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Abstract

The aim of this paper is to study the behavior of Hopf vector fields with respect
to the generalized energy functionals, on the 3-sphere when we consider the metrics
obtained by performing the canonical variation of the Hopf fibration. These metrics
are known as Berger’s metrics.

1 Introduction

A smooth vector field V on a Riemannian manifold (M, g) can be seen as a map into its
tangent bundle endowed with the Sasaki metric gS , defined by g. If g̃ is another metric on
M , we define the generalized energy Eg̃ as the energy of the map V : (M, g̃) → (TM, gS).
These energies were introduced in [4] to study the relationship between the volume and the
energy of vector fields. In particular, if we take either g̃ = g or g̃ = V ∗gS , the generalized
energy turns out to be, up to constant factors, the energy and the volume of the vector
field respectively.

On a compact M , the critical vector fields of all these functionals should be parallel,
so it is usual to restrict the functionals to the submanifold of unit vector fields. Obviously,
if M admits unit parallel vector fields, they are the absolute minimizers.

The geometrically simplest manifolds admitting unit vector fields but not parallel ones
are odd-dimensional round spheres. It is well known that Hopf fibration π : S2m+1 −→
CPm determines a foliation of S2m+1 by great circles and that a unit vector field can be
chosen as a generator of this distribution. It is given by V = JN where N represents the
unit normal to the sphere and J the usual complex structure on R

2m+2. V is the standard
Hopf vector field, but it is usual to call also Hopf vector field any vector field obtained as
the image of N by any complex structure.

Many authors have studied the value of the infimum and the regularity of minimizers
on the spheres, endowed with the usual metric (see for example [1], [10], [6] and [2]). In
particular, for dimension 3, Gluck and Ziller showed in [7] that Hopf vector fields on the
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round sphere are the absolute minimizers of the volume and the analogous result for the
energy was shown by Brito in [3]. For the study of these questions in another 3-dimensional
manifolds, see for example [8].

In all these works the metric considered on the sphere is the canonical one, but in [5],
Gil-Medrano and the author studied the behavior of the Hopf vector field with respect
to the volume and the energy when we consider on the sphere the canonical variation of
the Riemannian submersion given by the Hopf fibration. The metrics so constructed are
known as Berger’s metrics, they consist in a 1-parameter variation gµ for µ > 0. Moreover,
they also studied the subset of R

+ ×R
+ of pairs (µ, λ) such that V µ is stable as a critical

point of the generalized energy Egλ
on the spheres of dimension greater than three.

In this paper, following the methods developed in [2] and used in [5], we are going
to determine the behavior of the unit Hopf vector field V µ with respect the generalized
energy Egλ

on Berger’s 3-spheres. This paper is organized as follows:
We devote section 2 to recall the definitions and to state the results we will need in

the sequel.
In section 3, we study the values of λ and µ for which the Hopf vector field V µ is stable

as a critical point of Egλ
. We show, for example, that if µ ≤ 8/3, then V µ is stable if and

only if λ ≤ (µ−2)2

µ
, and that if 8/3 < µ ≤ 4 and λ ≤ (µ−3)2

µ−2 , V µ is a stable critical point.
Nevertheless, there exist values of the parameters λ and µ, for which the question is still
open.

To finish the paper, thanks to the special structure of the 3-sphere, we prove that if
µ < 1, then the Hopf vector field V µ is , up to sign, the only minimizer of the generalized
energy Egλ

for λ ≤ µ.

2 Definitions and known results

Given a Riemannian manifold (M, g), the Sasaki metric gS on the tangent bundle TM is
defined, using g and its Levi-Civita connection ∇, as follows:

gS(ζ1, ζ2) = g(π∗ ◦ ζ1, π∗ ◦ ζ2) + g(κ ◦ ζ1, κ ◦ ζ2),

where π : TM → M is the projection and κ is the connection map of ∇. We will con-
sider also its restriction to the tangent sphere bundle, obtaining the Riemannian manifold
(T 1M, gS).

