Evidence of altitudinal increase in photosynthetic capacity: gas exchange measurements at ambient and constant CO\textsubscript{2} partial pressures

Caroline C. Bresson1, Andrew S. Kowalski2,3, Antoine Kremer1, Sylvain Delzon1*

1 UMR BIOGECO, Université Bordeaux 1 – INRA, 33405 Talence, France
2 Departamento de Física Aplicada, Universidad de Granada, 18071 Granada, Spain
3 Centro Andaluz del Medio Ambiente (CEAMA), 18006 Granada, Spain

(Received 10 September 2008; accepted 9 February 2009)

Abstract

- Because all microclimatic variables change with elevation, it is difficult to compare plant performance and especially photosynthetic capacity at different elevations. Indeed, most previous studies investigated photosynthetic capacity of low- and high-elevation plants using constant temperature, humidity and light but varying CO\textsubscript{2} partial pressures (\(P_{CO_2}\)).

- Using gas exchange measurements, we compared here maximum assimilation rates (\(A_{max}\)) at ambient and constant-low-elevation \(P_{CO_2}\) for two temperate tree species along an altitudinal gradient (100 to 1600 m) in the Pyrénées mountains.

- Significant differences in \(A_{max}\) were observed between the CO\textsubscript{2} partial pressure treatments for elevations above 600 m, the between-treatment differences increasing with elevation up to 4 \(\mu\)mol m\(^{-2}\) s\(^{-1}\).

- We found an increase in \(A_{max}\) with increasing elevation at constant-low-elevation \(P_{CO_2}\) but not at ambient \(P_{CO_2}\) for both species. Given a 10\% change in \(P_{CO_2}\), a proportionally higher shift in maximum assimilation rate was found for both species.

- Our results showed that high elevation populations had higher photosynthetic capacity and therefore demonstrated that trees coped with extreme environmental conditions by a combination of adaptation (genetic evolution) and of acclimation. Our study also highlighted the importance of using constant CO\textsubscript{2} partial pressure to assess plant adaptation at different elevations.

Keywords:
adaptation / altitudinal gradient / acclimation / partial pressure / photosynthetic capacity

Mots-clés :
adaptation / acclimatation / gradient altitudinal / pression partielle / capacité photosynthétique

Résumé – Augmentation de la capacité photosynthétique avec l’altitude : mesures d’échanges gazeux à pressions partielles de CO\textsubscript{2} ambiantes et constantes.

- Les conditions microclimatiques étant très variables avec l’altitude, il est difficile de comparer les performances d’une espèce végétale à différentes altitudes, particulièrement la capacité photosynthétique. En effet, la plupart des études antérieures ont estimé le taux maximal d’assimilation à basses et hautes altitudes en maintenant la température, l’humidité de l’air et la lumière constantes mais en laissant varier la pression partielle de CO\textsubscript{2} (\(P_{CO_2}\)).

- Afin de comparer le taux maximum d’assimilation (\(A_{max}\)) à pressions partielles de CO\textsubscript{2} constantes de basse altitude et variables, nous avons effectué des mesures d’échanges gazeux sur deux espèces d’arbres tempérés le long d’un gradient altitudinal de 1600 m de dénivelé dans les Pyrénées françaises.

- La différence entre les deux traitements de \(P_{CO_2}\) est significative au-dessus de 600 m d’altitude et atteint un maximum de 4 \(\mu\)mol m\(^{-2}\) s\(^{-1}\). Pour les deux espèces, nous avons mis en évidence une augmentation de \(A_{max}\) avec l’altitude à \(P_{CO_2}\) constantes mais pas à \(P_{CO_2}\) ambiantes. Pour une modification de \(P_{CO_2}\), de 10\%, le changement du taux maximum d’assimilation est proportionnellement supérieur chez les deux espèces.

- Nos résultats montrent que les populations de hautes altitudes possèdent une capacité photosynthétique supérieure, démontrant que les arbres font face aux conditions environnementales extrêmes grâce à des adaptations génétiques ou des acclimations. Notre étude souligne ainsi l’importance de fixer la \(P_{CO_2}\) pour comparer l’adaptation des plantes à différentes altitudes.

