Contact Holomorphic Curves and Flat Surfaces

J. A. Gálvez A. Martínez F. Milán*

Abstract

In this paper we study flat surfaces in the hyperbolic 3-space and the de Sitter 3-space with the conformal structure induced by its second fundamental form and give a conformal representation of such surfaces in terms of holomorphic data.

Mathematics Subject Classification (1991): 53A35, 53C42.

Key words and phrases: Flat surfaces, conformal representation.

1 Introduction

Partial differential equations on surfaces whose solutions could be represented in terms of holomorphic functions on Riemann surfaces have been extensively investigated. Famous examples are Laplace’s equation $\Delta u = 0$ and Liouville’s equation $\Delta u = e^u$.

An example from geometry is the minimal surface equation in the Euclidean space \mathbb{R}^3 whose holomorphic representation gives the global version of the Enneper-Riemann-Weierstrass representation, which is essentially due to Osserman [O]. This representation has been crucial in both reaching a rather exhaustive understanding and finding examples of complete minimal surfaces. In spaces of other constant sectional curvature such as the hyperbolic 3-space \mathbb{H}^3 or the de Sitter 3-space \mathbb{S}^3_1 the equation of a surface of constant mean curvature admits a holomorphic resolution that provides a global complex representation which has been used in the study of global properties of these surfaces, (see [AA], [B], [UY]).

The fully non-linear Monge-Ampère equation $\det \nabla^2 u = 1$ which arises in affine differential geometry (see [FMM], [J]) and in the study of the second fundamental form of flat surfaces in \mathbb{H}^3 and \mathbb{S}^3_1, can be solved using holomorphic data. In this paper we consider flat surfaces in \mathbb{H}^3 and \mathbb{S}^3_1 with the conformal structure induced by its second fundamental form. We will prove that these surfaces share a fundamental property with minimal surfaces in \mathbb{R}^3.

This paper is in final form and no version of it will be submitted for publication elsewhere.

*Research partially supported by DGICYT Grant No. PB97-0785.
and surfaces of constant mean curvature in \mathbb{H}^3 and S^3, they possess a “conformal representation” in terms of holomorphic data which involve its “hyperbolic” Gauss map (Theorem 1).

2 Some Preliminaries

Let \mathbb{L}^4 be the Minkowski 4-space endowed with linear coordinates (x_0, x_1, x_2, x_3) and the scalar product, $\langle \cdot , \cdot \rangle$ given by the quadratic form $-x_0^2 + x_1^2 + x_2^2 + x_3^2$. We set the two hyperquadrics

$$\mathbb{H}^3 = \left\{ (x_0, x_1, x_2, x_3) \in \mathbb{L}^4 / -x_0^2 + x_1^2 + x_2^2 + x_3^2 = -1, \ x_0 > 0 \right\},$$

$$S^3_1 = \left\{ (x_0, x_1, x_2, x_3) \in \mathbb{L}^4 / -x_0^2 + x_1^2 + x_2^2 + x_3^2 = 1 \right\},$$

with the induced metric from \mathbb{L}^4. Then, \mathbb{H}^3 is a Riemannian 3-manifold of constant sectional curvature -1 which is called the hyperbolic 3-space. S^3_1 is a 3-dimensional Lorentzian manifold of constant sectional curvature 1 and it is called the de Sitter 3-space.

Let N^3 denote the positive null cone, that is

$$N^3 = \left\{ (x_0, x_1, x_2, x_3) \in \mathbb{L}^4 / -x_0^2 + x_1^2 + x_2^2 + x_3^2 = 0, \ x_0 > 0 \right\}.$$

If one considers for all $v \in N^3$ the halfline $[v]$ spanned by v, then this gives a partition of N^3 and the ideal boundary \mathbb{S}^∞_3 of \mathbb{H}^3 can be regarded as the quotient of N^3 under the associated equivalence relation. Thus, the induced metric is well-defined up to a factor and \mathbb{S}^∞_3 inherits a natural conformal structure as the quotient $\mathbb{N}^3/\mathbb{R}^+$.

