
Relatives of Flat Surfaces in H3

A. Mart́ınez∗

In recent years there has been major progress in the classical theory of surfaces in Affine
Differential Geometry. Here we will review some of the geometric properties and technical
tools that have been useful in studying the family of locally convex surfaces (possibly with
singularities ) in Euclidean 3-space R3 with parallel affine normal lines. This kind of surface
keeps an intimate relation to flat surfaces in hyperbolic 3-space H3 and they are connected
with special lagrangian immersions in complex Euclidean plane C2 and minimal surfaces in
R3. Although these surfaces are not so well known as minimal surfaces in R3 their local
connection to them has oriented their study.

1 The regular case

In this Section we discuss the regular case: Improper Affine spheres (IA-spheres in short).
Some comments, questions and remarks will motivate this study and show how they are
connected with other interesting branches in differential geometry. Their corresponding holo-
morphic representations let us understand why IA-spheres can be considered as relatives
of flat surfaces in H3. We also describe some fundamental facts about their geometry and
behaviour at infinity.

1.1 Comments and questions

Let us consider f : Σ−→H3 a flat immersion with first fundamental form ds2 and second
fundamental form σ.

In 2000, Gálvez, Milán and the author showed in [13] how to parametrize f by meromor-
phic data. In fact, when the conformal structure on the surface is induced by the second
fundamental form, flat surfaces in H3 have a meromorphic hyperbolic Gauss map and a simi-
lar representation to the Weierstrass representation for constant mean curvature one surfaces
in H3 (see [3],[26],[27]) also works for flat surfaces. Indeed, we proved that any flat immersion
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f : Σ−→H3 is the projection of a holomorphic legendrian immersion Ef : Σ̃−→PSL(2,C)
defined on the universal cover Σ̃ of Σ, that is,

(1) f = EfE
?
f , E−1

f dEf =
(

0 dG
dF 0

)
,

where by ? we denote conjugate and transpose. The induced metric and the second funda-
mental form of the immersion are given, respectively, by:

I = |dF |2 + |dG|2 + 2<(dFdG),
II = |dG|2 − |dF |2,

where < represents the real part. The pair (dF, dG) will be called Weierstrass data of f .
Some questions came right now:

• Why we can represent flat surfaces by meromorphic data when we consider the under-
lying conformal structure induced by σ?.

• Is there any special reason for that?

In order to understand the answers we can choose local parameters (x, y) so that,

I = dx2 + dy2(2)
II = IIφ = φxxdx

2 + φyydy
2 + 2φxydxdy,(3)

Det(∇2φ) = 1,(4)

where down indices indicate partial derivatives with respect to the corresponding variables.
We will refer to the unimodular Hessian equation (3) as our fundamental equation and

the underlying conformal structure induced by IIφ will be the canonical one associated with
the solution φ.

In 1970, Calabi observed (see [6]) that our fundamental equation is, locally, related to
the equation of minimal surfaces in R3. In fact, it is well known that a graph of a function
γ : Ω−→R, on a planar 1-connected domain Ω, is a minimal surface if and only if γ is a
solution of the following quasilinear PDE:

(5) (1 + γ2
x)γyy + (1 + γ2

y)γxx − 2γxγyγxy = 0, on Ω.

If we take W =
√

1 + γ2
x + γ2

y , then (5) tells us that

1 + γ2
x

W
dx+

γxγy
W

dy,
γxγy
W

dx+
1 + γ2

y

W
dy,
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are closed 1-forms. When Ω is 1-connected, ∃ α, β : Ω −→ R s.t.

αx =
1 + γ2

x

W
, αy =

γxγy
W

, βx =
γxγy
W

, βy =
1 + γ2

y

W
.

As αy = βx, ∃ φ : Ω −→ R, φx = α and φy = β. Consequently, φ verifies Det∇2φ = 1.
Conversely, given φ solution of (4) on Ω, exists γ solution of (5), satisfying the above relations.

Moreover, from this local connection,

(6) WIIφ = (1 + γ2
x)dx

2 + (1 + γy)2dy2 + 2γxγydxdy,

that is, the induced metric on the minimal graph and the metric σφ are conformal. Thus,
there is a (local) correspondence between minimal graphs with their usual conformal structure
and graphs of our fundamental equation with their canonical complex structure.