* Corresponding author: sylvain.delzon@u-bordeaux1.fr

Article published by EDP Sciences
1. INTRODUCTION

Trees are commonly well adapted to local conditions, having evolved ecophysiological characteristics (Chabot and Hicks, 1982; Kikuzawa, 1989; Reich et al., 1992), especially in mountain areas where selection pressure is very important. The main geophysical drivers along altitudinal gradients from an ecological point of view are temperature, air pressure, precipitation and radiation (Körner, 2008). Indeed, morphological, phenological and physiological changes allow trees to maintain a relatively high level of growth-related activity despite increasingly constraining environmental conditions towards high elevation (Cordell et al., 1999). The main physiological traits that control the carbon uptake and water loss in plants and generally vary according to elevation are photosynthesis and stomatal conductance.

To our knowledge, about twenty studies have dealt with photosynthetic capacity along altitudinal gradients (Körner, 2003). However, variations in plant performance with altitude are difficult to predict, partly because of the complexity of the geophysical effects of altitude and partly because of biological responses to these changes. Indeed, maximum rates of CO2 assimilation in plants from different elevations, measured at ambient CO2 partial pressure, have been found to be equal (Benecke et al., 1981; Cordell et al., 1999; Körner and Diemer, 1987), lower (Kao and Chang, 2001; Slatyer and Morrow, 1977; Zhang et al., 2005), or higher at high elevation (Premoli et al., 2007). When comparing along an altitudinal gradient, the distinction between pressure and concentration of gases becomes crucial. Unfortunately, many studies have used CO2 molar fractions instead of CO2 partial pressure to express CO2 availability, neglecting the fact that partial pressure decreases dramatically with elevation while molar fraction remains stable. As is the case for respiration in animals (Zhang et al., 2007), reduced partial pressure has a significant impact on gas exchange by plants; CO2 assimilation closely depends on CO2 partial pressure (P_CO2) and not CO2 molar fraction (Farquhar et al., 1980). The decline in P_CO2 with elevation has led various authors to contend that the lack of CO2 may be an important factor in the reduction of photosynthesis at high elevations (Decker, 1947; Tranquillini, 1964). However, more recent modelling studies suggested that air pressure effects on photosynthesis are smaller than predicted based on the decline in ambient P_CO2 alone (Gale, 1972; Terashima et al., 1995). They concluded (i) that low pressure has only a small effect on the availability of CO2 for plants photosynthesis, and (ii) that when suppression of photosynthesis in alpine plants occurs it can mostly be attributed to limited CO2 diffusion or low temperatures rather than to lowered P_CO2 itself.

In order to compare photosynthetic capacity of populations at various elevations, all microclimatic determinants must be kept constant (temperature, humidity, light and CO2 partial pressure). While many experiments have been carried out at constant temperature and saturating light, few studies have yet compared photosynthetic capacity of low- and high-elevation plants at uniform CO2 partial pressure. Rather, for gas exchange measurements, researchers tended to impose a constant molar fraction of CO2 in the cuvette (Rada et al., 1998; Zhang et al., 2005), and therefore compared CO2 assimilation at different CO2 partial pressures. For example, if the molar fraction of CO2 in air is 375 ppm (equal to 375 μmol mol−1) and the temperature 20 °C, then the partial pressure (P_CO2) is 38 Pa (380 μbar) at sea level, but only 32 Pa at 600 m and 27 Pa at 3000 m of elevation. Consequently, these studies have measured photosynthetic capacity under local conditions but did not compare populations in the same air pressure conditions across different elevations. Although such results are useful for studying leaf performance in ambient conditions (instantaneous assimilation) and for quantifying the carbon balance, they do not allow assessment of plant adaptation or acclimation (photosynthetic capacity).

