Contact Holomorphic Curves and Flat Surfaces

J. A. Gálvez
A. Martínez
F. Milán*

Abstract

In this paper we study flat surfaces in the hyperbolic 3 -space and the de Sitter 3 -space with the conformal structure induced by its second fundamental form and give a conformal representation of such surfaces in terms of holomorphic data.

Mathematics Subject Classification (1991): 53A35, 53C42.
Key words and phrases: Flat surfaces, conformal representation.

1 Introduction

Partial differential equations on surfaces whose solutions could be represented in terms of holomorphic functions on Riemann surfaces have been extensively investigated. Famous examples are Laplace's equation $\Delta u=0$ and Liouville's equation $\Delta u=e^{u}$.

An example from geometry is the minimal surface equation in the Euclidean space \mathbb{R}^{3} whose holomorphic representation gives the global version of the Enneper-RiemannWeierstrass representation, which is essentially due to Osserman [O]. This representation has been crucial in both reaching a rather exhaustive understanding and finding examples of complete minimal surfaces. In spaces of other constant sectional curvature such as the hyperbolic 3 -space \mathbb{H}^{3} or the de Sitter 3 -space \mathbb{S}_{1}^{3} the equation of a surface of constant mean curvature admits a holomorphic resolution that provides a global complex representation which has been used in the study of global properties of these surfaces, (see [AA], [B], [UY]).

The fully non-linear Monge-Ampère equation $\operatorname{det} \nabla^{2} u=1$ which arises in affine differential geometry (see [FMM], [J]) and in the study of the second fundamental form of flat surfaces in \mathbb{H}^{3} and \mathbb{S}_{1}^{3}, can be solved using holomorphic data. In this paper we consider flat surfaces in \mathbb{H}^{3} and \mathbb{S}_{1}^{3} with the conformal structure induced by its second fundamental form. We will prove that these surfaces share a fundamental property with minimal surfaces in \mathbb{R}^{3}

[^0]and surfaces of constant mean curvature in \mathbb{H}^{3} and \mathbb{S}_{1}^{3}, they possess a "conformal representation" in terms of holomorphic data which involve its "hyperbolic" Gauss map (Theorem $1)$.

2 Some Preliminaries

Let \mathbb{L}^{4} be the Minkowski 4 -space endowed with linear coordinates $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ and the scalar product, $\langle.,$.$\rangle given by the quadratic form -x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$. We set the two hyperquadrics

$$
\begin{aligned}
\mathbb{H}^{3}= & \left\{\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \in \mathbb{L}^{4} /-x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=-1, x_{0}>0\right\}, \\
& \mathbb{S}_{1}^{3}=\left\{\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \in \mathbb{L}^{4} /-x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\},
\end{aligned}
$$

with the induced metric from \mathbb{L}^{4}. Then, \mathbb{H}^{3} is a Riemannian 3 -manifold of constant sectional curvature -1 which is called the hyperbolic 3 -space. \mathbb{S}_{1}^{3} is a 3 -dimensional Lorentzian manifold of constant sectional curvature 1 and it is called the de Sitter 3 -space.

Let \mathbb{N}^{3} denote the positive null cone, that is

$$
\mathbb{N}^{3}=\left\{\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \in \mathbb{L}^{4} /-x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=0, x_{0}>0\right\} .
$$

If one considers for all $v \in \mathbb{N}^{3}$ the halfline $[v]$ spanned by v, then this gives a partition of \mathbb{N}^{3} and the ideal boundary \mathbb{S}_{∞}^{2} of \mathbb{H}^{3} can be regarded as the quotient of \mathbb{N}^{3} under the associated equivalence relation. Thus, the induced metric is well-defined up to a factor and \mathbb{S}_{∞}^{2} inherits a natural conformal structure as the quotient $\mathbb{N}^{3} / \mathbb{R}^{+}$.