We consider \mathbb{L}^4 identified with the space of 2×2 Hermitian matrices, $\text{Herm}(2)$, by identifying $(x_0, x_1, x_2, x_3) \in \mathbb{L}^4$ with the matrix

$$\begin{pmatrix} x_0 + x_3 & x_1 + ix_2 \\ x_1 - ix_2 & x_0 - x_3 \end{pmatrix} = \sum_{j=0}^{3} x_j e_j,$$

where

$$e_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad e_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}, \quad e_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Under this identification, one has $\langle m, m \rangle = -\det(m)$, for all $m \in \text{Herm}(2)$, and the complex Lie group $\text{SL}(2, \mathbb{C})$ of 2×2 complex matrices with determinant 1 acts naturally on \mathbb{L}^4 by the representation

$$g \cdot m = gmg^*,$$

where $g \in \text{SL}(2, \mathbb{C})$, $g^* = ^t\overline{g}$ and $m \in \text{Herm}(2)$. Consequently, $\text{SL}(2, \mathbb{C})$ preserves the scalar product and orientations. The kernel of this action is $\{ \pm I_2 \} \subseteq \text{SL}(2, \mathbb{C})$ and $\text{PSL}(2, \mathbb{C}) = \text{SL}(2, \mathbb{C}) / \{ \pm I_2 \}$ can be regarded as the identity component of the special Lorentzian group $SO(1, 3)$. This action can be restricted to \mathbb{H}^3 and S^3_1 as an isometric and transitive one. Thus, \mathbb{H}^3 and S^3_1 can also be represented as

$$\mathbb{H}^3 = \{ g \cdot e_0 / g \in \text{SL}(2, \mathbb{C}) \}$$
and

\[S_1^3 = \{ g \cdot e_j / g \in \text{SL}(2, \mathbb{C}) \}, \quad j \in \{1, 2, 3\}. \]

The space \(\mathbb{N}^3 \) is seen as the space of positive semi-definite \(2 \times 2 \) Hermitian matrices of determinant 0 and its elements can be written as \(a^t \alpha \), where \(^t a = (a_1, a_2) \) is a non-zero vector in \(\mathbb{C}^2 \) uniquely defined up to multiplication by an unimodular complex number. The map \(a^t \alpha \rightarrow [(a_1, a_2)] \in \mathbb{CP}^1 \) becomes the quotient map of \(\mathbb{N}^3 \) on \(S_2^2 \) and identifies \(S_2^2 \) with \(\mathbb{CP}^1 \). So the natural action of \(\text{SL}(2, \mathbb{C}) \) on \(S_2^2 \) is the action of \(\text{SL}(2, \mathbb{C}) \) on \(\mathbb{CP}^1 \) by Möbius transformations.

3 Contact Holomorphic Curves

On \(\text{SL}(2, \mathbb{C}) = \left\{ \zeta = \begin{pmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{pmatrix} \mid \det(\zeta) = 1 \right\} \)

we shall consider the canonical contact structure induced by the contact 1-form

\[\Omega \equiv z_{22}dz_{11} - z_{12}dz_{21}. \]

Let \(\Sigma \) be a Riemann surface and \(g : \Sigma \rightarrow \text{SL}(2, \mathbb{C}) \),

\[g = \begin{pmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{pmatrix}, \quad G_{11}G_{22} - G_{12}G_{21} = 1, \]

be a holomorphic map such that \(g^* \Omega \) vanishes on \(\Sigma \), then

\[g^{-1}dg = \begin{pmatrix} G_{22} & -G_{12} \\ -G_{21} & G_{11} \end{pmatrix} \begin{pmatrix} dG_{11} \\ dG_{21} \end{pmatrix} \begin{pmatrix} dG_{12} \\ dG_{22} \end{pmatrix} = \begin{pmatrix} 0 & \alpha_{12} \\ \alpha_{21} & 0 \end{pmatrix}. \]

Definition 1 A holomorphic map \(g : \Sigma \rightarrow \text{SL}(2, \mathbb{C}) \) is called a contact holomorphic map if \(g^* \Omega \equiv 0 \) and \(\alpha_{21} \) never vanishes on \(\Sigma \).