As in [4], for each metric g̃ on M we can define the generalized energy of the vector
field V , denoted Eg̃(V ), as the energy of the map V : (M, g̃) → (TM, gS) that is given by

Eg̃(V ) =
1

2

∫

M

tr L(g̃,V ) dvg̃,

where L(g̃,V ) is the endomorphism determined by V ∗gS(X, Y ) = g̃(L(g̃,V )(X), Y ). This
energy can also be written as

Eg̃(V ) =
1

2

∫

M

√

det Pg̃ tr(P−1
g̃ ◦ LV ) dvg (1)
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where Pg̃ and LV are defined by g̃(X, Y ) = g(Pg̃(X), Y ) and V ∗gS(X, Y ) = g(LV (X), Y ),
respectively. By the definition of the Sasaki metric, LV = Id +(∇V )t ◦ ∇V .

In particular, for g̃ = g, Eg(V ) is the energy of the vector field V and for g̃ = V ∗gS ,
the generalized energy is proportional to the volume functional. In fact,

F (V ) =
2

n
EV ∗gS (V ).

The first variation of the generalized energy has been computed in [4]. It has been also
shown that on a compact M , a critical vector field of any of these generalized energies
should be parallel. This is one of the reasons why it is usual to restrict the functionals
to the submanifold of unit vector fields and so, critical points are those V which are
stationary for variations consisting on unit vector fields, or equivalently with variational
field orthogonal to V .

For now on, we are going to consider the restriction of these functionals to the sub-
manifold of unit vector fields.

Proposition 1. ([4]) Let (M, g) be a Riemannian manifold, a unit vector field V is a
critical point of Eg̃ if and only if

ω(V,g̃) (V ⊥) = {0},

where V ⊥ denotes the orthogonal with respect to the metric g of the 1-dimensional distri-
bution generated by V , ω(V,g̃) = C1

1∇K(V,g̃) and K(V,g̃) =
√

det Pg̃ P−1
g̃ ◦ (∇V )t.

Remark. For a (1, 1)-tensor field K, if {Ei} is a g-orthonormal local frame,

C1
1∇K(X) =

∑

i

g((∇Ei
K)X, Ei).

Theorem 2. ([6]) Let V be a critical point of Eg̃, the Hessian of Eg̃ at V acting on
A ∈ V ⊥ is given by

(HessEg̃)V (A) =

∫

M

‖A‖2ω(V,g̃) (V ) dvg +

∫

M

√

det Pg̃ tr
(

P−1
g̃ ◦ (∇A)t ◦ ∇A

)

dvg.

Hopf vector fields on the sphere are tangent to the fibres of the Hopf fibration π :
(S3, g) → (S2, g), where g is the usual metric of curvature 1 and g is the the usual metric
of curvature 4. This map is a Riemannian submersion with totally geodesic fibres whose
tangent space is generated by the unit vector field V = JN , where N is the unit normal
to the sphere and J is the usual complex structure of R

4; in other words, V (p) = ip.
The canonical variation of the submersion is the one-parameter family of metrics

(S3, gµ), µ > 0, defined by

gµ|V ⊥ = g|V ⊥ , gµ(V, V ) = µg(V, V ), gµ(V, V ⊥) = 0. (2)
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For all µ > 0, the map π : (S3, gµ) → (S2, g) is a Riemannian submersion with totally
geodesic fibres. (S3, gµ) is known as a Berger’s sphere and we will call V µ = 1√

µ
V the

Hopf vector field. It is a unit Killing vector field with geodesic flow.
We denote by ∇̄ the Levi-Civita connection on R

4. The Levi-Civita connection ∇ on
(S3, g) is ∇XY = ∇̄XY − < ∇̄XY, N > N and ∇̄XV = J∇̄XN = JX. Therefore ∇V V = 0
and if X ∈ V ⊥ then ∇XV = JX.