We consider \mathbb{L}^{4} identified with the space of 2×2 Hermitian matrices, $\operatorname{Herm}(2)$, by identifying $\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \in \mathbb{L}^{4}$ with the matrix

$$
\left(\begin{array}{cc}
x_{0}+x_{3} & x_{1}+i x_{2} \tag{1}\\
x_{1}-i x_{2} & x_{0}-x_{3}
\end{array}\right)=\sum_{j=0}^{3} x_{j} e_{j},
$$

where

$$
e_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad e_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad e_{2}=\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right), \quad e_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Under this identification, one has $\langle m, m\rangle=-\operatorname{det}(m)$, for all $m \in \operatorname{Herm}(2)$, and the complex Lie group $\mathbf{S L}(2, \mathbb{C})$ of 2×2 complex matrices with determinant 1 acts naturally on \mathbb{L}^{4} by the representation

$$
g \cdot m=g m g^{*}
$$

where $g \in \mathbf{S L}(2, \mathbb{C}), g^{*}={ }^{t} \bar{g}$ and $m \in \operatorname{Herm}(2)$. Consequently, $\mathbf{S L}(2, \mathbb{C})$ preserves the scalar product and orientations. The kernel of this action is $\left\{ \pm I_{2}\right\} \subseteq \mathrm{SL}(2, \mathbb{C})$ and $\operatorname{PSL}(2, \mathbb{C})=\mathbf{S L}(2, \mathbb{C}) /\left\{ \pm I_{2}\right\}$ can be regarded as the identity component of the special Lorentzian group $\mathbf{S O}(1,3)$. This action can be restricted to \mathbb{H}^{3} and \mathbb{S}_{1}^{3} as an isometric and transitive one. Thus, \mathbb{H}^{3} and \mathbb{S}_{1}^{3} can also be represented as

$$
\mathbb{H}^{3}=\left\{g \cdot e_{0} / g \in \mathbf{S L}(2, \mathbb{C})\right\}
$$

and

$$
\mathbb{S}_{1}^{3}=\left\{g \cdot e_{j} / g \in \mathbf{S L}(2, \mathbb{C})\right\}, \quad j \in\{1,2,3\}
$$

The space \mathbb{N}^{3} is seen as the space of positive semi-definite 2×2 Hermitian matrices of determinant 0 and its elements can be written as $a^{t} \bar{a}$, where ${ }^{t} a=\left(a_{1}, a_{2}\right)$ is a non-zero vector in \mathbb{C}^{2} uniquely defined up to multiplication by an unimodular complex number. The map $a^{t} \bar{a} \longrightarrow\left[\left(a_{1}, a_{2}\right)\right] \in \mathbb{C} \mathbf{P}^{1}$ becomes the quotient map of \mathbb{N}^{3} on \mathbb{S}_{∞}^{2} and identifies \mathbb{S}_{∞}^{2} with $\mathbb{C} \mathbf{P}^{1}$. So the natural action of $\mathrm{SL}(2, \mathbb{C})$ on \mathbb{S}_{∞}^{2} is the action of $\mathrm{SL}(2, \mathbb{C})$ on $\mathbb{C} \mathbf{P}^{1}$ by Möbius transformations.

3 Contact Holomorphic Curves

On

$$
\mathbf{S L}(2, \mathbb{C})=\left\{\left.\underline{z}=\left(\begin{array}{ll}
z_{11} & z_{12} \\
z_{21} & z_{22}
\end{array}\right) \right\rvert\, \operatorname{det}(\underline{z})=1\right\}
$$

we shall consider the canonical contact structure induced by the contact 1 -form

$$
\Omega \equiv z_{22} d z_{11}-z_{12} d z_{21}
$$

Let Σ be a Riemann surface and $g: \Sigma \longrightarrow \mathbf{S L}(2, \mathbb{C})$,

