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Abstract

On a Lorentzian manifold, we define a new functional on the space of unit timelike
vector fields given by the L2 norm of the restriction of the covariant derivative of the
vector field to its orthogonal complement. This spacelike energy is related with the
energy of the vector field as a map on the tangent bundle endowed with the Kaluza-
Klein metric, but it is more adapted to the situation. We compute the first and
second variation of the functional and we exhibit several examples of critical points on
cosmological models as Generalized Robertson-Walker spaces and Gödel universe, on
Einstein and contact manifolds and on Lorentzian Berger’s spheres. For these critical
points we have also studied to what extend they are stable or even absolute minimizers.
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1 Introduction

A smooth vector field V on a semiriemannian manifold (M, g) can be seen as a map into
its tangent bundle endowed with the Kaluza-Klein metric defined by g. The energy of
the map V is given, up to constant factors, by

∫
M ‖∇V ‖2dvg. Unit vector fields that are

critical points for variations among unit vector fields, have been identified as those for
which ∇∗∇V is colineal to V , where ∇∗∇ is the rough Laplacian.

If g is positive definite, the energy vanishes only for parallel vector fields and it can
be seen as a measure of the failing of a vector field to be parallel. This kind of vector
fields, when they exist are the absolute minimizers. For many natural manifolds admitting
smooth unit vector fields but not parallel ones, the value of the infimum and the regularity
of minimizers is now an open problem. In the last years many authors have studied all
this questions, as can be seen in the references of [7] and [8].

If we consider a Lorentzian manifold and the energy of a unit timelike vector field, the
Euler-Lagrange equation involves, in that case, the rough D’Alembertian which is not an
elliptic operator. But more important, since the functional is not bounded bellow, to study
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minimizers has no sense. This has leaded us to define a new functional more adapted to
the situation, that will be called spacelike energy. For a reference frame Z, it is given (up
to constant factors) by the integral of the square norm of the restriction of ∇Z to Z⊥.

We have computed the Euler-Lagrange equation of this new variational problem sho-
wing that critical points are characterized as those reference frames for which D̃Z is
colineal to Z where D̃ is a differential operator, which is second order and elliptic on space
coordinates, and only first order on time coordinates. We will say that such a vector
field is spatially harmonic. We have also computed the second variation at critical points.
These are the contents of section 3.

Section 4 is devoted to the study of different examples of reference frames as static
reference frames and projective vector fields. In that case criticality can be described in
terms of the Ricci tensor and in particular:

a) Every affine reference frame on an Einstein manifold is spatially harmonic.

b) If the characteristic vector field of a Lorentzian K-contact manifold ( and in parti-
cular, of a Lorentzian Sasakian manifold ) is timelike then it is spatially harmonic.

In section 5 we have considered the well known Robertson-Walker cosmological model
and the comoving reference frame. We have shown that: In a GRW, the comoving reference
frame ∂t is a spatially harmonic reference frame. Furthermore, if the manifold is assumed
to be compact and satisfying the null convergence condition, the comoving reference frame
is an absolute minimizer of the spacelike energy. This result has been obtained as a
particular case of the corresponding result for the Lorentzian manifolds endowed with a
timelike vector field which is closed and conformal.

Section 6 is devoted to the study of the classical Gödel Universe, that is defined as R4

with the metric

〈 . , . 〉L = dx2
1 + dx2

2 −
1
2
e2αx1dy2 − 2eαx1dydt− dt2

where α is a positive constant. We show that ∂t is spatially harmonic and that it has
the same energy that another non critical reference frame; consequently, it can not be an
absolute minimizer. In fact, by computing the Hessian, we see that ∂t is unstable and it
is not even a local minimum.

To finish the paper we study the Hopf vector fields defined on the Lorentzian Berger’s
spheres. These metrics gµ, with µ < 0, on the sphere S2n+1 are obtained as the canonical
variation of the submersion defined by the Hopf fibration π : (S2n+1, g) −→ CPn where
g is the usual metric. As can be seen in [9] Hopf vector fields are critical for the energy
and consequently, since they are geodesic, they are also spatially harmonic; moreover their
energy and spacelike energy coincide. We have shown also in [9] that they are unstable
for the energy when n = 1 but the stability in higher dimensions is an open question.
Nevertheless, the second variation of both functionals at Hopf vector fields is different
and, in contrast with the usual energy, the problem for the spacelike energy is completely
solved because we show in section 7 that Hopf vector fields on Lorentzian Berger’s spheres
are stable critical points of the spacelike energy.
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2 Preliminaries

The energy density of a map ϕ : (M, g) → (N,h) from a semiriemannian manifold to
another is defined as e(ϕ) = 1

2tr(Lϕ), where Lϕ is the (1, 1) tensor field completely de-
termined by (ϕ∗h)(X, Y ) = g(Lϕ(X), Y ). If {Ei} is a g-orthonormal local frame and
εi = g(Ei, Ei) then

tr(Lϕ) =
n+1∑
i=1

εi(h ◦ ϕ)(ϕ∗(Ei), ϕ∗(Ei)).

The energy of ϕ is then defined by

E(ϕ) =
∫

M
e(ϕ)dvg,

where dvg represents the density on M , or the volume element for oriented M defined by
the metric.

