Fourier transform for nilpotent Lie groups
Granada
June 22 2013
Nilpotent Lie algebras and nilpotent Lie groups

Let g be a nilpotent Lie algebra over \mathbb{R}, i.e., the sequence of ideals $g_0 = g$, $g_j = [g, g_{j-1}]$ stops with $g_d = \{0\}$ for some $d > 0$. Let $G = \exp(g)$ be the corresponding simply connected connected (nilpotent) Lie group.

Jordan-Hölder basis of g: $Z = \{Z_1, \cdots, Z_n\}$, i.e., $g_j := \text{span}\{Z_j, \cdots, Z_n\}$ ideal of g, $j = 1, \cdots, n$.

The dual space of a nilpotent Lie group

Index sets and representations

An example

Variable groups

Fourier Transform

Un-sufficient data

Fourier inversion for sub-manifolds

Fourier inversion for sub-manifolds

Fourier inversion for sub-manifolds

Fourier inversion for sub-manifolds
Let \mathfrak{g} be a nilpotent Lie algebra over \mathbb{R}, i.e; the sequence of ideals

$$\mathfrak{g}_0 = \mathfrak{g}, \quad \mathfrak{g}^j = [\mathfrak{g}, \mathfrak{g}^{j-1}]$$

stops with $\mathfrak{g}^d = \{0\}$ for some $d > 0$.
Let \mathfrak{g} be a nilpotent Lie algebra over \mathbb{R}, i.e; the sequence of ideals

$$\mathfrak{g}_0 = \mathfrak{g}, \quad \mathfrak{g}^j = [\mathfrak{g}, \mathfrak{g}^{j-1}]$$

stops with $\mathfrak{g}^d = \{0\}$ for some $d > 0$. Let $G = \exp(\mathfrak{g})$ be the corresponding simply connected connected (nilpotent) Lie group.
Nilpotent Lie algebras and nilpotent Lie groups

Let \mathfrak{g} be a nilpotent Lie algebra over \mathbb{R}, i.e; the sequence of ideals

$$g_0 = g, \quad g^j = [g, g_{j-1}]$$

stops with $g^d = \{0\}$ for some $d > 0$.

Let $G = \exp(g)$ be the corresponding simply connected connected (nilpotent) Lie group.

Jordan-Hölder basis of \mathfrak{g}:

$$\mathcal{Z} = \{Z_1, \cdots, Z_n\}$$

i.e.

$$g_j := \text{span}\{Z_j, \cdots, Z_n\} \quad \text{ideal of } g, \quad j = 1, \cdots, n.$$
Let \mathfrak{h} be a subalgebra of \mathfrak{g}, let $H = \exp(\mathfrak{h})$.
Let \(\mathfrak{h} \) be a subalgebra of \(\mathfrak{g} \), let \(H = \exp(\mathfrak{h}) \).

A Malcev basis \(\mathcal{Y} = \{ Y_1, \cdots, Y_s \} \) of \(\mathfrak{g} \) modulo \(\mathfrak{h} \) is a basis of \(\mathfrak{g} \) modulo \(\mathfrak{h} \) such that

\[
\sum_{i=j}^{s} \mathbb{R} Y_i + \mathfrak{h}
\]

is a subalgebra for \(j = 1, \cdots, s \).
The dual space of a nilpotent Lie group

Index sets and representations

Index sets and representations

Index sets and representations

An example

Variable groups

Fourier Transform

Un-sufficient data

Fourier inversion for sub-manifolds

Fourier inversion for sub-manifolds

Fourier inversion for sub-manifolds

Fourier inversion for sub-manifolds

Let \mathfrak{h} be a subalgebra of \mathfrak{g}, let $H = \exp(\mathfrak{h})$.

A Malcev basis $\mathfrak{Z} = \{Y_1, \cdots, Y_s\}$ of \mathfrak{g} modulo \mathfrak{h} is a basis of \mathfrak{g} modulo \mathfrak{h} such that

$$\sum_{i=j}^{s} \mathbb{R} Y_i + \mathfrak{h}$$

is a subalgebra for $j = 1, \cdots, s$.

The mapping

$$E_{\mathfrak{Z}} : \mathbb{R}^s \times \mathfrak{h} \ni (t_1, \cdots, t_s, U) \mapsto \exp(t_1 Y_1) \cdots \exp(t_s Y_s) \cdot H$$

is a diffeomorphism.
The dual space of a nilpotent Lie group

Index sets and representations

An example

Variable groups

Fourier Transform

Un-sufficient data

Fourier inversion for sub-manifolds

Polarization at \(\ell \) is a subalgebra \(p \) of \(g \) of dimension \(\frac{1}{2}(\dim(g) + \dim(g(\ell))) \) such that

\[
\langle \ell, [p, p] \rangle = \{0\}.
\]
$\ell \in g^*$,

$g(\ell) := \{ U \in g, \langle \ell, [U, g] \rangle = \{0\} \}$,
\(\ell \in g^* , \)

\[
g(\ell) := \{ U \in g, \langle \ell, [U, g] \rangle = \{0\}\},
\]

\[
a(\ell) = \bigcap_{g \in G} g(\text{Ad}^*(g)\ell) = \text{largest ideal of } g \text{ contained in } g(\ell).
\]
\(\ell \in g^* \),
\[
g(\ell) := \{ U \in g, \langle \ell, [U, g] \rangle = \{0\} \},
\]
\[
a(\ell) = \bigcap_{g \in G} g(\text{Ad}^* (g) \ell) = \text{largest ideal of } g \text{ contained in } g(\ell).
\]
\[
\langle \text{Ad}^* (g) \ell, V \rangle := \langle \ell, \text{Ad} (g^{-1}) V \rangle, \ V \in g.
\]
\(\ell \in \mathfrak{g}^* \),

\[\mathfrak{g}(\ell) := \{ U \in \mathfrak{g}, \langle \ell, [U, g] \rangle = \{0\} \}, \]

\[a(\ell) = \bigcap_{g \in G} \mathfrak{g}(\operatorname{Ad}^*(g)\ell) = \text{largest ideal of } \mathfrak{g} \text{ contained in } \mathfrak{g}(\ell). \]

\[\langle \operatorname{Ad}^*(g)\ell, V \rangle := \langle \ell, \operatorname{Ad}(g^{-1})V \rangle, \ V \in \mathfrak{g}. \]