$$
g=\left(\begin{array}{ll}
G_{11} & G_{12} \\
G_{21} & G_{22}
\end{array}\right), \quad G_{11} G_{22}-G_{12} G_{21}=1
$$

be a holomorphic map such that $g^{*} \Omega$ vanishes on Σ, then

$$
g^{-1} d g=\left(\begin{array}{cc}
G_{22} & -G_{12} \\
-G_{21} & G_{11}
\end{array}\right)\left(\begin{array}{ll}
d G_{11} & d G_{12} \\
d G_{21} & d G_{22}
\end{array}\right)=\left(\begin{array}{cc}
0 & \alpha_{12} \\
\alpha_{21} & 0
\end{array}\right) .
$$

Definition $1 A$ holomorphic map $g: \Sigma \longrightarrow \mathbf{S L}(2, \mathbb{C})$ is called a contact holomorphic map if $g^{*} \Omega \equiv 0$ and α_{21} never vanishes on Σ.

Thus, if we set

$$
f=\frac{\alpha_{12}}{\alpha_{21}}, \quad \omega=\alpha_{21}
$$

the pair (f, ω) satisfies the following equality

$$
g^{-1} d g=\left(\begin{array}{cc}
0 & f \tag{2}\\
1 & 0
\end{array}\right) \omega
$$

Conversely, let f be a holomorphic function and ω a holomorphic 1-form on Σ such that $\omega \neq 0$ everywhere. Then the ordinary differential equation (2) is integrable and a solution g is a contact holomorphic map into $\mathrm{SL}(2, \mathbb{C})$ but g may not be well-defined on Σ. In fact, when we consider (f, ω) written in an arbitrary complex parameter ζ as $(f(\zeta), h(\zeta) d \zeta)$, every solution g of (2) is given as

$$
g=\left(\begin{array}{cc}
V & \frac{1}{h} V_{\zeta} \tag{3}\\
W & \frac{1}{h} W_{\zeta}
\end{array}\right)
$$

where V and W are linearly independent solutions of the ordinary linear differential equation

$$
\begin{equation*}
X_{\zeta \zeta}-\frac{h_{\zeta}}{h} X_{\zeta}-f h^{2} X=0 \tag{4}
\end{equation*}
$$

and

$$
h=V W_{\zeta}-W V_{\zeta}
$$

Definition 2 The pair (f, ω) will be called Weierstrass data (complex representation) of g.

4 A Conformal Representation

Theorem A) Let Σ be a Riemann surface and $g: \Sigma \longrightarrow \mathbf{S L}(2, \mathbb{C})$ a contact holomorphic map with Weierstrass data (f, ω).
I) If $|f|<1$, then $\psi_{0}=g \cdot e_{0}: \Sigma \longrightarrow \mathbb{H}^{3}$ and $\psi_{3}=g \cdot e_{3}: \Sigma \longrightarrow \mathbb{S}_{1}^{3}$ are well-defined flat Riemannian immersions.
II) If the imaginary part of $f, \Im(f)$, never vanishes on Σ, then $\psi_{1}=g \cdot e_{1}: \Sigma \longrightarrow \mathbb{S}_{1}^{3}$ is a well-defined flat Lorentzian immersion.
B) Conversely, let M be a simply connected surface and $\psi: M \longrightarrow N$ a flat immersion, where N is either \mathbb{H}^{3} or \mathbb{S}_{1}^{3}. If on M we consider the conformal structure determined by the second fundamental form of ψ, then there exists a contact holomorphic map $g: M \longrightarrow \mathbf{S L}(2, \mathbb{C})$ with Weierstrass data (f, ω) such that $\psi=\psi_{j}$ for some $j \in\{0,1,3\}$. Moreover g is unique up to right multiplication by a constant matrix g_{0} with $g_{0} \cdot e_{j}=e_{j}$.