It is well known that the Euler-Lagrange equations give rise to the definition of tension
of a map that is a vector field along the map whose vanishing defines harmonic maps. In
a g-orthonormal local frame as above, the tension is expressed in terms of the Levi-Civita
connections ∇g and ∇h as

τg(ϕ) =
n+1∑
i=1

εi

(
∇h

Ei
ϕ∗(Ei)− ϕ∗(∇g

Ei
Ei)

)
.

If we consider the tangent bundle π : TM → M and a semiriemannian metric g on M ,
we can construct a natural metric on TM as follows: at each point v ∈ TM , we consider
on the vertical subspace of Tv(TM) the inner product g ( up to the usual identification
with TpM , where p = π(v)), we take the horizontal subspace determined by the Levi-
Civita connection as a suplementary of the vertical and we declare them to be orthogonal;
finally, we define the inner product of horizontal vectors as the product of their projections,
with the metric g. The so constructed metric gS is sometimes referred as the Sasaki or
Kaluza-Klein metric.

Definition 2.1. For a vector field V we have (V ∗gS)(X, Y ) = g(X, Y ) + g(∇XV,∇Y V )
and consequently LV = Id + (∇V )t(∇V ). So, the energy of the map V : (M, g) →
(TM, gS), that is known as the energy of the vector field, is given by

E(V ) =
n + 1

2
+

1
2

∫
M
‖∇V ‖2dv.
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Moreover the tension is (see [7])

τg(V ) =
(∑

i

εiR((∇V )(Ei), V, Ei)
)hor

+
(∑

i

εi(∇Ei(∇V ))(Ei)
)ver

where for a vector field X we have represented by Xver its vertical lift and by Xhor its
horizontal lift and ∇∗∇V =

∑
i εi(∇Ei(∇V ))(Ei) is the rough Laplacian.

Critical points of the energy are those vector fields with vanishing rough Laplacian. If
the manifold is compact, and the metric is positive definite, this means that the vector
field should be parallel.

In a Riemannian manifold, the condition for a unit vector field to be a critical point for
variations among unit vector fields has been obtained by direct computation of the Euler-
Lagrange equation. The second variation at a critical point has also been computed.

The relevant part of the energy, B(V ) =
∫
M b(V )dv where b(V ) = 1

2‖∇V ‖2, when
considered as a functional on the manifold of unit vector fields, is sometimes called the
total bending of the vector field.

Proposition 2.2. ([14]) Given a unit vector field V on a compact Riemannian manifold
(M, g) then

1. V is a critical point of the total bending if and only if ∇∗∇V is colineal to V .

2. If V is a critical point and X is orthogonal to V then

(HessB)V (X) =
∫

M
(‖∇X‖2 − ‖∇V ‖2‖X‖2)dv.

The covariant version of proposition above, as it appears in [10] has been very useful for
the study of particular examples and also to compute the second variation by a different
method. Let ωV be the 1-form ωV (X) = g(X,∇∗∇V ) associated to ∇∗∇V by the metric.

Proposition 2.3. Given a unit vector field V on a Riemannian manifold (M, g) then

1. V is a critical point of the total bending if and only if ωV (X) = 0 for all vector field
X orthogonal to V .

2. If V is a critical point and X is orthogonal to V then

(HessB)V (X) =
∫

M
(‖∇X‖2 + ‖X‖2ωV (X))dv.

It is easy to see that the similar results also holds for a unit timelike vector field on
a Lorentzian manifold that is: Z is a critical point of the energy if and only if the rough
D’Alembertian,

∑
i εi(∇Ei(∇Z))(Ei), is colineal to Z.
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Let (M, g) be a Lorentzian manifold and let Z be a reference frame (unit timelike
vector field) on M , the spacelike energy density of Z will be defined as:

b̃(Z) =
1
2
‖AZ ◦ PZ‖2,

where AZ = −∇Z and PZ(X) = X+g(X, Z)Z. In the sequel we will denote A′
Z = AZ◦PZ ,

the restriction of −∇Z to Z⊥. The spacelike energy density can be also written as

b̃(Z) =
1
2
(tr(At

Z ◦AZ) + g(∇ZZ,∇ZZ)) =
1
2

n∑
i=1

g(∇EiZ,∇EiZ),

where {Ei, Z}n
i=1 is an adapted orthonormal local frame.

Definition 2.4. The spacelike energy of a reference frame Z is defined as

B̃(Z) =
∫

M
b̃(Z)dv.

For compact M , the spacelike energy is finite for every vector field. This energy is
always nonnegative and it vanishes if and only if A′

Z = 0, that is to say if and only if the
reference frame is rigid and irrotational. In particular, for static space-times the infimum
of spacelike energy is zero and it is attained.

In the positive definite case, the energy of unit vector fields is bounded on terms of
the Ricci tensor as follows:

Proposition 2.5. [5] Let V be a unit vector field on a compact manifold M of dimension
n + 1.

1. If n ≥ 2, then

B(V ) ≥ 1
2n− 2

∫
M

Ric(V, V )dv. (1)

2. If n ≥ 3, then the equality in (1) holds if and only if V is totally geodesic, the
n-dimensional distribution generated by V ⊥ is integrable and defines a Riemannian
totally umbilical foliation.

Following similar arguments we can show that

Proposition 2.6. Let Z be a reference frame on a compact Lorentzian manifold of di-
mension n + 1.

1. If n ≥ 2, then

B̃(Z) ≥ 1
2n− 2

∫
M

Ric(Z,Z)dv.