Using Koszul formula, one obtains the relation of ∇µ, the Levi-Civita connection of
the metric gµ, with ∇

∇µ
V X = ∇V X + (µ − 1)∇XV, ∇µ

XV = µ∇XV, ∇µ
XY = ∇XY, (3)

for all X, Y in V ⊥.
By straightforward computations it can be seen that the sectional curvature Kµ of

(S3, gµ) takes the value
Kµ(σ) = 1 + (1 − µ)g(X, JY )2,

if σ ⊂ V ⊥ and {X, Y } is an orthonormal basis and it takes the value Kµ(σ) = µ, if the
plane σ contains de vector V µ. Consequently, the Ricci tensor has the form

Ricµ(V µ, V µ) = 2µ, Ricµ(X, V µ) = 0,

(4)

Ricµ(X, Y ) = 2(2 − µ)g(X, Y ),

for all X, Y in V ⊥, and the scalar curvature is given by

Sµ = 2(4 − µ).

Proposition 3 ([5]). For all µ, λ > 0, the map V µ : (S2m+1, gλ) → (T 1(S2m+1), gS
µ ) is

harmonic.

As a consequence, the Hopf vector field V µ is a critical point of the generalized energy
Egλ

, for all λ > 0.

3 Stability of Hopf vector fields on S
3

To study the stability of Hopf vector fields it is useful to find several expressions of the
Hessian of Egλ

. These expressions have been obtained in [5] relating the integral of ‖∇µA‖2

with the integral of ‖π ◦ DCA‖2
V ⊥ and that of ‖D̄CA‖2

V ⊥ , where DC and D̄C are the
differential operators independent of µ defined as follows:

DC
XW = ∇̄JXW − J∇̄XW and D̄C

XW = ∇̄JXW + J∇̄XW.

Then, if V ⊥ is the distribution Span(x, Jx)⊥ on C
2 \ {0} and π : T (C2 \ {0}) → V ⊥

is the natural projections {x} × C
2 → V ⊥

x , we denote by ‖π ◦ DCW‖V ⊥ the norm of
π ◦ DCW|V ⊥ : V ⊥ → V ⊥ and analogously we denote by ‖D̄CW‖2

V ⊥ the norm of π ◦
D̄CW|V ⊥ = D̄CW|V ⊥ : V ⊥ → V ⊥.

As a particular case of the expressions developed in [5] we have
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Proposition 4. Let V µ be the unit vector field on (S3, gµ) and A a vector field orthogonal
to V µ, then

a)(HessEgλ
)V µ(A) =

√

λ/µ

∫

S3

(

− 2µ‖A‖2 + ‖∇µA‖2 + (µ/λ − 1)‖∇µ
V µA‖2

)

dvµ.

b) (HessEgλ
)V µ(A) =

√

λ/µ

∫

S3

(

(4 − 3µ − λ)‖A‖2 +
1

2
‖π ◦ DCA‖2

V ⊥

+µ/λ‖∇µ
V µA +

λ√
µ

JA‖2
)

dvµ.

c)(HessEgλ
)V µ(A) =

√

λ/µ

∫

S3

(

(−4 + µ − λ)‖A‖2 +
1

2
‖DC

A‖2
V ⊥

+µ/λ‖∇µ
V µA − λ√

µ
JA‖2

)

dvµ.

The instability results for the spheres of higher dimensions with respect the functionals
Egλ

, have been obtained by showing that the Hessian is negative when acting on the vector
fields Aa = a− 〈a, V 〉V − 〈a, N〉N = a− f̄aV − faN for all a ∈ R

2m+2, a 6= 0 (see [5]). As
a particular case we can state,

Lemma 5. Let V µ be the Hopf unit vector field on (S3, gµ), for each a ∈ R
4, a 6= 0 we

have:

(HessEgλ
)V µ(Aa) =

√
λ

2
|a|2

(

− µ + 2 +
(µ − 1)2

λ

)

vol(S3).

From here we obtain,

Proposition 6. On (S3, gµ), if 2−µ+ (µ−1)2

λ
< 0, or equivalently, if λ > (µ−1)2/(µ−2)

and µ > 2, then V µ is an unstable critical point of the generalized energy Egλ
.

But, in this case, thanks to the special structure of the 3-sphere, we can do better. In
fact, if i, j, k represent the imaginary unit quaternions and we take V = iN , E1 = jN
and E2 = kN , then {V µ, E1, E2} is an adapted gµ-orthonormal frame where each vector is
a Killing vector field on the round sphere. If we use Proposition 4 to compute the Hessian
on the directions Ei with i = 1, 2 we obtain,

Lemma 7.