A \textit{polarization} at \(\ell \) is a subalgebra \(\mathfrak{p} \) of \(\mathfrak{g} \) of dimension

\[\frac{1}{2}(\dim(\mathfrak{g}) + \dim(\mathfrak{g}(\ell))) \] such that
\[\ell \in g^*, \]
\[g(\ell) := \{ U \in g, \langle \ell, [U, g] \rangle = \{0\}\}, \]
\[a(\ell) = \bigcap_{g \in G} g(\text{Ad}^*(g)\ell) = \]
\[\text{largest ideal of } g \text{ contained in } g(\ell). \]

\[\langle \text{Ad}^*(g)\ell, V \rangle := \langle \ell, \text{Ad}(g^{-1})V \rangle, \quad V \in g. \]

A \textit{polarization} at \(\ell \) is a subalgebra \(p \) of \(g \) of dimension \(\frac{1}{2}(\text{dim}(g) + \text{dim}(g(\ell))) \) such that
\[\langle \ell, [p, p] \rangle = \{0\}. \]
Vergne polarisation

Let \(\ell \in g^* \). Let \(\mathcal{Z} = \{Z_1, \cdots, Z_n\} \) be a Jordan-Hölder basis of \(g \):

Vergne polarization at \(\ell \):

\[
p^{\mathcal{Z}}(\ell) := \sum_{j=1}^{n} g_j(\ell|_{g_j})
\]
Monomial representation:

Let $H = \exp(h) \subset G$ be a closed connected subgroup.
Monomial representation:

Let $H = \exp(h) \subset G$ be a closed connected subgroup. G/H admits a G-invariant Borel measure dx.
Monomial representation:

Let $H = \exp(\mathfrak{h}) \subset G$ be a closed connected subgroup. G/H admits a G-invariant Borel measure dx. Let $\ell \in \mathfrak{g}^*$ with $\langle \ell, [\mathfrak{h}, \mathfrak{h}] \rangle = \{0\}$.

Monomial representation:

Let $H = \exp(\mathfrak{h}) \subset G$ be a closed connected subgroup. G/H admits a G-invariant Borel measure dx. Let $\ell \in \mathfrak{g}^*$ with $\langle \ell, [\mathfrak{h}, \mathfrak{h}] \rangle = \{0\}$.

$$\chi_\ell(h) := e^{-2i\pi \langle \ell, \log(h) \rangle}, \quad h \in H.$$
Monomial representation:

Let $H = \exp(\mathfrak{h}) \subset G$ be a closed connected subgroup. G/H admits a G-invariant Borel measure dx. Let $\ell \in \mathfrak{g}^*$ with $\langle \ell, [\mathfrak{h}, \mathfrak{h}] \rangle = \{0\}$.

$$\chi_\ell(h) := e^{-2i\pi \langle \ell, \log(h) \rangle}, \ h \in H.$$
Definition

\[\mathcal{H}_{\ell, h} = L^2(G/H, \chi_\ell) = \{ \xi : G \to \mathbb{C}, \text{measurable} \} \]
Definition

\[\mathcal{H}_{\ell,h} = L^2(G/H, \chi_\ell) = \{ \xi: G \to \mathbb{C} \text{ measurable} , \]
\[\xi(gh) = \chi_\ell(h^{-1})\xi(g) , g \in G , h \in H \}
\[\int_{G/H} |\xi(g)|^2 \, dg < \infty. \]
Definition

\[\mathcal{H}_{\ell,h} = L^2(G/H, \chi_{\ell}) \]

\[= \{ \xi : G \to \mathbb{C}, \text{ measurable}, \]

\[\xi(gh) = \chi_{\ell}(h^{-1})\xi(g), g \in G, h \in H \} \]

\[\int_{G/H} |\xi(g)|^2 dg < \infty. \]

Let

\[\sigma_{\ell,h}(g) \xi(s) := \xi(g^{-1}s), g, s \in G, \xi \in L^2(G/H, \chi_{\ell}). \]
Definition

\[\mathcal{H}_{\ell, h} = L^2(G/H, \chi_\ell) \]
\[= \{ \xi: G \to \mathbb{C}, \text{ measurable} \, , \]
\[\xi(gh) = \chi_\ell(h^{-1})\xi(g), g \in G, h \in H \} \]
\[\int_{G/H} |\xi(g)|^2 \, dg < \infty. \]

Let

\[\sigma_{\ell, h}(g)\xi(s) := \xi(g^{-1}s), g, s \in G, \xi \in L^2(G/H, \chi_\ell). \]
Proposition

For $F \in L^1(G)$:

$$\sigma_{\ell, \hbar}(F)\xi(s) = \int_{G/H} F_{\ell, \hbar}(s, t)\xi(t)dt,$$

where $F_{\ell, \hbar}(s, t) = \int_H F(sht^{-1})\chi_\ell(h)dh$.
Theorem

Let $\ell \in g^*$ and let p be a polarization at ℓ. Then $\sigma_{\ell, p}$ is irreducible.
Orbit picture

Theorem

- Let $\ell \in g^*$ and let p be a polarization at ℓ. Then $\sigma_{\ell, p}$ is irreducible.

- Let $\ell_i \in g^*$ and let $p_i, i = 1, 2$ be a polarization at $\ell_i, i = 1, 2$. Then

 $$\sigma_{\ell_1, p_1} \simeq \sigma_{\ell_2, p_2} \iff \text{Ad}^* (G) \ell_2 = \text{Ad}^* (G) \ell_1.$$

 Write:

 $$[\pi_{\ell}] := [\sigma_{\pi, p}]$$
The dual space of a nilpotent Lie group

Index sets and representations

An example

Variable groups

Fourier Transform

Un-sufficient data

Fourier inversion for sub-manifolds

Orbit picture

Theorem

- Let $\ell \in g^*$ and let p be a polarization at ℓ. Then $\sigma_{\ell,p}$ is irreducible.