In the present study, we focus on the importance of CO2 partial pressure when studying plant adaptation/acclimation at different elevations. We compare maximum assimilation rates of two temperate tree species growing naturally along an altitudinal gradient (100 to 1600 m) in the Pyrénées Mountains. Gas exchange measurements were performed at each elevation and at two different CO2 partial pressure treatments: (i) at ambient CO2 partial pressure (P_CO2−α), as is generally employed and (ii) at constant-low-elevation P_CO2 (P_CO2−c). Therefore, we were able to quantify the effect of decreasing CO2 partial pressure on photosynthetic capacity (A_max) for two common European tree species (Fagus sylvatica L. and Quercus petraea (Matt.) Liebl.). Three main questions are addressed here: (i) how does maximum assimilation rate vary with increasing elevation? (ii) do maximum assimilation rate and partial pressure vary to the same extent with increasing elevation? and (iii) do measurements made at ambient and constant P_CO2 lead to similar results when examining plant adaptation or acclimation?

2. MATERIALS AND METHODS

2.1. Altitudinal gradient and microclimate

The altitudinal study was conducted in the Gavarnie’s valley on the west side of the Pyrénées Mountains in France (from 42° 53’ N, 0° 25’ W to 43° 45’ N, 0° 14’ W). This region is characterized by an oceanic mountain climate, with a mean annual temperature of 12 °C and precipitation of 1079 mm (1946–2001) at low elevation (Tarbes, 43° 11’ N, 0° 00’ W, 360 m ASL, Météo France). We selected two common European tree species (Fagus sylvatica L. and Quercus petraea (Matt.) Liebl.) along a 1500 m altitudinal gradient. For each species, natural established populations were sampled at six elevations: 100 m, 400 m, 600 m, 800 m, 1200 m and 1600 m ASL (± 50 m).

For each population, we used a GPS receiver (GPS Pathfinder ProXR, Trimble Navigation, Sunnyvale, USA) to determine the exact elevation of each site (Tab. 1). Air temperature was measured using data loggers (HOBO Pro RH/Temp, Onset Computer Corporation, Bourne, USA) located in each population along the altitudinal gradients. Sensors were mounted 1.5 m above the ground on poles located in clearings near the studied populations, and protected by white plastic shelters to prevent exposure to rain and direct sunlight. All sensors were inter-calibrated in the laboratory before installation. Data
Altitudinal trends in photosynthesis

2.2. Gas exchange measurements

Measurements were carried out using a portable steady-state, flow-through chamber (PLC6) connected to an IRGA (CIRAS-2, PP Systems, Hitchin, UK) equipped with temperature, humidity, light and CO₂ control modules. The IRGA measures CO₂ density (µgCO₂) as a function of infrared absorption via the Beer-Bouguer-Lambert law, in an optical chamber where data on temperature and pressure allow calculation of the molar fraction (XCO₂). Since XCO₂ is unaffected during the passage from the cuvette to the optical chamber (i.e., is conserved when humidity is maintained constant as in the cuvette; Kowalski and Serrano-Ortiz, 2007), the system effectively determines the cuvette’s XCO₂, whose changes are due exclusively to leaf CO₂ exchange. In addition, this analyser (CIRAS-2 PP System) automatically corrects measurements for water vapour and changes in air pressure. Before measurement campaigns, the analyser was calibrated in the laboratory using 400 ppm standard gas. Full CO₂ and H₂O zero and differential calibration have been performed in the field at every setting change, or after a set of four measurements.