2. If n ≥ 3, then the equality above holds if and only if the n-dimensional distribution
generated by Z⊥ is integrable and defines a totally umbilical foliation.
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Proof. Let {Ei, Z}n
i=1 be an adapted orthonormal local frame and let us denote by hij =

g(∇EiZ,Ej), then b̃(Z) = 1
2

∑
i,j h2

ij that can be written as (see [5])

b̃(Z) =
1

2n− 2

∑
i<j

(hii − hjj)2 +
1

n− 1

∑
i<j

(hiihjj − hijhji)

+
1

2n− 2

∑
i<j

(hij + hji)2 +
n− 2
2n− 2

∑
i6=j

h2
ij ≥

1
n− 1

∑
i<j

(hiihjj − hijhji)

=
1

n− 1
σ2,

where σ2 is the second mean curvature of the distribution defined by Z⊥. Using that∫
M (Ric(Z,Z)− 2σ2)dv = 0 (see [12]) we have

B̃(Z) ≥ 1
2n− 2

∫
M

Ric(Z,Z)dv,

with equality if and only if hij = 0 for i 6= j and hii = hjj for all i, j.

Remark 2.7. On a Lorentzian manifold the inequality of proposition 2.5 does not hold
because ‖∇Z‖2 = −‖∇ZZ‖2 +

∑
i,j h2

ij and then ‖∇Z‖2 can not be bounded by
∑

i,j h2
ij .

3 First and second Variation

Let us compute the first and second variation of this new functional.

Proposition 3.1. Let Z be a reference frame on a Lorentzian manifold M. Then for all
vector field X orthogonal to Z,

(dB̃)Z(X) =
∫

M
(tr((∇Z)t ◦ ∇X) + g(∇XZ,∇ZZ) + g(∇ZX,∇ZZ))dv.

Proof. Let Z : I −→ Γ(T−1M) be a curve of unit timelike vector fields for some open
interval I containing 0 such that Z(0) = Z and Z ′(0) = X.

b̃ ◦ Z(t) =
1
2
(tr(At

Z(t) ◦AZ(t)) + g(∇Z(t)Z(t),∇Z(t)Z(t))).

Then

(̃b ◦ Z)′(t) = tr((∇Z(t))t ◦ ∇Z ′(t)) + g(∇Z′(t)Z(t) +∇Z(t)Z
′(t),∇Z(t)Z(t)). (2)

Therefore,

(̃b ◦ Z)′(0) = tr((∇Z)t ◦ ∇X) + g(∇XZ,∇ZZ) + g(∇ZX,∇ZZ)

from where the result follows.
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If {Ei, Z} is an adapted orthonormal local frame the differential of B̃ at Z can be
written as:

(dB̃)Z(X) =
∫

M
(
∑

i

g(∇EiX,∇EiZ) + g(∇XZ,∇ZZ))dv.

To write the differential of B̃, and therefore the condition of critical point, in a simpler
form we will use the following lemma:

Lemma 3.2. Given K a (1, 1)-tensor field and X a vector field, we have:

(C1
1∇K)(X) = −tr(K ◦ ∇X)− δα,

where C1
1 is the tensor contraction, δ represents the divergence operator of g and α(Y ) =

g(K(X), Y ).

Corollary 3.3. Let Z be a reference frame on a compact Lorentzian manifold, then for
all X orthogonal to Z we have

(dB̃)Z(X) =
∫

M
(−(C1

1∇K̃)(X) + g(∇XZ,∇ZZ))dv

=
∫

M
(−(C1

1∇K̃) + g(K̃(∇ZZ))(X)dv

=
∫

M
ω̃Z(X)dv,

where ω̃Z = −C1
1∇K̃ + g(K̃(∇ZZ)) and K̃ = (∇Z ◦ PZ)t.

As for the Riemannian case, we can conclude the following

Proposition 3.4. A reference frame Z on a compact Lorentzian manifold is a critical
point of the spacelike energy if and only if the 1-form ω̃Z annihilates Z⊥.

Since the condition of critical point that we have obtained is a tensorial condition, we
can define critical points even if the functional is not defined when M is not compact. In
this case we have

Proposition 3.5. A unit timelike vector field Z verifies ω̃Z(Z⊥) = 0 if and only if for
every open subset U with compact closure the functional B̃U defined by

B̃U (Z) =
∫

U
b̃(Z)dv,

verifies (dB̃U )Z(X) = 0 for all X ∈ Z⊥ with support in U .

Let us analize the relationship between the condition of critical point of the spacelike
energy and the usual one. As in the Riemannian case, if X̃Z is the vector field associated
by the metric to ω̃Z , we have that Z is a critical point of the spacelike energy if and only
if X̃Z is colineal to Z.
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It is easy to see that

X̃Z = −
n+1∑
i=1

εi(∇Ei(∇Z ◦ PZ))(Ei) + (∇Z ◦ PZ)t(∇ZZ),

that in an adapted orthonormal local frame can be written as

X̃Z = −
n∑

i=1

(∇Ei∇EiZ −∇∇Ei
EiZ)− div(Z)∇ZZ − ((∇Z)− (∇Z)t)(∇ZZ)

= −∇∗∇Z −∇Z∇ZZ − div(Z)∇ZZ + (∇Z)t(∇ZZ).