- Let $\ell_i \in g^*$ and let $p_i, i = 1, 2$ be a polarization at $\ell_i, i = 1, 2$. Then

\[\sigma_{\ell_1,p_1} \simeq \sigma_{\ell_2,p_2} \iff \text{Ad}^*(G)\ell_2 = \text{Ad}^*(G)\ell_1. \]

Write:

\[[\pi_\ell] := [\sigma_{\pi,p}] \]

- Let $(\pi, H_{\pi}) \in \hat{G} \Rightarrow \exists \ell \in g^*$ such that

\[[\pi] = [\pi_\ell] \]
A homeomorphism

Theorem

The mapping $\mathcal{K}: g^* / G \to \hat{G}$ defined by

$$\mathcal{K}(\operatorname{Ad}^*(G)\ell) := [\pi_\ell]$$

is a homeomorphism
A partition of the orbit space

Index sets:
A partition of the orbit space

Index sets: Let $\mathcal{Z} = \{Z_1, \ldots, Z_n\}$ be a Jordan-Hölder basis of g and let $\ell \in g^*$.
A partition of the orbit space

Index sets: Let \(\mathcal{Z} = \{Z_1, \ldots, Z_n\} \) be a Jordan-Hölder basis of \(g \) and let \(\ell \in g^* \). The index set \(I(\ell) = I^\mathcal{Z}(\ell) \) of \(\ell \in g^* \) is defined by:
A partition of the orbit space

Index sets: Let $\mathcal{Z} = \{Z_1, \cdots, Z_n\}$ be a Jordan-Hölder basis of \mathfrak{g} and let $\ell \in \mathfrak{g}^*$. The index set $I(\ell) = I^\mathcal{Z}(\ell)$ of $\ell \in \mathfrak{g}^*$ is defined by:

$I(\ell) = \emptyset$ if ℓ is a character.
Index sets: Let $\mathcal{Z} = \{Z_1, \cdots, Z_n\}$ be a Jordan-Hölder basis of \mathfrak{g} and let $\ell \in \mathfrak{g}^*$. The index set $I(\ell) = I^\mathcal{Z}(\ell)$ of $\ell \in \mathfrak{g}^*$ is defined by:

$I(\ell) = \emptyset$ if ℓ is a character. Otherwise, let

$$j_1 = j_1(\ell) = \max\{j \in \{1, \ldots, n\} \mid Z_j \notin \mathfrak{a}(\ell)\}$$

$$k_1 = k_1(\ell) = \max\{k \in \{1, \ldots, n\} \mid \langle l, [Z_{j_1(\ell)}, Z_k] \rangle \neq 0\}.$$
We let

\[\nu_1(\ell) : = \langle \ell, [Z_{k_1}, Z_{j_1}] \rangle \]

\[S_1 = S_1(\ell) : = \frac{1}{\nu_1(\ell)} [Z_{k_1}, Z_{j_1}] \]

\[Y_1 = Y_1(\ell) : = Z_{j_1} - \frac{\langle \ell, Y_1 \rangle}{\nu_1(\ell)} S_1 \]

\[X_1 = X_1(\ell) : = Z_{k_1} - \frac{\langle \ell, Z_{k_1} \rangle}{\nu_1(\ell)} S_1. \]
We let

\[\nu_1(\ell) : = \langle \ell, [Z_{k_1}, Z_{j_1}] \rangle \]

\[S_1 = S_1(\ell) : = \frac{1}{\nu_1(\ell)}[Z_{k_1}, Z_{j_1}], \]

\[Y_1 = Y_1(\ell) : = Z_{j_1} - \frac{\langle \ell, Y_1 \rangle}{\nu_1(\ell)} S_1 \]

\[X_1 = X_1(\ell) : = Z_{k_1} - \frac{\langle \ell, Z_{k_1} \rangle}{\nu_1(\ell)} S_1. \]

Then we have that:

\[\langle \ell, X_1 \rangle = \langle \ell, Y_1 \rangle = 0, \]

\[\langle \ell, [X_1, Y_1] \rangle = 1. \] (0.1)

We consider

\[g^1(\ell) := \{ U \in \mathfrak{g} \mid \langle \ell, [U, Y_1(\ell)] \rangle \geq 0 \} \] (0.2)

which is an ideal of codimension one in \(\mathfrak{g} \).
A Jordan-Hölder basis of \((g^1(\ell), [\cdot, \cdot])\) is given by
\[
\{ Z_i^1(\ell) \mid i \neq k_1(\ell) \}
\] defined by
\[
Z_i^1(\ell) = Z_i - \frac{< l, [Z_i, Y_1(\ell)] >}{\nu_1(\ell)} X_1(\ell), i \neq k_1(\ell). \tag{0.3}
\]
A Jordan-Hölder basis of \((g^1(\ell), [\cdot, \cdot])\) is given by
\[\{ Z^1_i(\ell) \mid i \neq k_1(\ell) \} \] defined by

\[Z^1_i(\ell) = Z_i - \frac{\langle l, [Z_i, Y_1(\ell)] \rangle}{\nu_1(\ell)} X_1(\ell), \quad i \neq k_1(\ell). \quad (0.3) \]

As previously we may now compute the indices
\(j_2(\ell), k_2(\ell) \) of \(l_1 := l|_{g^1(\ell)} \) with respect to this new basis and construct the corresponding subalgebra \(g^2(\ell) \) with its associated basis \(\{ Z^2_i(\ell) \mid i \neq k_1(\ell), k_2(\ell) \} \).
A Jordan-Hölder basis of \((g^1(\ell), [\cdot, \cdot])\) is given by
\[\{Z_i^1(\ell) \mid i \neq k_1(\ell)\}\] defined by
\[Z_i^1(\ell) = Z_i - \frac{< l, [Z_i, Y_1(\ell)] >}{\nu_1(\ell)} X_1(\ell), \ i \neq k_1(\ell). \quad (0.3)\]