We sampled adult individuals of comparable height on a North-facing slope for beech and South-facing slope for sessile oak. Five to nineteen mature individuals were randomly selected per population to monitor leaf gas exchange. Measurements were always done in the field between 8:00 and 11:00 solar time on fully expanded leaves during two consecutive weeks in August 2007. Measurements were carried out on two leaves per tree immediately after cutting the branch using a pole tree pruner between 5 and 7 m height in the crown. As defined by Larcher (1969), maximum assimilation rate and stomatal conductance (A max and g s max, respectively) were measured under optimum temperature and relative humidity, saturated light and non-saturated CO₂ partial pressure. To compare maximum rates of assimilation at light saturation (A max) between populations, all gas exchange measurements were made at equal temperature (20.0 °C ± 1.5), VPD (1200 Pa±250) and saturating light (1500 µmol m⁻² s⁻¹ of light in the leaf chamber, determined by a light response curve made on five individual per species). At each elevation, measurements were performed at two CO₂ partial pressures (treatments A and C), by imposing different CO₂ molar fractions in the chamber: (A) measurements at ambient CO₂ partial pressure (P CO₂ at ; Tab. 1) were done using a constant CO₂ molar fraction (X CO₂ = 375 ppm) in the leaf chamber along the gradient; (C) measurements at constant-low-elevation CO₂ partial pressure (P CO₂ = 37.5 Pa) along the altitudinal gradient were done by adjusting CO₂ molar fractions (X CO₂ ; Tab. 1) at each elevation. We calculated CO₂ partial pressure as: $P_i = X_i \times P_{\text{am}} \times 10^6$ where P_i is the partial pressure of gas i, X i the molar fraction (in ppm) and P am the air pressure. Maximum assimilation rates were performed for both treatments (ambient and constant-low-elevation P CO₂) on the same leaf and data were recorded when steady state of assimilation was reached (within ten minutes). For each tree, measurements were randomly conducted between treatments. In the laboratory, leaf samples were dried at 70 °C, mineralised with hot sulphuric acid and assayed.

| Table I. Altitudinal variations in summer air temperature (T as), air pressure (P am), ambient CO₂ partial pressure (P CO₂−A) at 375 ppm of molar fraction, and molar fraction (x CO₂−C) imposed to obtain P CO₂−C for each species. |
|------------------------------|-----------------|-----------------|-----------------|-----------------|
| Elevation (m) | T as (°C) | P am (hPa) | P CO₂−A (Pa) | x CO₂−C (ppm) |
| Beech-sites | 131 | 19.6 | 997.9 | 37.4 | 376 |
| | 495 | 17.7 | 956.0 | 35.9 | 392 |
| | 773 | 16.9 | 925.1 | 34.7 | 405 |
| | 1190 | 13.1 | 879.1 | 33.0 | 427 |
| | 1604 | 13.4 | 836.9 | 31.4 | 448 |
| Oak-sites | 131 | 19.6 | 997.9 | 37.4 | 376 |
| | 425 | 18.9 | 964.1 | 36.2 | 386 |
| | 627 | 18.0 | 941.4 | 35.3 | 389 |
| | 803 | 17.5 | 922.0 | 34.6 | 398 |
| | 1235 | 16.4 | 875.9 | 32.8 | 407 |
| | 1608 | 14.0 | 836.9 | 31.4 | 428 |

where ε is elevation above sea level (m) and T as is summer air temperature (K). Values of P am decreased with increasing elevation by about 10.9 hPa 100 m⁻¹, ranging from 997.9 to 836.9 hPa (16.1% lower at the highest elevation sites; Tab. I). These values were used to calculate the CO₂ partial pressure based on the molar fraction reported in situ by the gas analyser. According to the ideal gas law, the fractional abundance of gas expressed in dimensionless percentage or ppm reflects equivalently a molar fraction (µmol mol⁻¹), a volumetric fraction (µL L⁻¹) or a fractional pressure (µbar bar⁻¹). Such a measure of CO₂ has no physical dependence on elevation, and infrared gas analyzers (IRGAs) generally allow researchers to fix this value within cuvettes. By contrast, partial gas pressure depends directly on other state variables (temperature and density), with strong altitudinal variation in the atmosphere.
Table II. Comparison of mean values of maximum assimilation rate (A_{max}) and maximum stomatal conductance (g_{max}) between CO2 partial pressure treatments for each elevation and species. Na is the leaf nitrogen content. Values in parenthesis correspond to the standard error and n is the number of replicates per population. Differences between treatments were performed using a paired t-test; ns, non-significant differences between P_{CO2} treatments.

