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Abstract

Using the Hartree-Fock nonrelativistic wave functions in the position and momentum spaces,

the statistical measure of complexity C, due to López-Ruiz, Mancini, and Calbet for the neutral

atoms as well as their monopositive and mononegative ions with atomic number Z=1-54 are

reported. In C, given by the product of exponential power Shannon entropy and the average

density, the latter is then replaced by the Fisher measure to obtain the Fisher-Shannon plane.

Our numerical results suggest that in overall the Fisher-Shannon plane reproduces the trends

given by C, with significantly enhanced sensitivity in the position, momentum and the product

spaces in all neutral atoms and ions considered.
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I. INTRODUCTION

The study complexity of the physical and biological systems is a topic of great contem-

porary research interest. It is difficult to define a universal measure of complexity . The

quantification of complexity of real systems have led to a variety of measures e.g. the algo-

rithmic complexity [1, 2], the statistical measure of complexity C, defined by López-Ruiz,

Mancini, Calbet (LMC) [3, 4] and the simple two-parameter disorder-order derived measure

of complexity Γα,β according to Shiner, Davison, Landsberg (SDL) [5, 6]. However, it is

only very recently [7, 8], that the studies on the electronic structural complexity of neu-

tral atoms using the non-relativistic Hartree-Fock (HF ) wave functions [9] for atoms with

atomic number Z=1-54, have been reported. Both C and Γα,β measures are defined as the

product of two global information measures. It is interesting to explore the possibility of a

statistical complexity measure which is given as the product of a global and a local informa-

tion measure. In this letter, we have examined numerically such a quantity defined by the

Fisher-Shannon information plane (FSIP) in the position and momentum spaces for the set

of neutral atoms as well as their monopositive and mononegative ions with atomic number

Z=1-54 using the non-relativistic Hartree-Fock (HF ) wave functions [10, 11]. These results

are compared with the corresponding estimates of C in order to ascertain the suitability of

the FSIP as a possible measure of complexity. We note here that the FSIP has been earlier

proposed [12] as a tool for studying the electron correlation effects in the hookean atoms

and the helium iso-electronic series. To our knowledge, the present letter examines, for the

first time, the feasibility of FSIP as measuring the complexity of atoms. Our test set is

specifically chosen to include the ionized states in addition to the neutral atoms since the

extent of ionization defines the nature of chemical bonding.

II. LMC COMPLEXITY MEASURE

The LMC measure C is given by

C = H ·D , (1)

where H denotes a measure of information and D represents the so called disequilibrium or

the distance from equilibrium (most probable state). The form of C is designed such that

it vanishes for the two extreme probability distributions corresponding to perfect order
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(H = 0) and maximum disorder (D = 0), respectively.

For H in Eq. (1), we have used the exponential power Shannon entropy in the position

and momentum spaces [14, 15]

Jr =
1

2πe
e2Sr/3, (2)

Jp =
1

2πe
e2Sp/3, (3)

where the Shannon information entropy in position and momentum spaces are defined as

Sr = −
∫

ρ(r) ln ρ(r) d3r. (4)

Sp = −
∫

γ(p) ln γ(p) d3p. (5)

In Eqs. (2)-(5), ρ(r) and γ(p) denote the spherically averaged electron density distributions

in the position and momentum spaces each normalized to unity. The Shannon entropy is a

global measure of the spread of the probability distribution. The quantities Jr and Jp have

been specifically chosen to describe the entropy part of statistical complexity due to their

desirable properties of positivity and invariance to the co-ordinate scaling [12, 13] which are

retained in the complexity measures discussed in this work. To our knowledge, numerical

studies involving Jr and Jp to describe the statistical complexity for atomic and ionic systems

are presented here for the first time.