As previously we may now compute the indices
\(j_2(\ell), k_2(\ell)\) of \(l_1 := l|_{g^1(\ell)}\) with respect to this new basis
and construct the corresponding subalgebra \(g^2(\ell)\) with its
associated basis \(\{Z_i^2(\ell) \mid i \neq k_1(\ell), k_2(\ell)\}\).
This procedure stops after a finite number \(r_\ell = r\) of steps. Let
\[l_Z(\ell) = l(\ell) = ((j_1(\ell), k_1(\ell)), \ldots, (j_r(\ell), k_r(\ell)))\]
is called the index of \(\ell\) in \(g\) with respect to the basis
\(Z = \{Z_1, \ldots Z_n\}\).
It is known that the last subalgebra $g_r(\ell)$ obtained by this construction coincides with the Vergne polarization of ℓ in g with respect to the basis \mathcal{Z}.
It is known that the last subalgebra $\mathfrak{g}_r(\ell)$ obtained by this construction coincides with the Vergne polarization of ℓ in \mathfrak{g} with respect to the basis \mathcal{Z}. The length $|I| = 2r$ of the index set $I(\ell)$ gives us the dimension of the coadjoint orbit $\text{Ad}^*(G)\ell$.
Partition of g^*/G

For an index set $I \in \mathbb{N}^{2j}, j = 0, \ldots, \dim(g/2)$:

$$g_i^* := \{ \ell \in g^*, I(\ell) = I, \langle \ell, X_i(\ell) \rangle = 0, \langle \ell, Y_i(\ell) \rangle = 0, i = 1, \ldots, r \}. $$

Let

$$\mathcal{I} := \left\{ I \in \bigcup_{j=0}^{\dim(g/2)} \mathbb{N}^j, g_i^* \neq \emptyset \right\}. $$
Partition of g^*/G

For an index set $I \in \mathbb{N}^{2j}, j = 0, \cdots, \dim(g/2)$:

$g_i^* := \{\ell \in g^*, I(\ell) = I, \langle I, X_i(\ell) \rangle = 0, \langle I, Y_i(\ell) \rangle = 0, i = 1, \cdots, r\}.$

Let

$$\mathcal{I} := \{I \in \bigcup_{j=0}^{\dim(g/2)} \mathbb{N}^j, g_i^* \neq \emptyset\}.$$

Then:

$$g^*/G \simeq g_{\mathcal{I}}^* := \bigcup_{I \in \mathcal{I}} g_i^*$$
Properties of the \mathfrak{g}_i^*:

There exists an index $I^{gen} \in \mathcal{I}$ such that

$$\mathfrak{g}^{gen} := \{ \ell \in \mathfrak{g}^*, I(\ell) = I^{gen} \}$$

is G-invariant and Zariski open in \mathfrak{g}^*.
Properties of the \mathfrak{g}^*_I:

There exists an index $I^{\text{gen}} \in \mathcal{I}$ such that

$$
\mathfrak{g}^{\text{gen}} := \{ \ell \in \mathfrak{g}^*, I(\ell) = I^{\text{gen}} \}
$$

is G-invariant and Zariski open in \mathfrak{g}^*. There exists an order on \mathcal{I} such that

- I^{gen} is maximal for this order,
- such that

$$
\mathfrak{g}^*_I := \bigcup_{I' \leq I} \mathfrak{g}^*_{I'}
$$

is Zariski closed in \mathfrak{g}^*.
Realization on $L^2(\mathbb{R}^r)$

Proposition

For every $l \in \mathcal{I}$ the mappings

$$g^*_j \ni l \mapsto X_j(l), \ l \mapsto Y_j(l), \ l \mapsto p^Z(l)$$

are smooth.
Realization on $L^2(\mathbb{R}^r)$

Proposition

- For every $I \in \mathcal{I}$ the mappings
 $$g^*_j \ni \ell \mapsto X_j(\ell), \ell \mapsto Y_j(\ell), \ell \mapsto \mathfrak{p}^Z(\ell)$$
 are smooth.

- The family of vectors $\mathfrak{M}(\ell) = \{X_j(\ell), j = 1, \cdots, r\}$ form a Malcev-basis of \mathfrak{g} modulo $\mathfrak{p}^Z(\ell)$, the vectors $\{Y_j(\ell), j = 1, \cdots, r\}$ form a Malcev basis of $\mathfrak{p}^Z(\ell)$ modulo $\mathfrak{g}(\ell)$.

Realization on $L^2(\mathbb{R}^r)$

Proposition

- For every $I \in \mathcal{I}$ the mappings
 $$\mathfrak{g}_I^* \ni \ell \mapsto X_j(\ell), \ell \mapsto Y_j(\ell), \ell \mapsto p^Z(\ell)$$

 are smooth.

- The family of vectors $\mathfrak{X}(\ell) = \{X_j(\ell), j = 1, \cdots, r\}$ form a Malcev-basis of \mathfrak{g} modulo $p^Z(\ell)$, the vectors $\{Y_j(\ell), j = 1, \cdots, r\}$ form a Malcev basis of $p^Z(\ell)$ modulo $\mathfrak{g}(\ell)$.

- We identify the Hilbert space $L^2(G/P^Z(\ell), \chi_\ell)$ with $L^2(\mathbb{R}^{r_\ell})$ using the unitary operator:
 $$U_\ell(\eta) = \eta \circ E^Z_\ell \in L^2(\mathbb{R}^{r_\ell}), \eta \in L^2(G/P^Z(\ell), \chi_\ell).$$
An example

Let $g = \text{span} \{ A, B, C, D, U, V \}$.

($s \in R^*$).
Let $\ell \in g^*$

$$\mu = \langle \ell, U \rangle, \langle \ell, V \rangle = \nu.$$

$\triangleright \nu \neq 0 \Rightarrow$

$$g^1(\ell) = \text{span}\{A, B - \frac{s\mu}{\nu} C, D, U, V\},$$

$$j_1(\ell) = 4, k_1(\ell) = 3$$
Let $\ell \in g^*$

$$
\mu = \langle \ell, U \rangle, \langle \ell, V \rangle = \nu.
$$

$\nu \neq 0 \Rightarrow$

$$
g^1(\ell) = \text{span}\{A, B - \frac{s\mu}{\nu} C, D, U, V\},
$$

$j_1(\ell) = 4$, $k_1(\ell) = 3$

$$
Z_1^1 = A, Z_2^1 = B - \frac{s\mu}{\nu} C,
$$

$$
Z_4^1 = D, Z_5^1 = U, Z_6^1 = V.
$$
\([Z_1^1, Z_2^1]_{s,\mu,\nu} = Z_5^1 - \frac{s\mu}{\nu} Z_6^1\),

\([Z_2^1, Z_4^1]_{s,\mu,\nu} = sZ_5^1 - \frac{s\mu}{\nu} Z_6^1\).