Proof: We consider $\psi=g \cdot e$ with

$$
e=\left(\begin{array}{cc}
1 & 0 \\
0 & \epsilon
\end{array}\right), \quad \epsilon= \pm 1 .
$$

Then from (2),

$$
d \psi=g\left(\begin{array}{cc}
0 & \epsilon f \omega+\bar{\omega} \\
\omega+\epsilon \bar{f} \bar{\omega} & 0
\end{array}\right) g^{*},
$$

and the induced metric is given by

$$
d s^{2}=\langle d \psi, d \psi\rangle=-\operatorname{det}(d \psi)=(1+f \bar{f}) \omega \bar{\omega}+\epsilon f \omega^{2}+\epsilon \bar{f} \bar{\omega}^{2} .
$$

Since f is a holomorphic function

$$
d\left(\frac{1}{2}(1+\epsilon f) \omega+\frac{1}{2}(1+\epsilon \bar{f}) \bar{\omega}\right)=0, \quad d\left(\frac{i}{2}(1-\epsilon f) \omega-\frac{i}{2}(1-\epsilon \bar{f}) \bar{\omega}\right)=0
$$

and there exist local functions x, y such that

$$
d x=\frac{1}{2}(1+\epsilon f) \omega+\frac{1}{2}(1+\epsilon \bar{f}) \bar{\omega}, \quad d y=\frac{i}{2}(1-\epsilon f) \omega-\frac{i}{2}(1-\epsilon \bar{f}) \bar{\omega} .
$$

with

$$
d x \wedge d y=\frac{-i}{2}\left(1-|f|^{2}\right) \omega \wedge \bar{\omega}
$$

Because of $|f|<1,(x, y)$ are new coordinates with $d s^{2}=d x^{2}+d y^{2}$. Therefore, the immersion is flat.

In the same way, when $\psi=\psi_{1}$ one gets $d s^{2}=2 d x d y$, where

$$
d x=-f \omega-\bar{f} \bar{\omega}, \quad d y=\frac{1}{2} \omega+\frac{1}{2} \bar{\omega} .
$$

Conversely, if $\psi: M \longrightarrow \mathbb{S}_{1}^{3}$ is a Lorentzian immersion with flat induced metric, then there exists an asymptotic coordinate immersion $x+i y: M \longrightarrow \mathbb{C}$ such that

$$
\begin{equation*}
d s^{2}=2 d x d y \tag{5}
\end{equation*}
$$

and if η is an unit normal vector field to the immersion, a straight calculation gives the following structure equations

$$
\begin{align*}
\psi_{x x} & =E \eta \\
\psi_{x y} & =F \eta-\psi \\
\psi_{y y} & =G \eta, \tag{6}\\
\eta_{x} & =-F \psi_{x}-E \psi_{y}, \\
\eta_{y} & =-G \psi_{x}-F \psi_{y},
\end{align*}
$$

where E, F and G are smooth functions on M and by $(\cdot)_{x}$ and $(\cdot)_{y}$ we shall denote the usual partial derivatives respect to x and y, respectively.

Using the Gauss' and Codazzi-Mainardi's equations we have $E G-F^{2}=1, E_{y}=F_{x}$ and $F_{y}=G_{x}$. Hence, as M is simply connected, there exists a well-defined function ϕ on M such that $E=\phi_{x x}, F=\phi_{x y}, G=\phi_{y y}$ and the second fundamental form of the immersion is given by

$$
\begin{equation*}
d \sigma^{2}=\phi_{x x} d x^{2}+\phi_{y y} d y^{2}+2 \phi_{x y} d x d y \tag{7}
\end{equation*}
$$

with

$$
\begin{equation*}
\phi_{x x} \phi_{y y}-\phi_{x y}^{2}=1 . \tag{8}
\end{equation*}
$$

We shall regard M as a Riemann surface with the conformal structure determined by the second fundamental form $d \sigma^{2}$.