Looking for a global situation other questions arise:

• What kind of surfaces in R3 are, locally, graphs Sφ of solutions φ of our fundamental
equation?.

• What about the metric IIφ?

Because IIφ and our fundamental equation are invariant under unimodular affine transforma-
tions whose differentials fix the vertical direction, we find some answers in Affine Differential
Geometry.

It is easy to chek that Sφ is a locally convex surface in R3 with vertical affine normal
lines, which means the tangent lines of the locus of the center of gravity of the slices parallel
to the tangent plane at every point are vertical lines (see [2], [19] and Figure 1)

Figure 1: Affine normal lines.
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Historically, Tzitzeica was the first to study surfaces in R3 with parallel affine normal
lines, [25], while Blaschke, who called these surfaces improper affine spheres (IA-spheres),
was the first to study this family in the affine context,[2]. Although important global results
were obtained by Jörgens and Calabi ( see [5], [16] ), it has been over the last 20 years that
there has been a much wider developement.

Changing, φ by −φ if it was necessary, we conclude that Sφ is a locally convex IA-sphere
with affine normal ξ = (0, 0, 1) (see [21] [19] for more details). In this case, σφ is the usual
affine metric (also called Berwald-Blaschke metric) on Sφ.

From now on we will assume every IA-sphere is locally convex.

1.2 An interesting remark

The local connection between IA-spheres and minimal surfaces does not implies same proper-
ties or similar behaviour. We keep in mind the following property of minimal surfaces which
was proved by Li, Shoen and Yau, [18], on the way they studied an isoperimetric inequality
for minimal surfaces. They proved that:

If we move away the boundaries of a connected minimal surface bounded by two

Jordan curves, then there is a moment were the surface breaks in two minimal
surfaces bounded each one for a Jordan curve.

This property could be checked easily (see Figure 2), because by the immersion of two closed
wires-rings into a bucket of soapy water we should get a minimal surface bounded by two
circles. But if we move the two wires-ring apart, the soap film breaks in two minimal disks.

Figure 2: A non-existence result of minimal surfaces.

On the contrary, IA-spheres have an opposite behaviour (see [10], Theorems 2 and 3):

If we consider two circles of different radii in parallel planes, always is possible to

move them away until we get a connected IA-sphere bounded by the two circles.
But if we approximate the two circles, there is a moment where the surface breaks

in two pieces each one bounded by a circle.
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Now, by using the maximum principle for second order elliptic PDE’s in a standard way, an
IA-sphere with a compact connected boundary inherits the symmetries of its boundary, and
then we can conclude that the broken pieces lie in elliptic paraboloids (see Figure 3).

Figure 3: A non-existence result of IA-spheres.

Other differences appear in the study of IA-spheres that can be foliated by ellipses (see [10]).

1.3 The associated special lagrangian immersion

Let Σ be an oriented surface and ψ : Σ −→ R2 × R, ψ := (x, u) an IA-sphere with conformal
structure induced by the Berwald-Blaschke metric σ. After an unimodular transformation
we can assume the affine-Blaschke normal vector field is the constant vertical vector field
ξ = (~0, 1).

The equiaffine normalization of ψ is given by the affine-Blaschke normal ξ and the affine
co-normal vector field N, N : Σ −→ R2 × R, N := (n, 1) (see [19], [21]). With this normal-
ization,

σ := −〈dx, dn〉,
where 〈., .〉 is the usual inner product in R2.

For a complex parameter z on Σ we shall use the Cauchy-Riemann operators ∂
∂z and ∂

∂z .
The following expressions can be obtained:

Nz =
√
−1 ξ × ψz ,(7)

σ = 2uzz |dz|2 = −2 (〈xz, nz〉C) |dz|2,(8)

where Nz = ∂N
∂z , xz = ∂x

∂z , uzz = ∂2u
∂z∂z , etc. By bar we denote the usual conjugation, × is the

standard complex cross product on the complexification (R2 × R) ⊗ C of R2 × R and 〈., .〉C
is the complex inner product on the complexification R2 ⊗ C of R2.

