We study holomorphic immersions of open Riemann surfaces into \mathbb{C}^n whose derivative lies in a conical algebraic subvariety A of \mathbb{C}^n that is smooth away from the origin. Classical examples of such A-immersions include null curves in \mathbb{C}^3 which are closely related to minimal surfaces in \mathbb{R}^3 , and null curves in $SL_2(\mathbb{C})$ that are related to Bryant surfaces. We establish a basic structure theorem for the set of all A-immersions of a bordered Riemann surface, and we prove several approximation and desingularization theorems. Assuming that A is irreducible and is not contained in any hyperplane, we show that every A-immersion can be approximated by Aembeddings; this holds in particular for null curves in \mathbb{C}^3 . If in addition $A \setminus \{0\}$ is an Oka manifold, then A-immersions are shown to satisfy the Oka principle, including the Runge and the Mergelyan approximation theorems. Another version of the Oka principle holds when A admits a smooth Oka hyperplane section. This lets us prove in particular that every open Riemann surface is biholomorphic to a properly embedded null curve in \mathbb{C}^3 .