Thus, if we set

\[f = \frac{\alpha_{12}}{\alpha_{21}}, \quad \omega = \alpha_{21}, \]

the pair \((f, \omega)\) satisfies the following equality

\[g^{-1}dg = \begin{pmatrix} 0 & f \\ 1 & 0 \end{pmatrix} \omega. \]

Conversely, let \(f \) be a holomorphic function and \(\omega \) a holomorphic 1-form on \(\Sigma \) such that \(\omega \neq 0 \) everywhere. Then the ordinary differential equation (2) is integrable and a solution \(g \) is a contact holomorphic map into \(\text{SL}(2, \mathbb{C}) \) but \(g \) may not be well-defined on \(\Sigma \). In fact, when we consider \((f, \omega)\) written in an arbitrary complex parameter \(\zeta \) as \((f(\zeta), h(\zeta)d\zeta)\), every solution \(g \) of (2) is given as

\[g = \begin{pmatrix} V \\ W \end{pmatrix} \begin{pmatrix} \frac{1}{h}V_{\zeta} \\ \frac{1}{h}W_{\zeta} \end{pmatrix} \]

3
where V and W are linearly independent solutions of the ordinary linear differential equation

\[(4) \quad X_{\zeta\zeta} - \frac{h\zeta}{h} X_{\zeta} - fh^2 X = 0,\]

and

\[h = VW_{\zeta} - WV_{\zeta}.\]

Definition 2 The pair (f, ω) will be called Weierstrass data (complex representation) of g.

4 A Conformal Representation

Theorem A) Let Σ be a Riemann surface and $g : \Sigma \rightarrow \mathrm{SL}(2, \mathbb{C})$ a contact holomorphic map with Weierstrass data (f, ω).

- I) If $|f| < 1$, then $\psi_0 = g \cdot e_0 : \Sigma \rightarrow \mathbb{H}^3$ and $\psi_3 = g \cdot e_3 : \Sigma \rightarrow \mathbb{S}_1^3$ are well-defined flat Riemannian immersions.

- II) If the imaginary part of f, $\Im(f)$, never vanishes on Σ, then $\psi_1 = g \cdot e_1 : \Sigma \rightarrow \mathbb{S}_1^3$ is a well-defined flat Lorentzian immersion.

B) Conversely, let M be a simply connected surface and $\psi : M \rightarrow N$ a flat immersion, where N is either \mathbb{H}^3 or \mathbb{S}_1^3. If on M we consider the conformal structure determined by the second fundamental form of ψ, then there exists a contact holomorphic map $g : M \rightarrow \mathrm{SL}(2, \mathbb{C})$ with Weierstrass data (f, ω) such that $\psi = \psi_j$ for some $j \in \{0, 1, 3\}$. Moreover g is unique up to right multiplication by a constant matrix g_0 with $g_0 \cdot e_j = e_j$.

Proof: We consider $\psi = g \cdot e$ with

\[e = \begin{pmatrix} 1 & 0 \\ 0 & \epsilon \end{pmatrix}, \quad \epsilon = \pm 1.\]

Then from (2),

\[d\psi = g \begin{pmatrix} 0 & \epsilon f \omega + \overline{\omega} \\ \omega + \epsilon \overline{f} \omega & 0 \end{pmatrix} \, g^*, \]

and the induced metric is given by

\[ds^2 = \langle d\psi, d\psi \rangle = -\det(d\psi) = (1 + f \overline{f}) \omega \overline{\omega} + \epsilon f \omega^2 + \epsilon \overline{f} \omega^2.\]