From (7), (8) and taking into account that ξ = (~0, 1) is a transversal vector field, we can
obtain that

(9) [xz, xz] = [nz, nz ], xzz = nzz = 0,
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and

(10) ds2 = 〈dx, dx〉 is non degenerate.

Here [A,B] denotes the determinant functional of any ordered pair of vectors A,B ∈ R2 ⊗C.
On C2 = R2 ⊗ C with coordinates ζ = (ζ1, ζ2), ζ = x +

√
−1y, x, y ∈ R2 we are going to

consider

g′ = |dζ1|2 + |dζ2|2,

θ′ =
√
−1
2

(
dζ1 ∧ dζ1 + dζ2 ∧ dζ2

)
,(11)

Ω′ = dζ1 ∧ dζ2.

Let L : Σ−→C2 be an special Lagrangian immersion (SL-immersion for short) with respect
to the calibration <(

√
−1Ω′). As in [14], L can be characterized as an immersion in C2

satisfying

(12) ω′|Σ ≡ 0, = (
√
−1Ω′|Σ) ≡ 0,

where < and = represent the real and the imaginary part, respectively.
There is a correspondence between IA-spheres and some “non-degenerate” SL-immersions

in C2 in the following way (see [20]):

Theorem 1 The map Lψ : Σ −→ C2 given by

(13) Lψ := x+
√
−1n

is an SL-immersion such that

1. The induced metric dτ2 := 〈dx, dx〉 + 〈dn, dn〉 is conformal to the Berwald-Blaschke
metric σ of ψ.

2. ds2 = 〈dx, dx〉 is a non-degenerate flat metric,

where 〈, 〉 denotes the usual scalar product in R2

Theorem 2 Let L = x+
√
−1n : Σ −→ C2 be an SL-immersion such that ds2 := 〈dx, dx〉 is

non-degenerate. Then

ψ :=
(
x,−

∫
〈n, dx〉

)

is a (perhaps multivaluated) improper affine sphere at its regular points (e.g., where ds2 :=
〈dx, dx〉 is non-degenerate)
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1.4 Conformal representation

By identifying vectors of R2 with complex numbers in the standard way

(r, s) ≡ r +
√
−1s, r, s ∈ R,

one can prove, see [11], that the complex function x−n (respectively, x+n) is a holomorphic
(respectively, antiholomorphic) function on Σ.

Thus, from Theorem 1 and Theorem 2, IA-spheres can be represented “in a global way”
by holomorphic data. Indeed, we have

Theorem 3 [11] (Conformal representation)
I. Let ψ := (x, u) : Σ −→ R2 ×R, be a IA-sphere with affine normal ξ = (~0, 1) and conformal
structure induced by the affine metric σ. Then, there exist two holomorphic functions F,G :
Σ −→ C, with |dG|2 > |dF |2 on Σ s.t. ψ can be recover, up a vertical translation, as

(14) ψ =
(
G+ F ,

1
2
(|G|2 − |F |2) + <(GF ) − 2<

∫
FdG

)

Moreover, the affine metric and the affine conormal map are given by

(15) σ = |dG|2 − |dF |2, N = (F −G, 1).

II. Conversely, Let Σ be a Riemann surface, F,G : Σ −→ C two holomorphic functions s.t.
|dG|2 > |dF |2 on Σ. Then (14) defines an IA-sphere with affine normal ξ = (~0, 1) and with
affine metric and affine conormal map given as in (15). Moreover, ψ is well defined if and
only if

∫
FdG does not have real periods.

The pair (F,G) will be called Weierstrass data of ψ.

Remark 1 IA-spheres can be considered as relatives of flat surfaces in H3. In fact, from
(1), every flat immersion f : Σ−→H3, f ≡ (dF, dG) is intimately related to the IA-sphere
ψ : Σ̃−→R2 × R with W-data (F,G). The first and second fundamental form of f coincide,
respectively, with the flat fundamental form and the affine metric of ψ.

1.5 Examples

• A revolution IA-sphere is are conformally equivalent to either a punctured disk or C
(see Figure 4).
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Figure 4: Revolution IA-spheres

• Taking as W-data: (1/z, ic2z), c ∈ R, c 6= 0, and z on a punctured disk, we obtain
multivaluated IA-spheres with a vertical period (see Figure 5.