<table>
<thead>
<tr>
<th>Species</th>
<th>Elevation (m)</th>
<th>n</th>
<th>A_{max} (µmol m$^{-2}$ s$^{-1}$)</th>
<th>g_{max} (mmol m$^{-2}$ s$^{-1}$)</th>
<th>Na (mg m$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>At ambient</td>
<td>At constant</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P_{CO2}</td>
<td>P_{CO2}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P_{CO2}</td>
<td>P_{CO2}</td>
<td></td>
</tr>
<tr>
<td>Beech</td>
<td>131</td>
<td>9</td>
<td>8.9 (0.72)</td>
<td>8.8 (0.74)</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>495</td>
<td>11</td>
<td>8.4 (0.24)</td>
<td>8.8 (0.44)</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>773</td>
<td>16</td>
<td>8.7 (0.75)</td>
<td>9.9 (0.77)</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>1190</td>
<td>10</td>
<td>8.8 (0.66)</td>
<td>11.3 (0.64)</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>1604</td>
<td>15</td>
<td>9.5 (0.42)</td>
<td>12.7 (0.50)</td>
<td>***</td>
</tr>
<tr>
<td>Oak</td>
<td>131</td>
<td>19</td>
<td>10.0 (0.80)</td>
<td>9.8 (0.81)</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>425</td>
<td>12</td>
<td>11.7 (0.66)</td>
<td>11.9 (0.74)</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>627</td>
<td>11</td>
<td>9.6 (0.85)</td>
<td>10.5 (0.87)</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>803</td>
<td>12</td>
<td>12.2 (0.69)</td>
<td>13.7 (0.74)</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>1235</td>
<td>5</td>
<td>9.1 (1.30)</td>
<td>12.8 (0.88)</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>1608</td>
<td>10</td>
<td>11.9 (0.74)</td>
<td>14.2 (0.84)</td>
<td>***</td>
</tr>
</tbody>
</table>

$* P < 0.05, ** P < 0.01, *** P < 0.001.$

colorimetrically for concentrations of nitrogen and phosphorus using the Technicon auto-analysers.

2.3. Data analysis

In order to compare the two treatments (ambient and constant-low-elevation P_{CO2}), the relative differences in A_{max} ($D_{A_{\text{max}}}$, %) and P_{CO2} ($D_{P_{\text{CO2}}}$, %) were calculated as follows:

$$D_{A_{\text{max}}} = \left| \frac{A_{\text{max}} - A_{\text{max}} - A_{\text{max}}}{A_{\text{max}}} \right| \times 100$$ (2)

$$D_{P_{\text{CO2}}} = \left| \frac{P_{\text{CO2}} - P_{\text{CO2}} - P_{\text{CO2}}}{P_{\text{CO2}}} \right| \times 100$$ (3)

where A_{max} (µmol m$^{-2}$ s$^{-1}$) is the maximal rate of assimilation measured at constant-low-elevation P_{CO2}, A_{max} is the maximal rate of assimilation measured at ambient P_{CO2}, P_{CO2} is the constant-low-elevation partial pressure of CO2 (37.5 Pa) and P_{CO2} is the ambient partial pressure of CO2 along the elevational gradient.

Within each population (at each elevation), we used a paired t-test to characterize the effects of P_{CO2} treatments on ecophysiological variables (A_{max} and g_{max}). Then, to determine whether variations in photosynthetic capacity, stomatal conductance and foliar nitrogen content were related to elevation, the data were analysed by linear regression (for each P_{CO2} treatment and species). In addition, to compare A_{max} and g_{max} between elevations, analysis of variances (ANOVA) with the Tukey test at $P < 0.05$ was used for each species. All analyses were performed using the SAS software package (SAS 9.1, SAS Institute Inc., Cary, NC).