(HessEgλ
)V µ(Ei) =

√
λ
(

− µ +
(µ − 2)2

λ

)

vol(S3),

where i = 1, 2.

Proof. We will use expression a) of Proposition 4. In [9] it has been shown that

∇E1
E1 = ∇E2

E2 = ∇V V = 0,

∇E1
V = −∇V E1 = E2, ∇E2

V = −∇V E2 = −E1, ∇E1
E2 = −∇E2

E1 = −V.
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Then, it is easy to see that

‖∇µEi‖2 =
(µ − 2)2

µ
+ µ and ‖∇µ

V µEi‖2 =
(µ − 2)2

µ
,

which completes the proof.

Consequently,

Proposition 8. On (S3, gµ), if λ > (µ−2)2/µ then the Hopf vector field V µ is an unstable
critical point of Egλ

.

Remark. Since (µ − 1)2µ > (µ − 2)3 for µ > 2, the above Proposition improves the
instability result of Proposition 6.

To solve the problem we would have to determine the behavior of Hopf vector fields
when λ and µ verify the inequality (µ−2)2/µ ≥ λ. In order to this, we are going to follow
the techniques developed in [2] and used in [5] for discussing these kind of questions in
higher dimensional spheres.

If we consider a vector field A on S3, orthogonal to the Hopf vector field, as a map
A : S3 −→ V ⊥ ⊂ C

2 where V ⊥ here represents the distribution V ⊥
x = Span{x, Jx}⊥, we

can write

Al(p) =
1

2π

∫ 2π

0
A(eiθp)e−ilθdθ ∈ V ⊥

p

so that
A(p) =

∑

l∈Z

Al(p)

is the Fourier series of A. Since Al(e
iθp) = eilθAl(p) then

∇V A = ∇̄V A =
∑

l∈Z

ilAl =
∑

l∈Z

lJAl

and

‖∇µ
V µAl + αJAl‖2 =

1

µ
(l − 1 + µ + α

√
µ)2 ‖Al‖2.

If C(p) denotes the fibre of the Hopf fibration π : S3 −→ S2 passing through p, and for
l 6= q,

∫

C(p)
< Al, Aq >= 0.

By the construction of Berger’s metrics, this fact is independent of µ and so, the following
Lemma, shown in [2] for the volume functional in the case µ = 1, remains valid

Lemma 9.

(HessEgλ
)V µ(A) =

∑

l∈Z

(HessEgλ
)V µ(Al).
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Now, we can prove the following

Theorem 10. On (S3, gµ) the Hopf unit vector field V µ is stable as a critical point of the
functionals Egλ

in the following cases:

a) If µ ≤ 8/3, for λ ≤ (µ−2)2

µ
,

b) If 8/3 < µ ≤ 4, for λ ≤ (µ−3)2

µ−2 ,

c) If µ > 4, for λ ≤ µ − 4.

Proof. The condition c) is a direct consequence of expression c) of Proposition 4. Moreover,
notice that,

(µ − 3)2

µ − 2
<

(µ − 2)2

µ
for µ > 8/3 (5)

and
(µ − 2)2

µ
≤ (µ − 3)2

µ − 2
for 2 < µ ≤ 8/3. (6)

For a) and b), thanks to Lemma 9, we only have to show that, under the hypothesis,
(HessEgλ

)V µ(Al) ≥ 0 for all l ∈ Z.
Using expression b) of Proposition 4 we have that

(HessEgλ
)V µ(Al) ≥

√

λ

µ
e1(λ, µ, l)

∫

S3

‖Al‖2dvµ,

where e1(λ, µ, l) = −3µ + 4 − λ + 1
λ
(l − 1 + µ + λ)2.