So, if Z is geodesic then Z is a critical point of B̃ if and only if Z is a critical point of
the usual energy. In contrast with the rough Laplacian, the differential operator D̃ given
by D̃Z = X̃Z is second order but elliptic on space coordinates.

We can now give the following

Definition 3.6. A reference frame on a Lorentzian manifold is said spatially harmonic if
and only if it is a critical point of the spacelike energy, or equivalent if D̃Z is colineal to
Z.

Let us compute the second variation of the spacelike energy.

Proposition 3.7. Given Z a spatially harmonic reference frame on a compact Lorentzian
manifold and X ∈ Z⊥, we have

(HessB̃)Z(X) =
∫

M
(‖∇X‖2 + 2g(∇XX,∇ZZ) + ‖∇XZ +∇ZX‖2)dv

+
∫

M
‖X‖2(‖∇ZZ‖2 − (C1

1∇K̃)(Z))dv.

Proof. Let Z : I −→ Γ(T−1M) be a curve as in proposition 3.1 such that Z(0) = Z,
Z ′(0) = X, using (2)

(̃b ◦ Z)′′(0) = tr((∇X)t ◦ ∇X + (∇Z)t ◦ ∇Z ′′(0)) + g(∇Z′′(0)Z +∇ZZ ′′(0),∇ZZ)
+ 2g(∇XX,∇ZZ) + g(∇XZ +∇ZX,∇XZ +∇ZX)
= ‖∇X‖2 + tr((∇Z ◦ PZ)t ◦ ∇Z ′′(0)) + 2g(∇XX,∇ZZ)
+ g(∇Z′′(0)Z,∇ZZ) + ‖∇XZ +∇ZX‖2.

Now, from lemma 3.2 we obtain after integration∫
M

(̃b ◦ Z)′′(0)dv =
∫

M
(‖∇X‖2 + 2g(∇XX,∇ZZ) + ‖∇XZ +∇ZX‖2)dv

+
∫

M
(g(∇Z′′(0)Z,∇ZZ)− (C1

1∇K̃)(Z ′′(0)))dv.
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Now, Z ′′(0) = PZ(Z ′′(0))+‖X‖2Z and since ω̃Z(Z ′′(0)) = g(∇PZ(Z′′(0))Z,∇ZZ)−C1
1∇K̃(Z ′′(0))

then the criticality of Z implies that

g(∇Z′′(0),∇ZZ)− C1
1∇K̃(Z ′′(0)) = ω̃Z(Z ′′(0)) + ‖X‖2‖∇ZZ‖2

= ‖X‖2(‖∇ZZ‖2 + ω̃Z(Z))
= ‖X‖2(‖∇ZZ‖2 − (C1

1∇K̃)(Z))

from where the result holds.

As for the first variation, when the manifold is not compact the stability can be defined
as follows

Definition 3.8. Let Z ∈ Γ(T−1M) be a critical point of the spacelike energy. We say
that Z is stable if for every open subset U with compact closure,

(HessB̃U )Z(X) ≥ 0

for all X ∈ Z⊥ with support in U , where B̃U is the restriction of the functional to the
open subset U .

4 Examples

As we mentioned in the preliminaries, the easiest examples of spatially harmonic reference
frames are those of null spacelike energy. In order to give a physical interpretation of this
condition, let us recall the decomposition of −A′

Z in its symmetric S and skew-symmetric
Ω parts, called the deformation and the rotation of the reference frame Z respectively.
Now, if we decompose S as S = σ + Θ

n PZ , where σ is trace-free, then −A′
Z can be written

as
−A′

Z = Ω + σ +
Θ
n

PZ .

In this case, Θ is called the expansion and σ the shear of the reference frame Z.
Using this decomposition the spacelike energy takes the form

B̃(Z) =
1
2

∫
M

(‖Ω‖2 + ‖σ‖2 +
1
n

Θ2)dv.

Consequently, B̃(Z) is zero if and only if S = 0 and Ω = 0, that is, if and only if Z is rigid
and irrotational. As a particular case of this type of reference frames we have the static
reference frames that are defined as follows:

Definition 4.1. A vector field Z is stationary if and only if there exists a positive function
f on M , such that fZ is a Killing vector field. A vector field Z is static if and only if it
is stationary and irrotational.
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The condition for a Killing vector field Z to be a critical point of the energy can be
written in terms of the Ricci tensor. It’s natural to study when a Killing reference frame
is spatially harmonic. Since, in contrast with the Riemannian case, a Lorentzian manifold
can admit affine unit vector fields that are not Killing, we are going to study how the
criticality condition can be expressed under the weaker hypothesis of Z being a projective
reference frame. The interest of these vector fields in general relativity can be seen in [12].

Definition 4.2. Let Z be a vector field on a Lorentzian manifold. We will say that Z is
projective if and only if there exists a 1−form µ on M such that

(LZ∇)(X, Y ) = µ(X)Y + µ(Y )X ∀X, Y ∈ Γ(TM).

If µ = 0, Z is called affine.

Proposition 4.3. If Z is projective, then we have

∇U∇V Z −∇∇UV Z = R(U,Z)V + µ(U)V + µ(V )U

for all U, V ∈ Γ(TM).

By developing the defining condition we get that 2µ(Z) = g(∇ZZ,∇ZZ) and µ(X) =
g(∇XZ,∇ZZ) for X ∈ Z⊥.

