavier atoms, being much
apparent for light ones.

The same study in momentum space (Fig. 1b) provides similar
conclusions in what concerns the location of extrema and its inter-
pretation in terms of the shell structure. The main difference when
comparing to the position space curves is that such a structure is
displayed independently of the a value consider, being much more
apparent again for lower a’s. Nevertheless, even for high a values
that structure can be also observed under a much smaller scale.
Again the reason for finding this behavior can be understood hav-
ing in mind that the valence region is populated by low speed elec-
trons, represented in terms of the momentum density cðpÞ by its
value around the origin (i.e. close to p ¼ 0). The momentum den-
sity in that region reaches high enough values in order to provide
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Fig. 1. Shape Renyi complexity SRðaÞ for a ¼ 0:4;0:8;1:0;1:6;2:0;2:4;3:6 in (a)
position space and (b) momentum space. Atomic units (a.u.) are used.
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information on the valence electrons even without carrying out the
enhancement operation by lowering the a parameter.

Similar comments to those arising from the analysis of the fig-
ure corresponding to the Shape Renyi complexity SRðaÞ in both con-
jugated spaces remain also valid for the Fisher–Renyi complexity
FRðaÞ as observed in Fig. 2, at least in what concerns location of ex-
trema and level of structure in each space. Fig. 2 is composed sim-
ilarly as Fig. 1, i.e. position space (Fig. 2a) and momentum space
(Fig. 2b). At this point it is worthy to remember the very different
character of the factors involved as measures of order for each
complexity, namely the disequilibrium and the Fisher information,
respectively. In spite of such a difference, the complexities them-
selves display a very similar structure for all the a values here con-
sidered. Nevertheless, a detailed analysis reveals the
aforementioned ‘local sensitivity’ of the Fisher–Renyi complexity
FRðaÞ as compared to the Shape Renyi one SRðaÞ in the magnitude
of their variations for closed shells and anomalous shell-filling sys-
tems, specially in the momentum space, much less visible in the
position one.

It should be pointed out the role played by the Renyi complex-
ities SR and FR as compared to the individual factors composing
them. It is well known the monotonic and structureless behavior
of, e.g., the disequilibrium Dr or the Fisher entropy Ir in position
space [29], as also recently observed for the Renyi entropy RðaÞp with
a > 1 [46].

The study of Figs. 1 and 2 reveals not only the interest of consid-
ering different values of the Renyi parameter a in order to obtain a
more complete information on the density structure in different
atomic regions from the Renyi-like complexities, but also the use-
fulness of dealing simultaneously with both position and momen-
tum spaces.

3. Renyi information planes

Far beyond the Shape Renyi and Fisher–Renyi atomic complex-
ities as descriptors of the shell-filling pattern and information con-
tent, it appears also relevant the study of the contribution to the
whole complexity of each of its composing factors, in order to ana-
lyze the location of all atomic systems here considered in the cor-
responding order–disorder plane. In this way, systems belonging to
similar complexity values can be also classified attending to their
disequilibrium/order on one hand, and to their uncertainty/disor-
der on the other.

For illustration, the corresponding I—JðaÞ and D—LðaÞ planes are
shown in Figs. 3 and 4, respectively, in the position space for the
first case (i.e. Ir—JðaÞr in Fig. 3) and in the momentum one for the
other (i.e. Dp—LðaÞp in Fig. 4). Similar conclusions are obtained for
the other planes: for a given space, both planes look similar, the
differences being mainly associated to the global and local charac-
ter of the involved factors, as will be explained when discussing
Figs. 3 and 4 in detail. Nevertheless, it should be remarked that
momentum space planes appear more involved than the position
ones. As mentioned in the previous section, the information con-
tent of the atomic systems is mainly governed by the nuclear re-
gion in position space and by the valence subshells in the
momentum one. Adding electrons to the atomic systems is a pro-
cess which follows rules (shell-filling pattern) not as simple as
merely increasing the nuclear charge. Such a difference is also dis-
played in the corresponding information planes.

Fig. 3 displays the Fisher–Renyi plane in position space, for dif-
ferent values of the parameter a. The main two comments arising
from the analysis of this figure are: (i) as observed in Section 2 for
the position space complexities, the atomic shell structure is dis-
played, also in the information planes, for low a values, the curves
being very smooth and almost monotonic for higher ones; the loca-
tion of peaks corresponding to local extrema are associated to the
characteristics of the atomic shell-filling, and (ii) all curves display
a similar trend of large Fisher information and low power entropy
for heavy atoms, which can be interpreted as a relevant increase of
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Fig. 2. Fisher–Renyi complexity FRðaÞ for a ¼ 0:4;0:8;1:0;1:6;2:0;2:4;3:6 in (a)
position space and (b) momentum space. Atomic units (a.u.) are used.
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gradient at the origin as the electron cloud concentrates around the
nuclear region when the nuclear charge increases, while in other
regions the electron density spreads almost uniformly, increasing
consequently the power entropy.

The aforementioned involvement in momentum space as a con-
sequence of the shell-filling process is clearly observed in Fig. 4,
where the location of the different atomic systems in the momen-
tum D—LðaÞ plane for a given value of the parameter a are displayed
as a ‘cloud’, instead of a curve as in previous figures (apart from the
trivial case a ¼ 2 with a constant SRðaÞ product). Nevertheless, it is
observed a general trend for each a value, in the sense that heavy
systems concentrate around the upper-left region, corresponding
to low disequilibrium and high exponential entropy (i.e. low order
and high uncertainty). Additionally, the distance between consec-
utive systems becomes shorter as increasing their nuclear charge.
In what concerns the dependence on a, it is observed that the
clouds are ordered from above to below as increasing a, belonging
to different bands, parallel to the unity product line.

A comparison between Figs. 3 and 4 perfectly shows the com-
plementary character of the two conjugated spaces as well as that
of the contributing individual factors to the whole complexity in
both information planes. In this sense, it is worthy to remark that
heavy systems are located, in the position space plane, in the lower
right corner, corresponding to a high localization and a low entro-
py. Opposite trends, however, are observed in momentum space.

As in the complexity figures, it is also possible to distinguish the
shell-filling patterns for low a in momentum space, more clearly
for inner subshells (i.e. 1s, 2s, 2p). Nevertheless, the same can be
also observed for additional subshells by employing an appropriate
scale in the figure.

4. Conclusions

The Shape Renyi and Fisher–Renyi complexities generalize
other ones previously employed for analyzing atomic densities,
including them as particular cases. The characteristic parameter
of the Renyi complexities allows to modify the relative weight of
the distribution within specific regions of physical interest. The
numerical study carried out in the present work provides relevant
information on the atomic shell structure as well as the uncer-
tainty and disequilibrium patterns in both conjugated spaces for

neutral atoms throughout the whole periodic table. The comple-
mentary role played by the involved information measures, of very
different character, appears very relevant especially when dealing
simultaneously with the position and momentum distributions.
Each one behaves in a characteristic fashion according to the nucle-
ar charge of the involved systems, as well as to their valence sub-
shells and the groups they belong to.
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Fig. 4. Shape Renyi plane D—LðaÞ in momentum space for
a ¼ 0:4; 0:8;1:0;1:6;2:0;2:4;3:6. Atomic units (a.u.) are used.
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