The disequilibrium Dr in the position space is calculated as the density expectation value

given by

Dr =

∫
ρ2(r) d3r. (6)

Analogously, the momentum space disequilibrium Dp is given by

Dp =

∫
γ2(p) d3p. (7)

The quantity D represents the quantum self similarity [16–18], information energy [19], or

linear entropy [20, 21]. Most significantly, it is also an experimentally measurable quantity

[22]. It is important to note here that D, for the normal distribution, is a direct measure

of the square root of inverse variance. In the following discussions, the products JrDr,

JpDp and JrpDrp, where Jrp and Drp are given by the products 1
2πe

e2(Sr+Sp)/3 and DrDp,

will be used to denote the LMC complexity measures Cr, Cp, and Crp , respectively. We
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note here that in defining Jrp we have used the net Shannon entropy, ST given by Sr + Sp,

and have computed its exponential power entropy to obtain Prp. Using JrJp instead would

simply scale down the numerical values by a constant term uniformly without altering any

conclusions.

III. FISHER-SHANNON INFORMATION PLANE

Fisher information measure [23], I, was originally introduced as a measure of intrinsic

accuracy in statistical estimation theory. Sears, Parr and Dinur [24] noted that the quantum

mechanical kinetic energy can be considered a measure of the information distribution, and

through its relation to the Weizsacker kinetic energy term , I assumes a special position in

quantum mechanics and density functional theory (DFT). Over the years, I has proved to be

a very useful concept, e.g. the equations of nonrelativistic quantum mechanics [25] have been

derived using the principle of minimum I [26]. The time-independent Kohn-Sham equations

and the time-dependent Euler equation of DFT were also derived by applying the above

principle [27, 28]. Other applications include the studies on single-particle systems under

a central potential [29], the two-electron entangled artificial atom proposed by Moshinsky

[30], modified Thomas-Fermi atoms [31] and the derivation of analytical relationship [32]

between the integrands defining Sr and Ir. In a recent paper [33], the product of inverse of

atomic I with D has been found to show good correlations with the ionization potentials and

static dipole polarizabilities for the neutral atoms across the periodic table. Very recently,

interesting new bounds relating to the I have been derived [34, 35] for the central potentials.

The Fisher information (intrinsic accuracy) measures [23] for position and momentum

are

Ir =

∫
[~∇ρ(r)]2

ρ(r)
d3r, Ip =

∫
[~∇γ(p)]2

γ(p)
d3p. (8)

In position space, Ir measures the narrowness and the oscillatory nature of the probability

distribution. For the normal distribution, for example, Ir is a direct measure of the inverse of

variance whereas Dr measures the square root of the inverse variance. Such a resemblance

has led us to examine the Fisher-Shannon planes for position and momentum given by

Pr = JrIr and Pp = JpIp , respectively, as a possible measure of statistical complexity

similar to C in the corresponding spaces. In this letter, we shall compare the complexity
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measures Cr, Cp, and Crp with the FSIPs given by Pr, Pp and Prp , respectively, for the test

set of atoms and ions as listed in the introduction. We conclude this section by noting the

isoperimetric inequality in three dimensions given by [36, 37]

Pr = JrIr ≥ 3, (9)

and

Pp = JpIp ≥ 3 (10)

Thus, a noteworthy feature of the measure of complexity given by FSIP is that it posseses

a universal lower bound given by Eqs. (9)-(10) above.

IV. RESULTS AND CONCLUSIONS

In the present work, the non-relativistic HF densities used are identical to those em-

ployed in a recent study on atomic quantum similarity [18] wherein the spherically averaged

densities are generated using Koga-Roothaan-Hartree-Fock wave functions [10, 11]. The

momentum space wave functions were computed using analytic expressions given in terms

of the linear expansions of the Slater type functions describing the position space HF wave

functions. All the necessary integrals have been estimated by means of the numerical

quadrature using the spherically averaged electron density.