\(j_2(\ell) = 2, k_2(\ell) = 1, \text{ if } s \neq 1\).
If \(\nu = 0, \mu \neq 0 \Rightarrow g^1(\ell) = \text{span}\{A, C, D, U, V\}\)
If $\nu = 0$, $\mu \neq 0 \Rightarrow g^1(\ell) = \text{span}\{A, C, D, U, V\}$ and $j_1(\ell) = 4$, $k_1(\ell) = 2$.
Variable groups.

Definition

A variable locally compact group is a pair

$$(B, G)$$

where B and G are locally compact topological spaces, such that for every $\beta \in B$ there exists a group multiplication \cdot_{β} on G, which turns (G, \cdot_{β}) into a topological group, such that
Variable groups.

Definition
A variable locally compact group is a pair

$$(B, G)$$

where B and G are locally compact topological spaces, such that for every $\beta \in B$ there exists a group multiplication \cdot_β on G, which turns (G, \cdot_β) into a topological group, such that

$$B \times (G \times G) \mapsto G, (\beta, (s, t)) \mapsto s \cdot_\beta t$$

is continuous.
Definition

A variable nilpotent Lie algebra is a triple

\[(g, \mathcal{Z}, \mathcal{B})\]

of a real finite dimensional vector space \(g\), of a basis \(\mathcal{Z} = \{Z_1, \cdots, Z_n\}\) of \(g\) and a smooth manifold \(\mathcal{B}\), such that

- for every \(\beta \in \mathcal{B}\) there is a Lie algebra product \([., .]_\beta\) on \(g\),
- \([Z_i, Z_j]_\beta = \sum_{k=j+1}^n c_{k}^{ij}(\beta)Z_k, 1 \leq i < j \leq n\)
- and such that the functions \(\beta \rightarrow c_{k}^{ij}(\beta)\) are all smooth.
Definition

\[l^\infty(\hat{G}) := \{ (\varphi(\ell) \in \mathcal{K}(\mathcal{H}_\ell)_{\ell \in g_I^*}, \| \varphi \|_\infty := \sup_{\ell \in g_I^*} \| \varphi(\ell) \|_{op} < \infty \} , \]

The dual space of a nilpotent Lie group
Index sets and representations
An example
Variable groups

Fourier Transform
Fourier inversion for sub-manifolds
Fourier inversion for sub-manifolds
Fourier inversion for sub-manifolds
Fourier transform

Definition

\[\mathcal{L}^\infty(\hat{G}) := \{ (\varphi(\ell) \in \mathcal{K}(\mathcal{H}_\ell)_{\ell \in \mathfrak{g}_I^*}, \| \varphi \|_\infty := \sup_{\ell \in \mathfrak{g}_I^*} \| \varphi(\ell) \|_{op} < \infty \}, \]

Write for \(\ell \in \mathfrak{g}_I^* \), \((\pi_\ell, \mathcal{H}_\ell) = (\sigma_\ell, p^\mathcal{Z}(\ell), L^2(\mathbb{R}^{r_\ell})).\)
The dual space of a nilpotent Lie group

Index sets and representations

Definition

\[l^\infty(\hat{G}) := \{ (\varphi(\ell) \in \mathcal{K}(\mathcal{H}_\ell)_{\ell \in g^*_I}, \| \varphi \|_\infty := \sup_{\ell \in g^*_I} \| \varphi(\ell) \|_{op} < \infty \}, \]

Write for \(\ell \in g^*_I \), \((\pi_\ell, \mathcal{H}_\ell) = (\sigma_\ell, p^Z(\ell), L^2(\mathbb{R}^{r_\ell})). \)

For \(F \in L^1(G) \), let

\[\mathcal{F}(F)(\ell) = \hat{F}(\ell) := \pi_\ell(F), \ \ell \in g^*_I. \]
Fourier transform

Definition

\[l^\infty(\hat{G}) := \{(\varphi(\ell) \in K(\mathcal{H}_\ell)_{\ell \in \mathfrak{g}^*_I}, \|\varphi\|_\infty := \sup_{\ell \in \mathfrak{g}^*_I} \|\varphi(\ell)\|_{op} < \infty\}. \]

Write for \(\ell \in \mathfrak{g}^*_I \), \((\pi_\ell, \mathcal{H}_\ell) = (\sigma_\ell, p^Z(\ell), L^2(\mathbb{R}^{r_\ell})\).

For \(F \in L^1(G) \), let

\[\mathcal{F}(F)(\ell) = \hat{F}(\ell) := \pi_\ell(F), \ \ell \in \mathfrak{g}^*_I. \]

For \(u \in \mathcal{U}(g) \) let

\[\hat{u}(\ell) = d\pi_\ell(u) \in \mathcal{P}\mathcal{D}(\mathbb{R}^{r_\ell}), \ell \in \mathfrak{g}^*_I \]
Properties of \hat{u}

- For every $u \in \mathcal{U}(g)$, for $\ell \in g_I$,

$$d\sigma_{\ell, pZ}(\ell)(u) = \hat{u}(\ell) = \sum_{\alpha \in \mathbb{R}^r} p^u_\alpha(\ell) \partial^\alpha$$

with polynomial coefficients $p^u_\alpha(\ell)$ which depend smoothly on $\ell \in g^*_I$.

Let

$$d\mu(u) := (d\sigma_{\ell, pZ}(\ell)(u))_{\ell \in I^{\text{gen}}}$$

- For every $D = \sum_{\alpha \in \mathbb{N}^r} p_\alpha \partial^\alpha$ there exists a smooth mapping $\rho_{D, I} : g^*_I \rightarrow \mathcal{U}(g)$, such that

$$d\sigma_{\ell, pZ}(\ell)(\rho_{D, I}(\ell)) = D, \ell \in g^*_I.$$
Properties of $\hat{F}, F \in S(G)$

- With respect to the basis $\mathfrak{X}(\ell) = \{X_1(\ell), \cdots, X_r(\ell)\}$

 the kernel functions of the operators $\sigma_{\ell,pZ(\ell)}(F) :$

 $$F_{Z}(\ell, x, x') := \int_{PZ(\ell)} F(E_{\mathfrak{X}(\ell)}(x)hE_{\mathfrak{X}(\ell)}(x')^{-1})\chi_{\ell}(h)dh$$

 defined on $g^* \times \mathbb{R}^r \times \mathbb{R}^r$ are smooth and Schwartz in x, x'.
Properties of $\hat{F}, F \in S(G)$

- With respect to the basis $\mathcal{X}(\ell) = \{X_1(\ell), \cdots, X_r(\ell)\}$ the kernel functions of the operators $\sigma_{\ell, p}(F)$:

 $$F_Z(\ell, x, x') := \int_{P_Z(\ell)} F(E_{\mathcal{X}(\ell)}(x)hE_{\mathcal{X}(\ell)}(x')^{-1})\chi_\ell(h)dh$$

defined on $g^*_I \times \mathbb{R}^r \times \mathbb{R}^r$ are smooth and Schwartz in x, x'.

