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Nitrogen (N) deposition alters ecosystem function in several ways,
with important effects on N leaching and water quality, as well as on
interspecific competition and biodiversity. These changes have been
attributed to ecosystem N saturation, defined as the alleviation of
N limitations on rates of biological function1. After an initial ferti-
lization effect, N saturation has also been suggested to reduce plant
function and growth2, eventually leading to forest dieback. Although
our observation of a substantial positive effect of N deposition on
forest carbon (C) sequestration3 does not imply the absence of nitrate
losses or other negative effects, as rightly stressed by De Schrijver
et al.4, the sustained response observed demonstrates that the fear
of a generalized forest decline in response to N fertilization could be
overstated, at least within the rather broad N deposition range
explored in our analysis. The nature of the observed response of
forest C sequestration to N deposition, however, has been questioned
outright by de Vries et al.5, who suggested that it could be an artefact
resulting from the covariation between N deposition and other
environmental variables. The arguments proposed against an over-
whelming N effect, however, do not seem to stand up to close scrutiny.

We agree that ecosystem gross primary production (GPP) and
plant growth are, to a large extent, controlled by local climate,
drought and fertility (that is, N mineralization associated with soil
organic matter decomposition), although fertility could be itself
influenced by current and past N deposition6. However, the same
environmental factors would modulate in parallel ecosystem respira-
tion, and as a result do not seem to affect net ecosystem production
(NEP), which is the difference between GPP and ecosystem respira-
tion and is the subject of our analysis3. Both components of NEP
seem to be also affected by N deposition, but in opposite directions:
apart from the positive effects on plant growth considered by de Vries
et al.5, respiration is known to be significantly reduced by N fertiliza-
tion, as demonstrated by manipulation experiments7,8 as well as
regional transect studies9. The combined effect at the ecosystem level
is largely missed when focusing on tree growth alone.

The question remains of the magnitude of the observed response
to N deposition. Assuming a linear relationship between NEP and N

deposition, a slope of 445 6 38 kg C per kg N of wet N deposition can
be inferred from our entire data set (n 5 20, rather than the sub-
sample of 8 data points in the analysis by de Vries et al.5). If we
assume, rather conservatively, that wet deposition constitutes 40–
50% of total N deposition10, this would imply a NEP sensitivity to
total N deposition of approximately 175–225 kg C per kg N, which is
consistent with the stoichiometry of plant tissues and soil organic
matter. Although it is true that fine roots account for a significant
fraction of forest growth, it should be noted that one of the main
effects of increased N availability is an increased allocation to woody
tissues (with a high C:N ratio of up to 500:1) away from fine roots11.
This mechanism could indeed represent an important component of
the observed response to N deposition.

Far from implausible, a 200:1 sensitivity is nevertheless higher than
suggested by long-term forest fertilization experiments12. Potential
problems with N manipulation studies have already been discussed13.
In particular, they overlook the role of canopy N uptake, which
enables plants to absorb a relevant fraction of incoming N without
any competition from soil microbes. Canopy N uptake amounts to
up to 70% of N deposition, providing as much as one-third of tree N
requirements9,14,15. The critical comparison of results from ecosystem
manipulation and observational studies could be providing a rare,
unforeseen insight into the key factors controlling C–N relations in
forest ecosystems.
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