Let X be a vector field orthogonal to Z, it is easy to see that

(C1
1∇K̃)(X) = (C1

1∇(∇Z)t)(X) + g(X,∇Z∇ZZ) + div(Z)g(X,∇ZZ).

And if Z is projective then in a orthonormal adapted local frame we have

(C1
1∇K̃)(X) = g(X,∇∇ZZZ) +

∑
i

g(R(Ei, Z)Ei + 2µ(Ei)Ei, X) + div(Z)g(X,∇ZZ)

= g(X,∇∇ZZZ)− Ric(Z,X) + 2µ(X) + div(Z)g(X,∇ZZ),

and
ω̃Z(X) = −g(X,∇∇ZZZ) + Ric(Z,X)− µ(X)− div(Z)g(X,∇ZZ).

Therefore Z is spatially harmonic if and only if

−g(X,∇∇ZZZ) + Ric(Z,X)− µ(X)− div(Z)g(X,∇ZZ) = 0 ∀X ∈ Z⊥.

Now, if we assume Z to be affine, that is µ = 0, we can prove that ∇ZZ = 0 and then the
condition to be spatially harmonic (and then a critical point of the usual energy since Z
is geodesic) can be expressed as

Ric(X, Z) = 0 ∀X ∈ Z⊥.

Consequently we have:

Proposition 4.4. Let Z be a projective reference frame. Then
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a) Z is spatially harmonic if and only if

−g(X,∇∇ZZZ) + Ric(Z,X)− µ(X)− div(Z)g(X,∇ZZ) = 0 ∀X ∈ Z⊥.

b) If Z is affine then it is a critical point of the usual energy (and then spatially har-
monic) if and only if Ric(X, Z) = 0 ∀X ∈ Z⊥.

c) Let M be an Einstein manifold with Ric = λg, λ ≤ 0 and Z be an affine reference
frame. Then Z is a critical point of the usual energy. Moreover, since it is geodesic,
it is also spatially harmonic.

Remark 4.5. For Einstein manifolds, only negative values of λ are admissible since for
λ > 0 unit timelike projective vector fields don’t exist.

A particular case of a Lorentzian manifold admitting unit timelike affine (in fact
Killing) vector fields is that of a Sasakian manifold with Lorentzian metric (see [13],
[6]), that is defined as follows :

Definition 4.6. Given ϕ, ξ and η tensor fields of type (1, 1), (1, 0) and (0, 1), respectively,
(ϕ, ξ, η) is called and almost contact structure on M if the followings are satisfied :

1. η(ξ) = 1.

2. η(φ(X)) = 0, X ∈ Γ(TM).

3. φ2(X) = −X + η(X)ξ, X ∈ Γ(TM).

Definition 4.7. (φ, ξ, η, g, ε) is called an almost contact metric structure on M , if (φ, ξ, η)
is an almost contact structure on M and g is a semiriemannian metric on M such that

1. g(ξ, ξ) = ε ε = 1 or− 1.

2. η(X) = εg(ξ,X), X ∈ Γ(TM).

3. g(φX, φY ) = g(X, Y )− εη(X)η(Y ) X, Y ∈ Γ(TM).

Moreover, if dη(X, Y ) = g(φ(X), Y ) for all X, Y ∈ Γ(TM) then (φ, ξ, η, g, ε) is called a
contact metric structure.

Definition 4.8. A contact metric structure on M is said to be normal if

(∇Xφ)Y = εη(Y )X − g(X, Y )ξ, X, Y ∈ Γ(TM).

In this case we call M a Sasakian manifold.

It is easy to see that the characteristic field of a Sasakian manifold is a Killing vector
field. So it can be seen as a particular case of a K−contact manifold.

Definition 4.9. A contact metric structure on M is said to be a K−contact structure if
the characteristic field is Killing.
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In the Riemannian case it is known (see [3], pg. 92) that the Ricci tensor of a
K−contact manifold verifies that Ric(ξ,X) = 0 for all vector field orthogonal to ξ. It
is easy to see that the same proof also works in the Lorentzian case, and then

Corollary 4.10. If the characteristic field ξ of a Lorentzian K−contact manifold (and
then of a Sasakian manifold) is timelike then it is a critical point of the usual energy.
Furthermore, since it is geodesic, it is also spatially harmonic.

5 Generalized Robertson-Walker Space-times

Definition 5.1. A vector field X on a Lorentzian manifold is said to be closed and con-
formal if there exists a function φ ∈ C∞(M) such that

∇uX = φu for every u ∈ TM.

Let Mn+1 be a space-time endowed with a timelike vector field X that is closed and
conformal. To study the spacelike harmonicity of the vector field ν = X√

−|X|2
for such a

space-time we need the following:

Proposition 5.2. [11] Let Mn+1, n ≥ 1, be a Lorentzian manifold endowed with a timelike
vector field which is closed and conformal. Then, we have

a) The n-dimensional distribution tangent to X⊥ is integrable and the functions |X|2,
divX and X(φ) are constant on the leaves of the corresponding foliation.

b ) The unit timelike vector field defined by ν = X√
−|X|2

on Mn+1 satisfies

∇νν = 0, ∇Y ν =
φ√
−|X|2

Y if 〈Y, ν〉 = 0.

Proposition 5.3. The unit timelike vector field defined by ν = X√
−|X|2

is a critical point

of the usual energy. Moreover, since ν is geodesic it is also spatially harmonic.