3. RESULTS

Overall, values of A_{max} ranged from 8.8 to 12.7 and from 9.1 to 14.2 µmol m$^{-2}$ s$^{-1}$ for beech and oak, respectively (Tab. II). Oak exhibited higher values of A_{max} than beech independent of elevation; mean values for the whole experiment were about 11.5 and 9.6 µmol m$^{-2}$ s$^{-1}$ for oak and beech, respectively. Values of maximum stomatal conductance (g_{max}) were less variable for beech (115 to 184 mmol m$^{-2}$ s$^{-1}$) than for oak (88 to 366 mmol m$^{-2}$ s$^{-1}$) (Tab. II).

At ambient CO2 partial pressure, A_{max} values did not vary with elevation for either species (Tab. III), whereas A_{max} values measured at constant-low-elevation P_{CO2} significantly increased with increasing elevation for both species. Indeed, for both species, A_{max} values at the highest elevation were about 4 µmol m$^{-2}$ s$^{-1}$ higher than those at the lowest elevation (Tab. II). The increase in A_{max} with elevation was gradual for beech and more variable for oak (values at 1200 m were lower than those at 800 m). Whatever the treatment, we observed a slight but non-significant increase in g_{max} for beech whereas no altitudinal trend was found for oak (Tab. III). However, values of g_{max} were significantly higher at high elevation sites (1600 m) compared to lower elevations (ANOVA, $P < 0.0001$) for both species. Leaf nitrogen content significantly increased with increasing elevation for beech but this trend was not significant for oak, despite the higher values observed at high elevations (Tabs. II and III).

We found no difference in A_{max} values between P_{CO2} treatments at low elevation whereas significant differences were observed at high elevations (paired t-test, Tab. II). Values of A_{max} were significantly different of 0 only above 600 m and 800 m for oak and beech, respectively. These differences became more marked with increasing elevation (Fig. 1), reaching high values at the highest elevation, about 2.3 and 3.2 µmol m$^{-2}$ s$^{-1}$ for oak and beech, respectively. Table II shows that there was no difference between g_{max} values measured at ambient versus constant P_{CO2} for either species, except for the oak population at 1600 m where g_{max} values at ambient P_{CO2} were higher than those at constant-low-elevation
Table III. Statistical coefficients of linear regression for A_{max}, g_{max} and Na versus elevation for each partial pressure treatments and for both species.

<table>
<thead>
<tr>
<th>Species</th>
<th>A_{max} (µmol m$^{-2}$ s$^{-1}$)</th>
<th>g_{max} (µmol m$^{-2}$ s$^{-1}$)</th>
<th>Na (mg m$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At ambient P_{CO_2}</td>
<td>At constant P_{CO_2}</td>
<td>At ambient P_{CO_2}</td>
</tr>
<tr>
<td>Beech</td>
<td>R^2 0.5114 0.9493</td>
<td>P_{values} 0.1745 0.0049 **</td>
<td>0.7434 0.7273</td>
</tr>
<tr>
<td>Oak</td>
<td>R^2 0.0403 0.6863</td>
<td>P_{values} 0.7028 0.0416 *</td>
<td>0.4241 0.4982</td>
</tr>
</tbody>
</table>

$^* P < 0.05$, ** $P < 0.01$.

P_{CO_2}. The CO$_2$ partial pressure has no effect on stomatal conductance; therefore the observed differences result from non stomatal effects.

Relative differences in A_{max} ($D_{A_{\text{max}}}$) reached 25% for both species (Fig. 2). However, for oak, $D_{A_{\text{max}}}$ was lower at 1600 m than 1200 m, due to the very high A_{max} values measured at the highest elevation. Meanwhile, the highest relative differences in P_{CO_2}($D_{P_{\text{CO}_2}}$) were less than 16% at the highest elevation. Figure 2 shows the steeper increase in CO$_2$ assimilation rate with elevation than that of CO$_2$ partial pressure, since a given increase in $D_{P_{\text{CO}_2}}$ resulted in a larger increase in $D_{A_{\text{max}}}$.