From (8), we can choose η such that $\phi_{x x}>0$ and consider the new coordinate immersion

$$
\begin{equation*}
z=u+i v=y-i \phi_{x} \tag{9}
\end{equation*}
$$

Then, a straight computation gives,

$$
\begin{equation*}
\psi_{u}=-\frac{\phi_{x y}}{\phi_{x x}} \psi_{x}+\psi_{y}, \quad \psi_{v}=\frac{-1}{\phi_{x x}} \psi_{x} \tag{10}
\end{equation*}
$$

Now, from (6), (7), (8), (9) and (10) we have

$$
\begin{equation*}
d \sigma^{2}=\frac{1}{\phi_{x x}}|d z|^{2} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\psi_{x}\right)_{u}=-\psi, \quad\left(\psi_{x}\right)_{v}=-\eta \tag{12}
\end{equation*}
$$

Thus, from (5), (9), (11) and (12), $z: M \longrightarrow \mathbb{C}$ is a conformal coordinate immersion and $\left[\psi_{x}\right]: M \longrightarrow \mathbb{S}_{\infty}^{2}$ is a conformal map, which induces on M the flat Riemannian metric $|d z|^{2}$.

Moreover, from the above expressions, we obtain

$$
\left(\psi_{x}\right)_{u u}=\frac{\phi_{x y}}{\phi_{x x}} \psi_{x}-\psi_{y}, \quad\left(\psi_{x}\right)_{v v}=-\frac{\phi_{x y}}{\phi_{x x}} \psi_{x}-\psi_{y}
$$

and by using standard notations of complex analysis, one has

$$
\begin{equation*}
4\left(\psi_{x}\right)_{z \bar{z}}=-2 \psi_{y} \tag{13}
\end{equation*}
$$

Now, let $A, B: M \longrightarrow \mathbb{C}$ be global holomorphic functions on M such that $\left[\psi_{x}\right]$ is represented as $[(A, B)] \in \mathbb{C} \mathbf{P}^{1} \equiv \mathbb{S}_{\infty}^{2}$, then

$$
\psi_{x}=\lambda\binom{A}{B}(\bar{A}, \bar{B})=\lambda\left(\begin{array}{cc}
A \bar{A} & A \bar{B} \\
\bar{A} B & B \bar{B}
\end{array}\right),
$$

for some positive function $\lambda \in C^{\infty}(M)$. Thus, from (5), (9) and (12), one gets

$$
\frac{1}{2}=\left\langle\left(\psi_{x}\right)_{z},\left(\psi_{x}\right)_{\bar{z}}\right\rangle=\frac{1}{2} \lambda^{2}\left|A B_{z}-B A_{z}\right|^{2}
$$

and as $A B_{z}-B A_{z}$ does not vanish on the simply connected surface M, there exists a holomorphic function $R: M \longrightarrow \mathbb{C}$ with $R^{2}=A B_{z}-B A_{z}$. Hence, we can write

$$
\psi_{x}=\left(\begin{array}{ll}
C \bar{C} & C \bar{D} \tag{14}\\
\bar{C} D & D \bar{D}
\end{array}\right)
$$

where $C=A / R$ and $D=B / R$. Consequently, from (12) and (14) we have the following expression for the immersion

$$
\psi=-\left(\begin{array}{cc}
C \overline{C_{z}}+C_{z} \bar{C} & C \overline{D_{z}}+C_{z} \bar{D} \tag{15}\\
\bar{C} D_{z}+\overline{C_{z}} D & D \overline{D_{z}}+D_{z} \bar{D}
\end{array}\right)
$$

and for its unit normal

$$
\eta=-i\left(\begin{array}{cc}
-C \overline{C_{z}}+C_{z} \bar{C} & -C \overline{D_{z}}+C_{z} \bar{D} \\
\bar{C} D_{z}-\overline{C_{z}} D & -D \overline{D_{z}}+D_{z} \bar{D}
\end{array}\right) .
$$