In the discussion which follows, first we shall be specifically displaying the variations in

disequilibrium, D, and I with the nuclear charge for the neutral atoms Z(= 1 − 54). In

Fig. 1(a), we have compared the estimates of Dr (35 times) with Ir corresponding to the

neutral atoms as a function of Z. It is observed that while Dr increases monotonically with

Z, Ir goes down at Z=5,46 , then relatively less pronounced at Z=11, and decreases from

51 to 53. Over most of the region, otherwise, Ir follows the Dr curve. In Fig. 1(b), we have

similarly displayed the variation of Dp (90 times) with Ip for the neutral atoms wherein it

is found that the two quantities show similar trends. More significantly, the locations of

extrema in both Dp and Ip are observed at the identical values of Z. For example, minima

occur at Z=2,10,18,36,54 (noble gases) as well as Z=24,29,46 (anomalous shell-filling),

while the maxima are located at Z=3,12,20,30,38,43, and 48, respectively. As compared

to the position space, it is observed that the shell structure is revealed more clearly in the

momentum space through out for all atoms. The observations concerning Dp and Ip in
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Fig.1(b) also hold good when DrDp (5000 times) and IrIp are plotted, as in Fig. 1(c).

We shall now consider the numerical comparison between C and P values in the position,

momentum and the product spaces for the neutral atoms. In Fig.2, we have plotted Cr and

Pr for the neutral atoms as a function of Z. It is observed that the shell structure is more

clearly delineated through Pr. Further, the increase in complexity at the onset of a new

shell originating at the alkali metal atoms is more sensitively reflected in Pr. The overall

similarity between Cr and Pr is found to be excellent. These observations are also found to

hold good in the momentum space as displayed in Fig. 3, wherein we have plotted Cp and

Pp for the neutral atoms. Here, the appearance of the extrema are even more profoundly

displayed through Pp in comparison with Pr noted earlier in Fig. 2. The trends in D, I, C

and P for the positive and negative ions in the position and momentum spaces are found

to be similar as in the neutral atoms. In order to avoid repetitions these variations are not

displayed separately. However, in the product space we shall now consider all the systems

together. Thus, in Fig. 4(a)-(c) we have plotted the quantities Crp and Prp for the neutral,

positive and negative ions, respectively. In view of the essential similarity between Crp

and Prp it is finally concluded from Fig. 4 that in comparison to the LMC measure, FSIP

presents itself as an alternative measure of complexity for electron probability density of

atoms and ions with the notable characteristics that (a) it includes a global information (J)

and a local statistical measure (I), and (b) the variation in complexity with Z is revealed

more sensitively.

V. FUTURE WORK

Some possibilities of future work that follow from the present study will be briefly men-

tioned now. The well known relative Shannon entropy [38] of the density ρ1(r) with respect

to a prior distribution ρ2(r) is defined as

S1,2
r =

∫ ∞

0

4πr2ρ1(r) log

(
ρ1(r)

ρ2(r)

)
dr, (11)

which is zero in case of ρ1(r) as equal to ρ2(r) and otherwise positive, under the same

condition of normalization. Analogously, the relative Fisher information measure of the
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density ρ1(r) with respect to a prior distribution ρ2(r) may be defined as

I1,2
r =

∫ ∞

0

4πr2ρ1(r)

[
d

dr
log

(
ρ1(r)

ρ2(r)

)]2

dr, (12)

which is zero in case of ρ1(r) as equal to ρ2(r) and otherwise positive. Choosing the prior

as constant or unity, Ir has the significance of a measure of disorder. In general, I1,2
r offers

itself as a new quantum similarity measure [16]. It would be also useful to analyze the

isoelectronic variations of Crp and Prp by including a larger set of multiply charged positive

ions [12] and study, e.g. the Z dependence of the statistical complexity measures. Finally, a

more detailed analysis of the variation of statistical complexity with the process of ionization,

e.g. the variation in
[

dC
dN

]
Z

as a function of Z and the active sub-shell in atoms would be

useful. The results of such studies will be reported elsewhere.
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Figure Captions

Fig.1 :

A comparison of (a) 35 × Dr with Ir, (b) 90 × Dp with Ip, and (c) 5000 × Drp with Irp

corresponding to the neutral atoms as a function of Z.

Fig.2 :

A comparison of 35× Cr and Pr corresponding to neutral atoms as a function of Z.

Fig.3 :

A comparison of 90× Cp and Pp corresponding to the neutral atoms as a function of Z.

Fig.4 :

A comparison of 5000×Crp with Prp corresponding to the neutral atoms, positive ions, and

negative ions as a function of Z.
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