4. DISCUSSION

This study shows that the maximum assimilation rate (A_{max}) increases significantly with increasing elevation, about 2.8 and 2.6 µmol m$^{-2}$ s$^{-1}$ per 1000 m of elevation for beech and oak, respectively when measurements were done at constant-low-elevation P_{CO_2}. By contrast, at ambient P_{CO_2} no significant trend was found in A_{max} according to elevation. Along the altitudinal transect, we found that values of A_{max} measured at ambient P_{CO_2} were significantly lower than those measured at constant-low-elevation P_{CO_2} above 600 m of elevation: these between-treatment differences increase as elevation increases. We found that gas exchange measurements realised along an altitudinal gradient at ambient or constant P_{CO_2} lead to different results in terms of photosynthetic capacity and therefore to different conclusions regarding plant adaptation or acclimation.

In the literature, most studies that have examined photosynthetic capacity (A_{max}) over altitudinal gradients have kept temperature, humidity and light level constant in order to compare populations, but either (i) did not mention how they managed the CO$_2$ variable (Cordell et al., 1998; Rundel et al., 2003), or (ii) used constant CO$_2$ molar fraction (ppm or µmol mol$^{-1}$ or µbar bar$^{-1}$) instead of constant partial pressure (Gonzalez-Real and Baille, 2000; Yin et al., 2004). These studies found results similar to those of Treatment A in our study: no significant variations of A_{max} along the gradient (Cordell et al., 1999; Körner and Diemer, 1987; Kumar et al., 2006). However, a few studies have showed either slight increases in A_{max} with increasing elevation (Friend et al., 1989; Premoli and Brewer 2007) or a decrease (Kao and Chang, 2001; Zhang et al., 2005). Only a few studies have used CO$_2$ partial pressure when comparing population adaptation for photosynthesis at
different elevations (Friend et al., 1989), but they carried out measurements at ambient P_{CO_2}. To our knowledge, only one study estimated photosynthetic capacity of low- and high-elevation plants applying constant cuvette CO_2 partial pressure (Körner and Diemer, 1987). They also found an increase in A_{max} over a gradient of 2000 m of elevation; values were 20% higher for high elevation versus low elevation plants, using a constant CO_2 partial pressure of 25.1 Pa. In other words, they found that photosynthesis varied to the same extent as the variation in P_{CO_2}: a 22.5% shift in A_{max} for 20.8% variations in P_{CO_2} along their gradient. In our study, we found an even higher shift in A_{max} (25%) compared to that of P_{CO_2} (16%) for both species.

For beech, the higher values of leaf nitrogen content observed for high-elevation populations partially explained their greater photosynthetic capacity. For oak, we only found a slight but non-significant increase in leaf nitrogen content with increasing elevation. Altitudinal increase in leaf nitrogen content has already been observed for other species (Cordell et al., 1998; Premoli and Brewer, 2007). Photosynthetic capacity tends to be positively related to higher values of foliar nitrogen and phosphorus due to increased levels of Rubisco and other N-containing constituents of the photosynthetic apparatus (Delzon et al., 2005; Field and Mooney, 1986; Marron et al., 2008). Moreover, only for beech, our results also suggest that at least part of the increase in maximum assimilation rate at high elevation may be attributed to a slight increase in stomatal conductance, implying an increase in CO_2 diffusion into the leaf. Stomatal density of beech was greater in high elevation populations (data not shown), as were g_s and A_{max}. The relationship between stomatal conductance (or stomatal density) and elevation is not as clear cut, with various authors reporting increases (Körner and Cochrane, 1986; Körner et al., 1986; Premoli and Brewer, 2007), decreases (Körner et al., 1989) or no clear trend with elevation (Cordell et al., 1998), depending of species.

The increase in photosynthetic capacity with increasing elevation suggested that trees accomplish a relatively high level of photosynthesis to compensate for extreme environmental conditions and short growing seasons at high elevation. This ability to cope with varying environment is likely be achieved by genetic adaptation or by acclimation. In order to discern adaptation and acclimation in the future, we have set up a Common Garden, than those for low-elevation plants. Therefore, photosynthetic capacity seems to be under strong selective pressures typically observed at high elevation. Genetic adaptation to high elevation conditions could be a result of maintaining of higher leaf nitrogen, chlorophyll content (Oleksyn et al., 1998), stomatal density (Kouwenberg et al., 2007) and carboxylation efficiency (Körner and Diemer, 1987), and would allow trees to adapt to their local conditions.