Proof. Let us compute the rough Laplacian using an adapted orthonormal local frame
{Ei, ν}n

i=1

∇∗∇ν = −
n∑

i=1

(∇Ei∇Eiν −∇∇Ei
Eiν)

= − φ√
−|X|2

n∑
i=1

(∇EiEi − Pν(∇EiEi))

= − φ2

|X|2
nν.

12



If we now assume M to be compact and such that the Ricci curvature is nonnegative on
null directions, that is, if M satisfies the null convergence condition, then these observers
are not only critical points of the spacelike energy, we can show using proposition 2.6 that
in fact they are absolute minimizers of the functional.

Proposition 5.4. Let Mn+1 be a Lorentzian manifold equipped with a closed and confor-
mal timelike vector field X satisfying the null convergence condition, then the unit vector
field ν = X√

−|X|2
is an absolute minimizer of the spacelike energy.

Proof. Let Z be a reference frame on M , by proposition 2.6

B̃(Z) ≥ 1
2(n− 1)

∫
M

Ric(Z,Z)dv and B̃(ν) =
1

2(n− 1)

∫
M

Ric(ν, ν)dv.

To get the result we only need to use that, under the hypothesis on M , we have

Ric(Z,Z) ≥ Ric(ν, ν) for all Z such that |Z|2 = −1

as can be seen in [11].

Among the space-times admitting a closed and conformal timelike vector field, we find
one of the most important cosmological models: the Robertson-Walker space-times and
the so called generalized Robertson-Walker space-times [1]. In fact, it has been shown in
[11], that any such a space-time is locally isometric to a Lorentzian warped product with
a (negative definite) 1−dimensional factor.

Definition 5.5. A generalized Robertson-Walker (GRW) space-time is a warped product
B ×f F where (B, gB) = (I,−dt2) with I ⊆ R an open interval, (F, gF ) a Riemannian
manifold and f : I −→ (0,∞) a positive function. The reference frames defined by Z = ∂t

are called comoving reference frames.
If (F, gF ) is a model space (Sn−1(1), Rn−1, Hn−1(−1)), then the corresponding space-time
is called a Robertson-Walker space-time.

As a particular case of the result obtained above, we have the following

Proposition 5.6. Let M be a GRW space-time, then the comoving reference frame ∂t

is a spatially harmonic reference frame. Furthermore, if M is assumed to be compact
and satisfying the null convergence condition, the comoving reference frame is an absolute
minimizer of the spacelike energy.

6 Gödel Universe

Another interesting space-time in General Relativity is the classical Gödel Universe, which
is an exact solution of Einstein’s field equations in which the matter takes the form of a
rotating pressure-free perfect fluid. This model is R4 endowed with the metric,

〈 . , . 〉L = dx2
1 + dx2

2 −
1
2
e2αx1dy2 − 2eαx1dydt− dt2

13



where α is a positive constant.
If we compute the Christoffel symbols of this metric we obtain,

Lemma 6.1.

∇∂t∂t = 0, ∇∂y∂t =
α

2
eαx1∂x1 , ∇∂x1

∂t = α(∂t − e−αx1∂y),

∇∂x2
∂t = 0, ∇∂y∂y =

α

2
e2αx1∂x1 , ∇∂x1

∂y =
α

2
eαx1∂t,

∇∂x2
∂y = 0, ∇∂xi

∂xj = 0.

Let us denote by ∂ỹ =
√

2(e−αx1∂y − ∂t). The Levi-Civita connection in the orthonor-
mal frame {∂x1 , ∂x2 , ∂ỹ, ∂t} is given by

Lemma 6.2.

∇∂t∂ỹ =
√

2e−αx1∇∂t∂y =
α√
2
∂x1 = ∇∂ỹ

∂t,

∇∂y∂ỹ =
√

2e−αx1∇∂y∂y −
√

2∇∂y∂t = 0 = ∇∂ỹ
∂y,

∇∂x1
∂ỹ = −

√
2αe−αx1∂y +

α√
2
∂t −

√
2α(∂t − e−αx1∂y) = − α√

2
∂t,

∇∂ỹ
∂x1 =

α√
2
∂t + α∂ỹ,

∇∂ỹ
∂ỹ = −α∂x1 .

Proposition 6.3. In the Gödel universe we have

1. The reference frame ∂t is a critical point of the usual energy. Moreover, since ∂t is
geodesic it is also spatially harmonic.

2. The reference frame Z =
√

2e−αx1∂y is not spatially harmonic but B̃(Z) = B̃(∂t).

Proof. If we compute the rough Laplacian of ∂t

∇∗∇∂t = ∇∇∂ỹ
∂ỹ

∂t −∇∂ỹ
∇∂ỹ

∂t −∇∂x1
∇∂x1

∂t

= −α∇∂x1
∂t −

α√
2
∇∂ỹ

∂x1 +
α√
2
∇∂x1

∂ỹ

= −α2∂t,

that is colineal to ∂t.
Let us show that Z =

√
2e−αx1∂y does not satisfy the Euler-Lagrange equations.