Figure 5: A multivaluate IA-sphere

1.6 Some results

The above conformal representation for IA-spheres is particularly usuful for the description
of their asymptotic behaviour. In that sense, and by a previous study of the Weierstrass data
of complete IA-spheres conformally equivalent to pucture disks, we have extended (see [11])
the classical Jörgen’s theorem, [16], as follows:

Theorem 4 Consider A := {A : A symmetric positive definite 2x2-matrix, Det(A) = 1}
and let u be a convex solution of Det(∇2u) = 1 in R2\O, where O is a bounded domain.
Then, there exist a1 ∈ R, ~b ∈ R2 and A ∈ A s.t.,

u(x) =
1
2
x′Ax+~b · x+ a1 log(x′Ax) + O(1),
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outside of some bounded domain containing O.

For k large, the ellipse

Ek ≡
1
2
x′Ax+~b · x = k,

gives the shape of the graph of u at infinity. The ellipse Ek and the number a1 will be called
ellipse at infinity and logarithmic growth rate of u, respectively.

By using a different approach, L. Caffarelli and Y. Li, [4] have extended the above result to
high dimension.

For its applications the following result (proved in [11])is especially interesting

Theorem 5 Maximum principle at infinity
Let u and v, solutions of (4), on a exterior domain Ω s.t. u ≥ v and |u(xn)− v(xn)| → 0,

{xn} ∈ Ω, |xn| → ∞. u ≡ v.

Consequences of these two results are that,

• We have uniqueness of the Dirichlet problem on exterior domains for solutions of

Det(∇2u) = 1

with the same ellipse at infinity and the same logarithmic growth rate (see [11]).

• The moduli space of solutions for the Dirichlet problem of

Det(∇2u) = 1, in Ω, u|∂Ω = γ

on a exterior domain Ω is either empty or a 5-dimensional differentiable manifold (see
[12])

2 The general case

This Section deals with the general case: Improper Affine spheres with singularities which
will be called IA-maps. Very interesting results obtained by Kokubu, Umehara and Yamada
in [17] for flat surfaces with singularities in H3, let us connect IA-maps with flat fronts in
H3 and study global properties of their geometry. This connection could be analogous to the
well-known correspondence between minimal surfaces in R3 and surfaces of constant mean
curvature one in H3.
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2.1 New directions: IA-spheres with “natural” singularities

By studying the Cauchy problem for IA-spheres, one learns that singularities can determine
the immersion, see [1]. Thus, it is natural to consider locally convex immersions with parallel
affine normal lines which have some “natural” singularities. In that sense, the correspondence
between some SL-immersion and IA-spheres, given in Subsection §1.3, motivates the following
definition:

Definition 1 A map ψ = (x, u) : Σ −→ R2 × R is called an Improper affine map, (IA-map
for short), if there is a SL-immersion L := x +

√
1 n : Σ−→C2 s. t.

ψL := (x,−
∫
< n, dx >)

coincides with ψ up to a vertical translation.
Non-regular points of ψ correspond with degenerate points of ds2 =< dx, dx >. We shall

refer to ds2 as the flat fundamental form of ψ.

Remark 2 It is clear from Theorems 1 and 2, that at the non-degenerate points of ds2, the
induced metric dτ2 is conformal to the affine metric σ.

From now on, for any IA-map ψ : Σ −→ R2 × R, ψ := (x, u) we are going to consider on
Σ the conformal structure given by the induced metric dτ2 of its associated SL-immersion
Lψ .

B.Y. Chen and J.M. Morvan proved in [9] that up to a change of the complex structure in
C2, every minimal Lagrangian immersion in C2 is a complex curve. To be precise, with the
above notation and as every SL-immersion is a minimal Lagrangian immersion (see [14]), we
can see, after some straightforward computations, that there exists a complex regular curve
α : Σ −→ C2, α := (F,G), such that if we identify vectors of R2 with complex numbers in
the standard way, then we can write

(16) x = G+ F , n = F − G

and since the inner product of two vectors ζi = ri +
√
−1si, i = 1, 2, is given by 〈ζ1, ζ2〉 =

<(ζ1ζ2), then the flat fundamental form, the induced metric and σ := −〈dx, dn〉 are given,
respectively, by

ds2 = |dF |2 + |dG|2 + dGdF + dGdF

dτ2 = 2(|dG|2 + |dF |2)(17)
σ = |dG|2 − |dF |2.