- Let $Q \in \mathbb{C}[g]$. For every $I = I^{\text{gen}}$, there exists a partial differential operator $D_Q(I)$ on $g^*_I \times \mathbb{R}^{r_I}$ with polynomial coefficients in the variable $(x, x') \in \mathbb{R}^{r_I} \times \mathbb{R}^{r_I}$ and smooth coefficients in $\ell \in g^*_I$, such that for every $F \in S(G)$:

 $$(QF)_Z(\ell, x, x') = D_Q(\ell)(F_Z)(\ell, x, x').$$
Properties of $\hat{F}, F \in S(G)$

- With respect to the basis $\mathcal{X}(\ell) = \{X_1(\ell), \cdots, X_r(\ell)\}$ the kernel functions of the operators $\sigma_{\ell,p\mathcal{Z}(\ell)}(F)$:
 $$F_{\mathcal{Z}}(\ell, x, x') := \int_{P_{\mathcal{Z}(\ell)}} F(E_{\mathcal{X}(\ell)}(x)hE_{\mathcal{X}(\ell)}(x')^{-1})\chi_{\ell}(h)dh$$

defined on $g^*_i \times \mathbb{R}^r \times \mathbb{R}^r$ are smooth and Schwartz in x, x'.

- Let $Q \in \mathbb{C}[g]$. For every $l = l^\text{gen}$, there exists a partial differential operator $D_Q(l)$ on $g^*_i \times \mathbb{R}^{r_i}$ with polynomial coefficients in the variable $(x, x') \in \mathbb{R}^{r_i} \times \mathbb{R}^{r_i}$ and smooth coefficients in $\ell \in g^*_i$, such that for every $F \in S(G)$:
 $$(QF)_{\mathcal{Z}}(\ell, x, x') = D_Q(\ell)(F_{\mathcal{Z}})(\ell, x, x').$$

Let
 $$\delta(Q) := (D_Q(\ell))_{\ell \in l^\text{gen}}$$
Properties of $\hat{F}, F \in L^1(G)$:

1. the operator field \hat{F} is contained in $l^\infty(\hat{G})$.
2. on the subsets $g^*_i, i \in \mathcal{I}$, the mappings

 $$\ell \mapsto \hat{F}(\ell) \in \mathcal{K}(L^2(\mathbb{R}^{r_i}))$$

 are operator norm continuous.

3. For every sequence $(\text{Ad}^*(G)\ell_k)_{k \in \mathbb{N}}$ which goes to infinity in g^*/G, we have that

 $$\lim_{k \to \infty} \|\hat{F}(\ell_k)\|_{op} = 0.$$
Questions:

- Characterize the image of $C^*(G)$ in $l^\infty(\hat{G})$ under the Fourier transform, i.e. understand how $\pi_\ell(F)$ varies if $\ell \in g_i^*$ approaches the boundary of g_i^*.

The dual space of a nilpotent Lie group

Index sets and representations

Index sets and representations

Index sets and representations

Index sets and representations

An example

Variable groups

Fourier Transform

Un-sufficient data

Fourier inversion for sub-manifolds

Fourier inversion for sub-manifolds

Fourier inversion for sub-manifolds

Fourier inversion for sub-manifolds
Questions:

- Characterize the image of $C^*(G)$ in $l^\infty(\hat{G})$ under the Fourier transform, i.e. understand how $\pi_\ell(F)$ varies if $\ell \in g^*_i$ approaches the boundary of g^*_i.

- Characterize the image of $S(G)$ in $l^\infty(\hat{G})$ under the Fourier transform.
Properly converging sequences in \hat{G}

Let $I \in \mathcal{I}$ and let $\overline{O} = (\pi_{O_k})$ be a properly converging sequence in \hat{G}_I with limit set $L(\overline{O})$ contained in $\hat{G}_{<I}$, then the elements $\rho \in L(\overline{O})$ are “entangled” by \overline{O}.
Properly converging sequences in \hat{G}

Let $I \in \mathcal{I}$ and let $\overline{O} = (\pi_{O_k})$ be a properly converging sequence in \hat{G}_I with limit set $L(\overline{O})$ contained in $\hat{G}_{<I}$, then the elements $\rho \in L(\overline{O})$ are “entangled” by \overline{O}: For instance if for some $F \in C^*(G)$ we have that $\pi_{O_k}(F) = 0$ for an infinity of k’s then

$$\rho(F) = 0, \forall \rho \in L(\overline{O}).$$
Properly converging sequences in \hat{G}

Let $I \in \mathcal{I}$ and let $\mathcal{O} = (\pi_{O_k})$ be a properly converging sequence in \hat{G}_I with limit set $L(\mathcal{O})$ contained in $\hat{G}_{< I}$, then the elements $\rho \in L(\mathcal{O})$ are “entangled ” by \mathcal{O}: For instance if for some $F \in C^*(G)$ we have that $\pi_{O_k}(F) = 0$ for an infinity of k’s then

$$\rho(F) = 0, \forall \rho \in L(\mathcal{O}).$$

Question: What is the relation between the sequence of operators

$$(\pi_{O_k}(F) \in \mathcal{B}(L^2(\mathbb{R}^{r_l})))_k$$

and the operator field

$$(\rho(F))_{\rho \in L(\mathcal{O})}?$$
\(S(\widehat{G}) \)

Definition

Let

\[
L^2(\widehat{G}) = \{ (\varphi(l))_{l \in g^*_\text{gen}}, l \rightarrow \varphi(l) \text{ measurable, } \int_{\widehat{G}} \|\varphi(l)\|^2_{H-S} d\mu(l) < \infty \}\]
Definition