Since

X̃Z = −
4∑

i=1

εi(∇Ei(∇Z ◦ PZ))(Ei) + (∇Z ◦ PZ)t(∇ZZ),
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and

(∇Z ◦ PZ)(∂t) = (∇Z)(∂t − 2e−αx1∂y)

=
α√
2
∂x1 −

√
2α∂x1 = − α√

2
∂x1 ,

(∇Z ◦ PZ)(∂ỹ) = (∇Z)(∂ỹ +
√

2e−αx1∂y) = α∂x1 ,

(∇Z ◦ PZ)(∂x1) = (∇Z)(∂x1) = −
√

2αe−αx1∂y +
α√
2
∂t,

(∇Z ◦ PZ)(∂x2) = 0

from where,

(∇Z ◦ PZ)t(∇ZZ) = (∇Z ◦ PZ)t(α∂x1) = −g(α∂x1 ,−
α√
2
∂x1)∂t + g(α∂x1 , α∂x1)∂ỹ

=
α2

√
2
∂t + α2∂ỹ,

we have that

X̃Z = ∇∂t(−
α√
2
∂x1)−∇∂ỹ

(α∂x1)−∇∂x1
(−
√

2αe−αx1∂y +
α√
2
∂t)

+(∇Z ◦ PZ)(∇∂ỹ
∂ỹ) +

α2

√
2
∂t + α2∂ỹ

= α2
√

2(e−αx1∂y − ∂t).

Therefore, Z is not a critical point of the spacelike energy. Nevertheless, Z and ∂t have
the same spacelike energy, since

2b̃(
√

2e−αx1∂y) = −‖∇∂t(
√

2e−αx1∂y)‖2 + ‖∇∂ỹ
(
√

2e−αx1∂y)‖2 + ‖∇∂x1
(
√

2e−αx1∂y)‖2

+‖∇∂x2
(
√

2e−αx1∂y)‖2 + ‖∇√
2e−αx1∂y

(
√

2e−αx1∂y)‖2

= −2e−2αx1‖∇∂t∂y‖2 + 2α2‖1
2
∂t − e−αx1∂y‖2 + 4e−4αx1‖∇∂t∂t‖2

= −α2

2
+

α2

2
+ α2,

and

2b̃(∂t) = ‖∇∂ỹ
∂t‖2 + ‖∇∂x1

∂t‖2 + ‖∇∂x2
∂t‖2

= α2.

Consequently, although ∂t is a critical point it can not be an absolute minimizer. In
fact, it is unstable as we can see by the following argument,
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Proposition 6.4. ∂t is unstable.

Proof. To prove the instability of ∂t, we have to show that there exists an open subset U
with compact closure and a vector field X orthogonal to ∂t with support in U , such that

(HessB̃U )∂t(X) < 0.

So, given δ ∈ R+
let U be the open ball centered at (2δ, 0, 0, 0) of radius 3δ and X = fδ∂x2 ,

where fδ = e−
α
2

x1hδ and hδ is the test function

hδ(r) =


1 r ≤ δ

e
δ

r−2δ (e
δ

δ−r + e
δ

r−2δ )−1 δ < r < 2δ
0 r ≥ 2δ,

with r being the distance to the point (2δ, 0, 0, 0).
Then, using proposition 3.7 and lemma 6.1

(HessB̃U )∂t(fδ∂x2) =
∫

B(2δ)−B(δ)
(‖∇(fδ∂x2)‖2 + ‖∇∂t(fδ∂x2)‖2 − f2

δ α2)dv

−
∫

B(δ)
(e−αx1α2 − α2

4
e−αx1)dv.

If we denote by h′δ the first derivative with respect to r =
√

(x1 − 2δ)2 + x2
2 + y2 + t2 then

∂t(fδ) = e−
α
2

x1h′δ(r)
t

r
,

∂y(fδ) = e−
α
2

x1h′δ(r)
y

r
,

∂x1(fδ) = e−
α
2

x1h′δ(r)
x1 − 2δ

r
− α

2
e−

α
2

x1hδ(r),

∂x2(fδ) = e−
α
2

x1h′δ(r)
x2

r
,

where

h′δ(r) =


0 r ≤ δ

−
e

δ
r−2δ e

δ
δ−r

(
δ

(δ−r)2
+ δ

(r−2δ)2

)(
e

δ
r−2δ +e

δ
δ−r

)2 δ < r < 2δ

0 r ≥ 2δ.

Since dv = eαx1√
2

dv0 then

√
2

∫
B(2δ)−B(δ)

(‖∇(fδ∂x2)‖2 + ‖∇∂t(fδ∂x2)‖2 − f2
δ α2)dv =∫

B(2δ)−B(δ)
eαx1((∂ỹ(fδ))2 + (∂x1(fδ))2 + (∂x2(fδ))2 − f2

δ α2)dv0 =∫
B(2δ)−B(δ)

(2(h′δ(r))
2(e−2αx1

y2

r2
+

t2

r2
− 2e−αx1

yt

r2
) +

α2

4
h2

δ(r) + (h′δ(r))
2 (x1 − 2δ)2

r2

−αhδ(r)h′δ(r)
x1 − 2δ

r
+ (h′δ(r))

2 x2
2

r2
− α2h2

δ(r))dv0.
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Using that |h′δ(r)| <
2
δ , x2

i r
−2 < 4 and e−kx1 < 1 for k > 0. Then

√
2

∫
B(2δ)−B(δ)

(‖∇(fδ∂x2)‖2 + ‖∇∂t(fδ∂x2)‖2 − f2
δ α2)dv ≤ (

116
δ2

+
4α

δ
)vol(B(2δ)−B(δ)).