Since f is a holomorphic function

\[d \left(\frac{1}{2} (1 + \epsilon f) \omega + \frac{1}{2} (1 + \epsilon \overline{f} \overline{\omega}) \right) = 0, \quad d \left(\frac{i}{2} (1 - \epsilon f) \omega - \frac{i}{2} (1 - \epsilon \overline{f} \overline{\omega}) \right) = 0\]

and there exist local functions x, y such that

\[dx = \frac{1}{2} (1 + \epsilon f) \omega + \frac{1}{2} (1 + \epsilon \overline{f} \overline{\omega}), \quad dy = \frac{i}{2} (1 - \epsilon f) \omega - \frac{i}{2} (1 - \epsilon \overline{f} \overline{\omega}).\]

with

\[dx \wedge dy = \frac{-i}{2} (1 - |f|^2) \omega \wedge \overline{\omega}.\]
Because of $|f| < 1$, (x, y) are new coordinates with $ds^2 = dx^2 + dy^2$. Therefore, the immersion is flat.

In the same way, when $\psi = \psi_1$ one gets $ds^2 = 2dx\,dy$, where

$$dx = -f\omega - \overline{f}\omega, \quad dy = \frac{1}{2}\omega + \frac{1}{2}\overline{\omega}.$$

Conversely, if $\psi : M \to \mathbb{S}^1_1$ is a Lorentzian immersion with flat induced metric, then there exists an asymptotic coordinate immersion $x + iy : M \to \mathbb{C}$ such that

$$(5) \quad ds^2 = 2dx\,dy,$$

and if η is an unit normal vector field to the immersion, a straight calculation gives the following structure equations

$$(6) \quad \psi_{xx} = E\eta, \quad \psi_{xy} = F\eta - \psi, \quad \psi_{yy} = G\eta, \quad \eta_x = -F\psi_x - E\psi_y, \quad \eta_y = -G\psi_x - F\psi_y,$$

where E, F and G are smooth functions on M and by $(\cdot)_x$ and $(\cdot)_y$ we shall denote the usual partial derivatives respect to x and y, respectively.

Using the Gauss’ and Codazzi-Mainardi’s equations we have $EG - F^2 = 1$, $E_x = F_x$ and $F_y = G_x$. Hence, as M is simply connected, there exists a well-defined function ϕ on M such that $E = \phi_{xx}$, $F = \phi_{xy}$, $G = \phi_{yy}$ and the second fundamental form of the immersion is given by

$$(7) \quad d\sigma^2 = \phi_{xx}dx^2 + \phi_{yy}dy^2 + 2\phi_{xy}dx\,dy,$$

with

$$(8) \quad \phi_{xx}\phi_{yy} - \phi_{xy}^2 = 1.$$

We shall regard M as a Riemann surface with the conformal structure determined by the second fundamental form $d\sigma^2$.

From (8), we can choose η such that $\phi_{xx} > 0$ and consider the new coordinate immersion

$$(9) \quad z = u + iv = y - i\phi_x.$$

Then, a straight computation gives,

$$(10) \quad \psi_u = -\frac{\phi_{xy}}{\phi_{xx}}\psi_x + \psi_y, \quad \psi_v = -\frac{1}{\phi_{xx}}\psi_x.$$

Now, from (6), (7), (8), (9) and (10) we have

$$(11) \quad d\sigma^2 = \frac{1}{\phi_{xx}}|dz|^2.$$
and

\[(\psi_x)_u = -\psi, \quad (\psi_x)_v = -\eta.\]

Thus, from (5), (9), (11) and (12), \(z : M \to \mathbb{C}\) is a conformal coordinate immersion and \([\psi_x] : M \to S^2_{\infty}\) is a conformal map, which induces on \(M\) the flat Riemannian metric \(|dz|^2\).