If we consider the function $f: M \longrightarrow \mathbb{C}$ defined by

$$
\begin{equation*}
f=\frac{\phi_{x y}-i}{2 \phi_{x x}} \tag{16}
\end{equation*}
$$

then, from (6), (10), (12), (13) and (14)we obtain $\left(\psi_{y}\right)_{z}=-2 f\left(\psi_{x}\right)_{\bar{z}}$ and

$$
\left(\begin{array}{cc}
C_{z z} \overline{C_{z}} & C_{z z} \overline{D_{z}} \\
\overline{C_{z}} D_{z z} & D_{z z} \overline{D_{z}}
\end{array}\right)=f\left(\begin{array}{cc}
C \overline{C_{z}} & C \overline{D_{z}} \\
\overline{C_{z}} D & D \overline{D_{z}}
\end{array}\right) .
$$

As C_{z} and D_{z} cannot vanishing simultaneously, we have

$$
\begin{equation*}
C_{z z}=f C, \quad D_{z z}=f D . \tag{17}
\end{equation*}
$$

Thus, from (8), (16) and (17), f is a holomorphic function which satisfies

$$
\Im(f) \neq 0
$$

Finally, from (15) and (17), the immersion ψ can be recovered as $\psi=-g \cdot e_{1}$, where $g: M \longrightarrow \mathbf{S L}(2, \mathbb{C})$ is the contact holomorphic map given by

$$
g=\left(\begin{array}{cc}
C & C_{z} \tag{18}\\
D & D_{z}
\end{array}\right)
$$

such that

$$
g^{-1} d g=\left(\begin{array}{cc}
0 & f \tag{19}\\
1 & 0
\end{array}\right) \omega
$$

and $\omega=d z$. On the other hand, if $\widetilde{g}: M \longrightarrow \mathbf{S L}(2, \mathbb{C})$ is a holomorphic immersion with $\psi=-\widetilde{g} \cdot e_{1}$, then there exists a holomorphic map $g_{0}: M \longrightarrow \mathbf{S L}(2, \mathbb{C})$ such that $g=\widetilde{g} g_{0}$, with $g_{0} \cdot e_{1}=e_{1}$. Thus $\left(g_{0}\right)_{z}=0$ and g_{0} must be constant.

Now, let $\psi: M \longrightarrow N$ be a Riemannian immersion with flat induced metric, where $N=\mathbb{H}^{3}$ or $N=\mathbb{S}_{1}^{3}$, then there exists a coordinate immersion $x+i y: M \longrightarrow \mathbb{C}$ such that

$$
\begin{equation*}
d s^{2}=d x^{2}+d y^{2} \tag{20}
\end{equation*}
$$

The structure equations are given by

$$
\begin{aligned}
\psi_{x x} & =E \eta+\epsilon \psi \\
\psi_{x y} & =F \eta \\
\psi_{y y} & =G \eta+\epsilon \psi \\
\eta_{x} & =-\epsilon E \psi_{x}-\epsilon F \psi_{y}, \\
\eta_{y} & =-\epsilon F \psi_{x}-\epsilon G \psi_{y},
\end{aligned}
$$

where $\epsilon=1$ if $N=\mathbb{H}^{3}, \epsilon=-1$ if $N=\mathbb{S}_{1}^{3}, E, F$ and G are smooth functions on M and η is the well-oriented unit normal vector field. From the integrability conditions, there exists a well-defined function ϕ on M such that $E=\phi_{x x}, F=\phi_{x y}, G=\phi_{y y}$ satisfying (8) and the second fundamental form of the immersion is given by (7).

We consider the new coordinate immersion

$$
z=u+i v=x+\phi_{x}+i\left(y+\phi_{y}\right) .
$$

Then

$$
d \sigma^{2}=\frac{1}{2+\phi_{x x}+\phi_{y y}}|d z|^{2}
$$

and

$$
(\psi-\eta)_{u}=\psi_{x}, \quad(\psi-\eta)_{v}=\psi_{y}
$$

Thus, $z: M \longrightarrow \mathbb{C}$ is a conformal coordinate immersion and $[\psi-\eta]: M \longrightarrow \mathbb{S}_{\infty}^{2}$ is a conformal map.