Moreover, the non trivial part of the Gauss map of Lψ (see [9]) is the holomorphic map
ν : Σ −→ C ∪ {∞} given by

(18) ν :=
dF

dG
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which will be called Lagrangian Gauss map of ψ.
Using Theorem 1, Theorem 2 and (16) we have the following holomorphic representation

which is a generalization of Theorem 3:

Theorem 6 (Complex representation:)

• Let ψ = (x, u) : Σ −→ R2×R be an IA-map. Then there exists a regular planar complex
curve α := (F,G) : Σ −→ C2 such that,

(19) ψ =
(
G+ F,

1
2
(|G|2 − |F |2) + <

(
GF − 2

∫
FdG

))
.

• Conversely, given a Riemann surface Σ and a complex curve α := (F,G) : Σ −→ C2,
then (19) gives an IA-map which is well defined if and only if

∫
FdG does not have real

periods.

The pair (F,G) is called the Weierstrass data of ψ.

Remark 3 From (17) and (19), the singular points of ψ correspond with the points where
|dF | = |dG|, that is, with the points where the flat fundamental form and the Berwald-
Blaschke metric σ degenerate.

Remark 4 Let a, b, µ ∈ C, such that |a|2 − |b|2 = 1. Then the Weierstrass data α := (F,G)
and α̂ := (aF + bG+ µ, bF + aG+ µ), give affinely equivalent improper affine maps.

2.2 IA-maps as relatives of flat fronts in H3

Kokubu, Umehara and Yamada have shown, see Proposition 2.5 in [17], that any flat front
f : Σ−→H3 is the projection, f = EfE

?
f , of a holomorphic legendrian immersion Ef :

Σ̃−→PSL(2,C) defined on the universal cover Σ̃ of Σ. Moreover, if we set

E−1
f dEf =

(
0 dG
dF 0

)
,

the first and the second fundamental forms are represented as:

I = |dF |2 + |dG|2 + 2<(dFdG)
II = |dG|2 − |dF |2.

As for flat surfaces, the pair (dF, dG) will be the Weierstrass data of f .

Using this holomorphic resolution and the conformal representation of IA-maps described in
Theorem 6, we have that IA-maps can be considered as relatives of flat fronts in H3. In fact,
every flat front f : Σ−→H3 with Weirestrass data f ≡ (dF, dG) is intimately related to the
IA-map ψ : Σ̃−→R2 × R with W-data (F,G). The first and second fundamental form of f
coincide, respectively, with the flat fundamental form and the affine metric of ψ.
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2.3 Embeddeness and Completeness

For our global considerations we are going to consider the same definition of completeness as
in [17]:

Definition 2 An IA-map ψ = (x, u) : Σ−→R2×R is called complete if there exists a compact
support bilinear symmetric form Te s.t. ds2 := Te + ds2 is a complete Riemannian metric on
Σ, where ds2 =< dx, dx >.

From Huber’s Theorem (see Theorem 13 in [15]), one has

Proposition 1 Let ψ be a complete IA-map. Then Σ is conformallly equivalent to the com-
plement of a a finite pointset {p1, p2, · · · , pn} in a compact Riemann surface Σ. Moreover,
the W-data (F,G) of ψ extend meromorphically on Σ.

The points p1, · · · , pk are the ends of ψ.

Consider, ψ = (x, u) : Σ −→ R2 × R a complete IA-map with Weierstrass data (F,G).
Let pj be an end s.t. |dF | < |dG|. Then, on a neighborhood Wj of pj ,

G(z) = (z − pj)−mjG0(z), F (z) = (z − pj)−njF0(z)

where, G0(pj), F0(pj) 6= 0, mj ∈ N , mj ≥ 1, nj ∈ Z, nj ≤ mj , and

x(z) = (z − pj)−mjG0(z) + (z − pj)−njF0(z)

= (z − pj)−mj

[
G0(z) + z − pj)mj−njeiθj(z)F0(z)

]
,

for some θj(z) ∈ R. Hence, x twists mj-times around pj and we have proved, [20],

Theorem 7 An end p of ψ is embedded if and only if G and F have at most a single pole
at p.