The low partial pressure of CO_2 prevailing at high elevations has been hypothesized to be responsible for the reduced photosynthesis (Decker, 1947; Tranquillini, 1964). However, this is in contradiction to some theoretical studies (Gale, 1972; Terashima et al., 1995). Indeed, Gale (1972) demonstrated using a simple diffusion model that low pressure has a small effect on photosynthesis for plants with efficient CO_2-uptake mechanisms. The effect of a reduction in P_{CO_2} could indeed be counterbalanced by an increase in the diffusion coefficient with decreasing air pressure (Terashima et al., 1995). Nevertheless, this compensating effect is only observed in plants with low values of mesophyll resistance (Gale, 1972), which correspond to C4 and not to C3 type plants as in our study. In addition, Terashima et al. (1995) only found no effect of partial pressure on photosynthesis at low temperature; this effect reached 23% at higher leaf temperatures (35 °C) for an elevation of 3000 m. Whereas this last study suggested that changes in the photosynthetic capacity of alpine plants can be attributed mostly to low temperature, we suggest that low CO_2 partial pressure at high elevation could also play a role in plant adaptation. Indeed, the decrease in CO_2 partial pressure is expected to increase stomatal density and stomatal conductance (Kouwenberg et al., 2007; Woodward and Bazzaz, 1988) and therefore maximum assimilation rate.

In our study, we were not able to take the decrease in partial pressure of oxygen (O_2) into account with a decrease in air pressure. Rubisco catalyzes both the carboxylation of RuBP and its oxygenation. The ratio of carboxylation to the oxygenation reaction (initiating photorespiration) strongly depends on the relative concentrations of CO_2 and O_2, and on leaf temperature (Lambers et al., 1998). Because of competition between CO_2 and O_2 for Rubisco, the decreased partial pressure of O_2 at high elevations combined with the constant CO_2 partial pressure treatment likely reduces photorespiration, and could partly explain the large increase in A_{max} observed with elevation here (Cornic, 1980; Sun, 1999; Ramonell, 2001).

Our study demonstrates the importance of using constant CO_2 partial pressure to assess plant adaptation/acclimation at different elevations; i.e. to accurately quantify photosynthetic capacity. Measurements done at ambient and constant P_{CO_2} lead to different results, with different patterns according to elevation. Had we conducted experiments only at ambient CO_2 partial pressure, we might have concluded that high-elevation populations did not evolve to be more efficient, and therefore that adaptation/acclimation does not occur along altitudinal gradient. In this case (ambient CO_2 partial pressure), a finding that photosynthetic capacity stays constant with increasing elevation suggests the conclusion that high elevation populations did adapt to constraining environmental conditions. However, it is worth knowing that a decrease in photosynthetic capacity at ambient P_{CO_2} did not allow conclusions to be drawn regarding plant adaptation as the effect of decreasing CO_2 partial pressure cannot be removed. Therefore, to assess plant adaptation or acclimation to elevation, we recommend carrying out gas exchange measurements at constant partial pressure.
Acknowledgements: We wish to thank staff of the Experimental Unit of Pierroton for field assistance, Catherine Lambrot for leaf nutrient content analysis, Jean-Marc Louvet for his enthusiasm and information about the Pyrénées forests, and Christian Körner for insightful comments on early drafts of the manuscript. This research was supported by a grant from the Aquitaine and Midi-pyrénées Regions and a bilateral collaboration funded in coordination between the French government PHC PICASSO programme 19187UC, and an Acción Integrada HF2008-0057 from the Spanish Research Ministry. Carolyne Bresson was supported by an ONF-Region Aquitaine Doctoral Fellowship.

REFERENCES