Calculating $(\psi-\eta)_{u u}, \quad(\psi-\eta)_{v v}$, we obtain

$$
\psi=\frac{1}{2}(\psi-\eta)+2 \epsilon(\psi-\eta)_{z \bar{z}}
$$

As in the above case, (see[GMM]), the immersion can be calculated as

$$
\psi=\left(\begin{array}{ll}
C \bar{C}+4 \epsilon C_{z} \overline{C_{z}} & C \bar{D}+4 \epsilon C_{z} \overline{D_{z}} \\
\overline{C D}+4 \epsilon \overline{C_{z}} D_{z} & D \bar{D}+4 \epsilon D_{z} \overline{D_{z}}
\end{array}\right)
$$

where C and D are linearly independent solutions of the ordinary linear differential equation

$$
X_{z z}=\frac{1}{4} f X
$$

and $f: M \longrightarrow \mathbb{C}$ is the holomorphic function defined by

$$
f=\frac{\phi_{y y}-\phi_{x x}+2 i \phi_{x y}}{2+\phi_{x x}+\phi_{y y}} .
$$

Moreover, from (8), $|f|<1$.
Finally, the immersion ψ can be recovered as $\psi=g \cdot e_{0}$ or $\psi=g \cdot e_{3}$ if $N=\mathbb{H}^{3}$ or $N=\mathbb{S}_{1}^{3}$, respectively, where $g: M \longrightarrow \mathbf{S L}(2, \mathbb{C})$ is the contact holomorphic map given as in (18) satisfying (19) and $\omega=\frac{1}{2} d z$.

Remark The above conformal representation can be used in the study of global properties of flat surfaces in \mathbb{H}^{3} and \mathbb{S}_{1}^{3}. For the particular case of flat surfaces in \mathbb{H}^{3} the reader can see [GMM].

References

[A] A. Ahlfors, Complex Analysis, McGraw-Hill, New York, 1979.
[AA] R. Aiyama and K. Akutagawa, Kenmotsu-Bryant type representation formulas for constant mean curvature surfaces in $\mathbb{H}^{3}\left(-c^{2}\right)$ and $\mathbb{S}_{1}^{3}\left(c^{2}\right)$, Ann. Glob. Anal. Geom., 17-1, 49-76 (1999).
[B] R. L. Bryant, Surfaces of mean curvatre one in hyperbolic space, Astérisque 154155, 321-347 (1987).
[FMM] L. Ferrer, A. Martínez and F. Milán, Symmetry and Uniqueness of Parabolic Affine Spheres, Math. Ann. 305, 311-327 (1996).
[GMM] J.A. Gálvez, A. Martínez and F. Milán, Flat surfaces in the hyperbolic 3-space, Math. Ann. (to appear).
[J] K. Jörgens, Über die Lösungen der Differentialgleichung $r t-s^{2}=1$, Math. Ann. 127, 130-134 (1954).
[O] R. Osserman, A survey of minimal surfaces, New York, Van Nostrand, 1969.
[UY] M. Umehara and K. Yamada, Complete surfaces of constant mean curvature - 1 in the hyperbolic 3-space, Ann. of Math. 137, 611-638 (1993).

José A. Gálvez, Antonio Martínez and Francisco Milán
Departamento de Geometría y Topología
Facultad de Ciencias
Universidad de Granada
18071 GRANADA. SPAIN
(e-MAIL: jagalvez@goliat.ugr.es; amartine@goliat.ugr.es; milan@goliat.ugr.es)
Received January 28, 2000

[^0]: This paper is in final form and no version of it will be submitted for publication elsewhere.
 *Research partially supported by DGICYT Grant No. PB97-0785.