2.4 Examples of complete IA-maps with embedded ends:

1. The elliptic paraboloid: It can be obtained by taking Σ the Riemann sphere S2 ≡
C ∪ {∞}, Σ = C and Weierstrass data (z, kz), where k is constant. (see Figure 6). It
is clear that its Lagrangian Gauss map is constant.

2. Rotational improper affine maps: They are obtained by considering Σ to be the Rie-
mann sphere S2, Σ = C\{0} and Weierstrass data (z,±r2/z), r ∈ R\{0}, (see Figure
1). In this case, the Lagrangian Gauss map has symmetric ends, i.e. ν(0) = 1/ν(∞)
(see Figure 6).
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Figure 6: Rotational IA-maps.

3. Non-rotational improper affine maps with two embedded ends. More complete examples
with only two embedded ends can be obtained by taking Σ = S2, Σ = C\{0} and
Weierstrass data: (z, az + b/z + c), where b ∈ R, a, c ∈ C, |a| 6= 1. In these examples
the Lagrangian Gauss map does not have symmetric ends (see Figure 7).

Figure 7: Non-rotational IA-maps with two ends

4. Some multivalued improper affine map: By considering Σ as the Riemann sphere S2,
Σ = C\{0} and Weierstrass data (z,±

√
−1r2/z), r ∈ R\{0} we obtain multivalued

complete improper affine maps with a vertical period and two embedded ends. (see
Figure 8)
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Figure 8: A multivaluted IA-map

5. Improper affine maps of genus 0 and n-ends: Consider n-arbitrary points p1, · · ·pn ∈ S2.
It is not a restriction to assume that pn = ∞. We set Σ = C\{p1, · · · , pn−1} and the
Weierstrass data (F,G) given by

G(z) = z, F (z) =
r1

z − p1
+ · · ·+ rn−1

z − pn−1
,

for some real numbers r1, · · · , rn. Then (19) defines a well-defined improper affine map
with embedded ends p1, · · · , pn.

6. Complete improper affine map of genus one with three embedded ends: Let Σ = C/L
represent the torus obtained as the quotient space of the complex plane by the lattice
L = {m+

√
−1n|m,n ∈ Z}. Consider Π the canonical projection from C onto Σ and ℘

the Weierstrass function associated with the lattice L. Then, ℘ induces a well-defined
meromorphic function (also denoted by ℘) on the torus Σ such that,

(℘′)2 = 4℘(℘2 − a2),

where a = ℘(1/2) = −℘(−i/2). If we set Σ = Σ\{Π(0),Π(1/2),Π(i/2)} and the
Weierstrass data (F,G) given by

F = r
℘′

℘+ a
, G =

℘′

℘− a
,

for some real number r ∈ R, r 6= 1, then it is not difficult to see that (19) gives a
well-defined complete improper affine map with genus one and three embedded ends
(see Figure 9).
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Figure 9: A genus one IA-map with three ends

2.5 Global results

The holomorphic representation for IA-maps let us characterize some of the above examples,
[20].

First, the elliptic paraboloid can be characterized as follows,

Theorem 8 A complete IA-map is an elliptic paraboloid if and only if one of the following
assertions holds:

• Its lagrangian map is constant.

• It has only one end which is embedded.

Remark 5 The assumption of embeddeness in the above result is essential. Indeed, by taking
Σ = S2, Σ = C and the Weierstrass data (z, z + z2) we obtain a complete improper affine
map with only one end which is non-embedded and non affinely equivalent to the elliptic
paraboloid. (see Figure 10)

Figure 10: Non-embededed IA-map with only one end
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Finally, complete complete IA-maps with two embedded ends can be also classified thus:

Theorem 9 [20] A complete improper affine map ψ : Σ −→ R2 × R with exactly two ends,
which are embedded, is affinely equivalent to either a rotational improper affine map or to
one of the examples of improper affine maps described in Example 3.
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