Moreover, from the above expressions, we obtain

\[(\psi_x)_{uu} = \frac{\phi_{xy}}{\phi_{xx}} \psi_x - \psi_y, \quad (\psi_x)_{uv} = -\frac{\phi_{xy}}{\phi_{xx}} \psi_x - \psi_y,\]

and by using standard notations of complex analysis, one has

\[(13) \quad 4(\psi_x)_{z\overline{z}} = -2\psi_y.\]

Now, let \(A, B : M \to \mathbb{C}\) be global holomorphic functions on \(M\) such that \([\psi_x]\) is represented as \([(A, B)] \in \mathbb{CP}^1 \equiv S^2_{\infty}\), then

\[\psi_x = \lambda \begin{pmatrix} A \\ B \end{pmatrix} (A, B) = \lambda \begin{pmatrix} A\overline{A} & AB \\ AB & B\overline{B} \end{pmatrix},\]

for some positive function \(\lambda \in C^\infty(M)\). Thus, from (5), (9) and (12), one gets

\[\frac{1}{2} = ((\psi_x)_z, (\psi_x)_{\overline{z}}) = \frac{1}{2} \lambda^2 |AB_x - BA_x|^2\]

and as \(AB_x - BA_x\) does not vanish on the simply connected surface \(M\), there exists a holomorphic function \(R : M \to \mathbb{C}\) with \(R^2 = AB_x - BA_x\). Hence, we can write

\[(14) \quad \psi_x = \begin{pmatrix} C \overline{C} \\ C \overline{D} \end{pmatrix} + \begin{pmatrix} C \overline{D} \\ D \overline{D} \end{pmatrix} = \begin{pmatrix} C \overline{C} \\ C \overline{D} \end{pmatrix} + \begin{pmatrix} C \overline{D} \\ D \overline{D} \end{pmatrix},\]

where \(C = A/R\) and \(D = B/R\). Consequently, from (12) and (14) we have the following expression for the immersion

\[(15) \quad \psi = -\begin{pmatrix} C \overline{C} + C_z \overline{C} & C \overline{D} + C_z \overline{D} \\ C \overline{D}_z + C_z \overline{D} & D \overline{D}_z + D_z \overline{D} \end{pmatrix},\]

and for its unit normal

\[\eta = -i \begin{pmatrix} -C \overline{C} + C_z \overline{C} & -C \overline{D} + C_z \overline{D} \\ C \overline{D}_z - C_z \overline{D} & D \overline{D}_z - D_z \overline{D} \end{pmatrix}.\]

If we consider the function \(f : M \to \mathbb{C}\) defined by

\[(16) \quad f = \frac{\phi_{xy} - i}{2\phi_{xx}},\]

then, from (6), (10), (12), (13) and (14) we obtain \((\psi_y)_z = -2f(\psi_x)_{\overline{z}}\) and

\[\begin{pmatrix} C_z \overline{C}_z & C \overline{D}_z \\ C \overline{D}_z & D \overline{D}_z \end{pmatrix} = f \begin{pmatrix} C \overline{C}_z & C \overline{D}_z \\ C \overline{D}_z & D \overline{D}_z \end{pmatrix}.\]
As C_z and D_z cannot vanish simultaneously, we have

$$
(C_{zz} = fC, \quad D_{zz} = fD).
$$

Thus, from (8), (16) and (17), f is a holomorphic function which satisfies

$$
\Im(f) \neq 0.
$$

Finally, from (15) and (17), the immersion ψ can be recovered as $\psi = -g \cdot e_1$, where $g : M \to \text{SL}(2, \mathbb{C})$ is the contact holomorphic map given by

$$
g = \begin{pmatrix} C & C_z \\ D & D_z \end{pmatrix}
$$

such that

$$
g^{-1}dg = \begin{pmatrix} 0 & f \\ 1 & 0 \end{pmatrix} \omega
$$

and $\omega = dz$. On the other hand, if $\tilde{g} : M \to \text{SL}(2, \mathbb{C})$ is a holomorphic immersion with $\psi = -\tilde{g} \cdot e_1$, then there exists a holomorphic map $g_0 : M \to \text{SL}(2, \mathbb{C})$ such that $g = \tilde{g}g_0$, with $g_0 \cdot e_1 = e_1$. Thus $(g_0)_z = 0$ and g_0 must be constant.