Let

\[L^2(\hat{G}) = \{ (\varphi(l))_{l \in g_i^*}, l \to \varphi(l) \text{ measurable}, \int_{\hat{G}} \| \varphi(l) \|^2_{H-S} d\mu(l) < \infty \} \]

Let

\[S(\hat{G}) = \{ \varphi \in L^2(\hat{G}), \]
The dual space of a nilpotent Lie group

Definition

Let

\[L^2(\hat{G}) = \left\{ (\varphi(l))_{l \in \mathfrak{g}_{\text{gen}}} : l \rightarrow \varphi(l) \text{ measurable,} \right. \]

\[\int_{\hat{G}} \| \varphi(l) \|^2_{H-S} d\mu(l) < \infty \} \]

Let

\[S(\hat{G}) = \left\{ \varphi \in L^2(\hat{G}), \right. \]

\[d\mu(u)(\varphi) \in L^2(\hat{G}), u \in \mathcal{U}(\mathfrak{g}), \]
Definition
Let

\[L^2(\hat{G}) = \{ (\varphi(\ell))_{\ell \in \mathfrak{g}^*}, \ell \to \varphi(\ell) \text{ measurable}, \int_{\hat{G}} \| \varphi(\ell) \|^2_{H-S} d\mu(\ell) < \infty \} \]

Let

\[S(\hat{G}) = \{ \varphi \in L^2(\hat{G}), d\mu(u)(\varphi) \in L^2(\hat{G}), u \in \mathcal{U}(\mathfrak{g}), \delta(Q)\varphi \in L^2(\hat{G}), Q \in \mathbb{C}[\mathfrak{g}] \}. \]

Theorem
The Fourier transform maps \(S(G) \) onto \(S(\hat{G}) \).
Inverse Fourier transform

Theorem

There exists a G-invariant polynomial function P_{gen} on \mathfrak{g}^* such that for every $F \in S(G)$:

$$F(g) = \int_{\mathfrak{g}_{gen}^*} \text{tr} (\pi_\ell(g^{-1}) \circ \hat{F}(\ell)) |P_{gen}(\ell)| d\ell,$$

$$= \int_{\hat{G}} \text{tr} (\pi(g^{-1}) \circ \pi(F)) d\mu(\pi), g \in G.$$
Smooth compactly supported operator fields

Definition

Let

\[C_c^\infty(\hat{G}) = \{(\varphi(\ell) \in \mathcal{K}(\mathbb{R}^{r_{1gen}})), \ell \in \mathfrak{g}^\text{gen}\}; \]
Smooth compactly supported operator fields

Definition

Let

$$C_c^\infty(\hat{G}) = \{(\varphi(\ell) \in \mathcal{K}(\mathbb{R}^{r_{\text{gen}}}) \text{, } \ell \in \mathfrak{g}_{\text{gen}}^* \text{; support } (\varphi) \text{ compact in } \mathfrak{g}_{\text{gen}}^*)\}$$
Smooth compactly supported operator fields

Definition
Let

\[C_c^\infty(\hat{G}) = \left\{ (\varphi(\ell) \in \mathcal{K}(\mathbb{R}^{r_{gen}})), \ell \in \mathfrak{g}_{\text{gen}}^*; \right. \]

support (\varphi) compact in \(\mathfrak{g}_{\text{gen}}^* \),
the function \((\ell, x, x') \rightarrow \varphi(\ell)(x, x') \)
is smooth in \(\ell \)
and Schwartz in \((x, x') \in \mathbb{R}^{r_{gen}} \times \mathbb{R}^{r_{gen}} \).

Theorem
For every \(\varphi \in C_c^\infty(\hat{G}) \) there exists a unique \(F \in S(G) \), such that

\[\hat{F} = \varphi. \]
Un-sufficient data

What can we do, if we have only a smooth field
$(\varphi(\ell) \in \mathcal{K}(L^2(\mathbb{R}^r)))_{\ell \in \mathcal{M}}$ defined on a smooth submanifold of G?
What can we do, if we have only a smooth field $(\varphi(\ell) \in \mathcal{K}(L^2(\mathbb{R}^r)))_{\ell \in M}$ defined on a smooth submanifold of G?

Example: M is the one point set $\{\pi_\ell\}$
What can we do, if we have only a smooth field $(\varphi(\ell) \in \mathcal{K}(L^2(\mathbb{R}^r)))_{\ell \in M}$ defined on a smooth submanifold of G?

Example: M is the one point set $\{\pi_\ell\}$

Let p be a polarization at ℓ, $\mathfrak{X} = \{X_1, \cdots, X_r\}$ Malcev basis with respect to p.

Theorem

(R. Howe) For every $\varphi \in S(\mathbb{R}^r \times \mathbb{R}^r)$ there exists $F \in S(G)$ such that

$$F_{\ell,p}(E_\mathfrak{X}(x), E_\mathfrak{X}(x')) = \varphi(x, x'), \ x, x' \in \mathbb{R}^r.$$
What can we do, if we have only a smooth field
\((\varphi(\ell) \in K(L^2(\mathbb{R}^r)))_{\ell \in M}\) defined on a smooth submanifold of \(G\)?

Example: \(M\) is the one point set \(\{\pi_\ell\}\)

Let \(\mathfrak{p}\) be a polarization at \(\ell\), \(\mathfrak{X} = \{X_1, \cdots, X_r\}\) Malcev basis with respect to \(\mathfrak{p}\).