And
√

2(HessB̃U )∂t(fδ∂x2) ≤ (
116
δ2

+
4α

δ
)(vol(B(2δ))− vol(B(δ)))− 3

4
α2vol(B(δ)),

where vol means the volume in the Euclidean metric.
Consequently, since the positive term is of order O(δ3) and the negative of order O(δ4)

then, to get the result we only have to choose δ big enough.

7 Hopf vector fields on Lorentzian Berger’s spheres

It is well known that Hopf fibration π : S2n+1 −→ CPn determines a foliation of S2n+1 by
great circles and that a unit vector field can be choosen as a generator of this distribution.
It is given by V = JN where N represents the unit normal to the sphere and J the usual
complex structure on R2n+2. V is the standard Hopf vector field. In S2n+1 we can consider
the canonical variation gµ, with µ 6= 0, of the usual metric g

gµ|V ⊥ = g|V ⊥ ,

gµ|V = µg|V ,

gµ(V, |V ⊥) = 0.

For n = 1 and µ > 0 these metrics on the sphere are known as Berger’s metrics (see [2]
pg. 252). For all µ 6= 0 the map π : (S2n+1, gµ) −→ CPn is a semiriemannian submersion
with totally geodesic fibers. The distribution determined by the fibers admits as a unit
generator V µ = 1√

|µ|
JN which is timelike for negative µ and we will call also Hopf vector

field. As can be seen in [9] Hopf vector fields are critical for the usual energy of unit
vector fields and consequently, since they are geodesic, they are also spatially harmonic
and B̃(V µ) = B(V µ). Nevertheless the second variation of both functionals at V µ is
different, in fact:

(HessB̃)V µ(A) =
∫

S2n+1

(‖∇µA‖2 + ‖∇µ
AV µ +∇µ

V µA‖2 − ‖A‖2(C1
1∇µK̃)(V µ))dvµ

=
∫

S2n+1

(‖∇µA‖2 + ‖∇µ
AV µ +∇µ

V µA‖2 − 2nµ‖A‖2)dvµ

=
∫

S2n+1

‖∇µ
AV µ +∇µ

V µA‖2dvµ + (HessB)V µ(A). (3)

Where ∇µ is the Levi-Civita connection of gµ that is related to ∇ by

∇µ
V X = ∇V X + (λ− 1)∇XV,

∇µ
XV = λ∇XV,

∇λ
XY = ∇XY X, Y ∈ V ⊥.
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We have shown in [9] that V µ is unstable for B when n = 1 but the stability in
higher dimensions is an open question. In contrast, the problem for the spacelike energy
is completely understood.

Proposition 7.1. Hopf vector fields on Lorentzian Berger’s spheres are stable critical
points of the spacelike energy.

Proof. Let A : S2n+1 → (JN)⊥ ⊂ Cn+1, we set :

Al(p) =
1
2π

∫ 2π

0
A(eiθp)e−ilθdθ ∈ (JN)⊥p

so that the Fourier serie of A is :

A(p) =
∑
l∈Z

Al(p).

Since Al(eiθp) = eilθAl(p), we have :

∇JNA = ∇̄JNA =
∑
l∈Z

ilAl

and, if C(p) denotes the fiber of the Hopf fibration passing through p, :∫
C(p)

< Al, Aq >= 0,

if l 6= q. As in [4] we can show that if l 6= q then

(HessB̃)V µ(A) =
∑
l∈Z

(HessB̃)V µ(Al).

Now,

‖∇µA‖2 = −‖∇µ
V µA‖2 + µ‖A‖2 +

2n∑
i,j=1

(g(∇µ
Ei

A,Ej))2,

then

(HessB̃)V µ(A) =
∫

S2n+1

(−2nµ‖A‖2 +
2n∑

i,j=1

(g(∇µ
Ei

A,Ej))2 + 2
µ√
−µ

gµ(∇µ
V µA, JA))dvµ.

Since gµ(∇µ
V µAl, JAl) = l+µ−1√

−µ
‖Al‖2, and 2(1−µ−l) ≥ 0 for l ∈ Z−

then (HessB̃)V µ(Al) ≥
0. Let us see now what happens for positive l. In [9], it has been shown that

(HessB)V µ(A) ≥
∫

S2n+1

((µ(1− 4n) + (2n + 2)− µn2)‖A‖2 − ‖∇µ
V µA− n

√
−µJA‖2)dvµ,
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from where we obtain using (3) that

(HessB̃)V µ(A) ≥
∫

S2n+1

((µ(1− 4n) + 2n + 2− µn2)‖A‖2 +

−‖∇µ
V µA− n

√
−µJA‖2 + ‖∇µ

V µA−
√
−µJA‖2)dvµ

=
∫

S2n+1

((µ(1− 4n) + 2n + 2− µn2)‖A‖2 +

+
1
µ
‖∇V A + (µ− 1 + nµ)JA‖2 − 1

µ
‖∇V A + (2µ− 1)JA‖2dvµ.

Consequently,

(HessB̃)V µ(Al) ≥
∫

S2n+1

(µ(1− 4n) + 2n + 2− µn2)‖Al‖2dvµ

+
∫

S2n+1

1
µ

((l + µ− 1 + nµ)2 − (l + 2µ− 1)2)‖Al‖2dvµ

=
∫

S2n+1

(µ(−2n− 2) + 2nl − 2l + 4)dvµ ≥ 0

for all positive l and so V µ is stable.
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