Now, let $\psi : M \to N$ be a Riemannian immersion with flat induced metric, where $N = \mathbb{H}^3$ or $N = \mathbb{S}^3_1$, then there exists a coordinate immersion $x + iy : M \to \mathbb{C}$ such that

$$
ds^2 = dx^2 + dy^2.
$$

The structure equations are given by

$$
\begin{align*}
\psi_{xx} &= E\eta + \epsilon\psi, \\
\psi_{xy} &= F\eta, \\
\psi_{yy} &= G\eta + \epsilon\psi, \\
\eta_x &= -\epsilon E\psi_x - \epsilon F\psi_y, \\
\eta_y &= -\epsilon F\psi_x - \epsilon G\psi_y,
\end{align*}
$$

where $\epsilon = 1$ if $N = \mathbb{H}^3$, $\epsilon = -1$ if $N = \mathbb{S}^3_1$, E, F and G are smooth functions on M and η is the well-oriented unit normal vector field. From the integrability conditions, there exists a well-defined function ϕ on M such that $E = \phi_{xx}$, $F = \phi_{xy}$, $G = \phi_{yy}$ satisfying (8) and the second fundamental form of the immersion is given by (7).

We consider the new coordinate immersion

$$
z = u + iv = x + \phi_x + i(y + \phi_y).
$$

Then

$$
\frac{1}{2 + \phi_{xx} + \phi_{yy}}|dz|^2
$$

and

$$
(\psi - \eta)_u = \psi_x, \quad (\psi - \eta)_v = \psi_y.
$$
Thus, $z : M \rightarrow \mathbb{C}$ is a conformal coordinate immersion and $[\psi - \eta] : M \rightarrow S^2_\infty$ is a conformal map.

Calculating $(\psi - \eta)_{uu}$, $(\psi - \eta)_{vv}$, we obtain

$$\psi = \frac{1}{2}(\psi - \eta) + 2\epsilon(\psi - \eta)z\tau.$$

As in the above case, (see [GMM]), the immersion can be calculated as

$$\psi = \begin{pmatrix} C\overline{C} + 4\epsilon Cz\overline{C}z & C\overline{D} + 4\epsilon Cz\overline{D}z \\ \overline{C}D + 4\epsilon \overline{C}zDz & D\overline{D} + 4\epsilon Dz\overline{D}z \end{pmatrix}$$

where C and D are linearly independent solutions of the ordinary linear differential equation

$$X_{zz} = \frac{1}{4}fX,$$

and $f : M \rightarrow \mathbb{C}$ is the holomorphic function defined by

$$f = \frac{\phi_{yy} - \phi_{xx} + 2i\phi_{xy}}{2 + \phi_{xx} + \phi_{yy}}.$$

Moreover, from (8), $|f| < 1$.

Finally, the immersion ψ can be recovered as $\psi = g \cdot e_0$ or $\psi = g \cdot e_3$ if $N = \mathbb{H}^3$ or $N = S^3_1$, respectively, where $g : M \rightarrow SL(2, \mathbb{C})$ is the contact holomorphic map given as in (18) satisfying (19) and $\omega = \frac{1}{2}dz$. Q.E.D.

Remark The above conformal representation can be used in the study of global properties of flat surfaces in \mathbb{H}^3 and S^3_1. For the particular case of flat surfaces in \mathbb{H}^3 the reader can see [GMM].

References

José A. Gálvez, Antonio Martínez and Francisco Milán
Departamento de Geometría y Topología
Facultad de Ciencias
Universidad de Granada
18071 GRANADA, SPAIN
(e-MAIL: jagalvez@goliat.ugr.es; amartine@goliat.ugr.es; milan@goliat.ugr.es)

Received January 28, 2000