If we assume a) or b), then

e1(λ, µ, l) = −µ + 2 + 2l +
1

λ
(l − 1 + µ)2 ≥ 0

for all l ∈ Z
+

when µ ≤ 2. Now, if µ > 2 we have that e1(λ, µ, l) ≥ e1(λ, µ, 0) and that

e1(λ, µ, 0) = −µ + 2 +
(µ − 1)2

λ
≥ −µ +

(µ − 2)2

λ
≥ 0.

Consequently, (HessEgλ
)V µ(Al) ≥ 0 for all l ∈ Z

+

.
For the negative values of l, using expression c) of Proposition 4 we obtain that

(HessEgλ
)V µ(Al) ≥

√

λ

µ
e2(λ, µ, l)

∫

S3

‖Al‖2dvµ,

where

e2(λ, µ, l) = µ − 4 − λ +
1

λ
(l − 1 + µ − λ)2. (7)
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Since e2(λ, µ, l) ≥ −µ−2(l+1), then e2(λ, µ, l) ≥ 0 for all l ≤ −3 if µ ≤ 4. For l = −1,−2,
if we assume a) or b) then,

e2(λ, µ,−1) = −µ + (µ − 2)2/λ ≥ 0,

and
e2(λ, µ,−2) = −µ + 2 + (µ − 3)2/λ ≥ 0,

by (5) and (6) respectively.

The above Theorem, jointly with the corresponding instability result, solves completely
the problem when µ ≤ 8/3. For other values of µ there exist values of λ for which the
behavior of Hopf vector fields is still an open question (see Figure 1).

It is known that on the 3-dimensional round sphere Hopf vector fields are the absolute
minimizers of the energy (see [3]), but for Berger’s 3-sphere the situation is quite different,
as can be seen in [5]. It has been shown there, that Hopf vector fields are the only
minimizers of the energy if and only if µ ≤ 1.

Theorem 11. On (S3, gµ) with µ ≤ 1, the unit Hopf vector field is, up to sign, the only
minimizer of the generalized energy Egλ

for λ < µ.

Proof. Let X be a unit vector field on (S3, gµ), then

Egλ
(X) =

√
λ

2
(µ/λ + 2)vol(S3) +

√

λ/µ

2

∫

S3

(µ/λ‖∇µ
V µX‖2 + ‖∇µ

E1
X‖2 + ‖∇µ

E2
X‖2)dvµ.

Since µ > λ,

2√
λ

Egλ
(X) ≥ (

µ

λ
+ 2)vol(S3) +

1√
µ

∫

S3

(‖∇µ
V µX‖2 + ‖∇µ

E1
X‖2 + ‖∇µ

E2
X‖2)dvµ (8)

≥ (
µ

λ
+ 2)vol(S3) +

1√
µ

∫

S3

Ricµ(X, X)dvµ, (9)

as can be seen in [3].
Using 4 we have that if µ < 1, then

Ricµ(X, X) ≥ Ricµ(V µ, V µ) = 2µ

for all unit X, with equality if and only if X = ±V µ.
For µ = 1, g1 is the usual metric on the sphere, so Ric(X, X) = 2 for all unit X and

it is known (see [3]) that the equality in (9) holds if and only if X is a unit Killing vector
field. Moreover, the equality in (8) holds only if ‖∇V X‖2 = 0. In addition, it is easy to
see that these two conditions (i.e, X is a unit Killing vector field and ‖∇V X‖2 = 0) are
satisfied if and only if X = ±V .

Therefore, under the hypothesis of the Theorem

Egλ
(X) ≥

√
λ

2
(µ/λ + 2)vol(S3) + µ

√
λvol(S3),

and the equality holds only for the unit Hopf vector field.
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Remark. It is worthy to recall that if µ ≤ 1 the sphere with the metrics gµ is isometrically
immersed as a geodesic sphere in the complex projective space.

The results obtained in Theorems 10 and 11 can be represented graphically on R
+×R

+

as can be seen in Figure 1.
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Figure 1: The light gray region is the subset of R
+ × R

+ of pairs (µ, λ) such that V µ is
unstable as a critical point of Egλ

. The stability domain is painted in dark gray and the
darkest region corresponds to the values of (µ, λ) for which V µ is absolute minimizer of
Egλ

. The question is still open for the white region.
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