Theorem

(R. Howe) For every \(\varphi \in S(\mathbb{R}^r \times \mathbb{R}^r)\) there exists \(F \in S(G)\) such that

\[
F_{\ell,\mathfrak{p}}(E_{\mathfrak{X}}(x), E_{\mathfrak{X}}(x')) = \varphi(x, x'), \quad x, x' \in \mathbb{R}^r.
\]

This means that

\[
\sigma_{\ell,\mathfrak{p}}(S(G)) = \mathcal{B}(\mathcal{H}_{\ell,\mathfrak{p}})^\infty.
\]
Theorem (Currey-L-Molitor-Braun) Let g^*I be a fixed layer of g^*I. Let M be a smooth sub-manifold of g^*I. There exists an open subset M_0 of M such that for any smooth kernel function Φ with compact support $C \subset M_0$, there is a function F in the Schwartz space $S(G)$ such that $\pi_\ell(F)$ has $\Phi(\ell)$ as an operator kernel for all $\ell \in M_0$. Moreover, the Schwartz function F may be chosen such that $\pi_\ell(F) = 0$ for all $\ell \in M \setminus M_0$ and for any ℓ in $g^*<I$ and such that the map $\Phi \mapsto F$ is continuous with respect to the corresponding function space topologies.
Theorem

(Currey-L-Molitor-Braun) Let g^*_i be a fixed layer of g^*. Let M be a smooth sub-manifold of g^*_i.
Theorem

(Currey-L-Molitor-Braun) Let \mathfrak{g}_i^* be a fixed layer of \mathfrak{g}^*. Let M be a smooth sub-manifold of \mathfrak{g}_i^*. There exists an open subset M^0 of M such that for any smooth kernel function Φ with compact support $C \subset M^0$, there is a function F in the Schwartz space $S(G)$ such that $\pi_\ell(F)$ has $\Phi(\ell)$ as an operator kernel for all $\ell \in M^0$. Moreover, the Schwartz function F may be chosen such that $\pi_\ell(F) = 0$ for all $\ell \in M \setminus M^0$ and for any ℓ in $\mathfrak{g}^* < I$ and such that the map $\Phi \mapsto F$ is continuous with respect to the corresponding function space topologies.
Theorem

(Currey-L-Molitor-Braun) Let \mathfrak{g}_I^* be a fixed layer of \mathfrak{g}^*. Let M be a smooth sub-manifold of \mathfrak{g}_I^*. There exists an open subset M^0 of M such that for any smooth kernel function Φ with compact support $C \subset M^0$, there is a function F in the Schwartz space $S(G)$ such that $\pi_\ell(F)$ has $\Phi(\ell)$ as an operator kernel for all $\ell \in M^0$. Moreover, the Schwartz function F may be chosen such that $\pi_\ell(F) = 0$ for all $\ell \in M \setminus M^0$ and for any ℓ in $\mathfrak{g}_{<I}^*$.
Theorem

(Currey-L-Molitor-Braun) Let g_i^* be a fixed layer of g^*. Let M be a smooth sub-manifold of g_i^*. There exists an open subset M^0 of M such that for any smooth kernel function Φ with compact support $C \subset M^0$, there is a function F in the Schwartz space $S(G)$ such that $\pi_{\ell}(F)$ has $\Phi(\ell)$ as an operator kernel for all $\ell \in M^0$. Moreover, the Schwartz function F may be chosen such that $\pi_{\ell}(F) = 0$ for all $\ell \in M \setminus M^0$ and for any ℓ in $g^*_{<i}$ and such that the map $\Phi \mapsto F$ is continuous with respect to the corresponding function space topologies.
An application

Let $A \subset Aut(G)$ be a Lie group of auto-morphisms of G acting smoothly on G.
An application

Let $A \subset Aut(G)$ be a Lie group of auto-morphisms of G acting smoothly on G.
For instance if G is connected Lie group containing G as nil-radical and $A = Ad(G)$.
An application

Let $A \subset Aut(G)$ be a Lie group of auto-morphisms of G acting smoothly on G. For instance if G is connected Lie group containing G as nil-radical and $A = Ad(G)$. Let $J \subset L^1(G)$ be a closed A-prime ideal.
An application

Let $A \subset Aut(G)$ be a Lie group of auto-morphisms of G acting smoothly on G.
For instance if G is connected Lie group containing G as nil-radical and $A = \text{Ad}(G)$.
Let $J \subset L^1(G)$ be a closed A-prime ideal.
For instance: (ρ, E) an irreducible bounded representation ρ of G on a Banach space E and

$$J = \ker(\rho|_G)_{L^1(G)}.$$
\(\hat{G} \) is Baire space, \(L^1(G) \) has the Wiener property and \(J \) is \(A \)-prime
\(\hat{G} \) is Baire space, \(L^1(G) \) has the Wiener property and \(J \) is \(A \)-prime \(\Rightarrow \) the hull \(h(J) \) of \(J \) in \(\hat{G} \) is the closure of an \(A \)-orbit in \(\hat{G} \):

\[
h(J) = \overline{A \cdot \pi \ell} \text{ for some } \ell \in g^*.
\]
Let

\[J_S := J \cap S(G). \]

Theorem

The ideal \(J_S \) is a closed \(A \)-prime ideal in \(S(G) \).
Let

\[J_S := J \cap S(G). \]

Theorem

The ideal \(J_S \) is a closed A-prime ideal in \(S(G) \).

\[\ker(h(J))_S/j(h(J))_S \text{ is nilpotent} \Rightarrow J_S = \ker(h(J))_S. \]
Problem:
Is J_S dense in J?
Problem:
Is J_S dense in J? Let $\varphi \in L^\infty(G)$, such that

$$\langle \varphi, J_S \rangle = \{0\}.$$
Problem:
Is J_S dense in J? Let $\varphi \in L^\infty(G)$, such that
$$\langle \varphi, J_S \rangle = \{0\}.$$
Is $\varphi = 0$ on J?
If $A \cdot \pi_\ell$ is closed (or locally closed) in \hat{G}, then $A \cdot \pi_\ell$ is a smooth manifold.
If $A \cdot \pi_\ell$ is closed (or locally closed) in \hat{G}, then $A \cdot \pi_\ell$ is a smooth manifold and the theorem above tells us that $S(G)/J_S \simeq S(A \cdot \pi_\ell)$.
If $A \cdot \pi_\ell$ is closed (or locally closed) in \hat{G}, then $A \cdot \pi_\ell$ is a smooth manifold
and the theorem above tells us that $S(G)/J_S \simeq S(A \cdot \pi_\ell)$
and φ defines a tempered distribution d_φ on $S(A \cdot \pi_\ell)$.

<table>
<thead>
<tr>
<th>The dual space of a nilpotent Lie group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index sets and representations</td>
</tr>
<tr>
<td>An example</td>
</tr>
<tr>
<td>Variable groups</td>
</tr>
<tr>
<td>Fourier Transform</td>
</tr>
<tr>
<td>Un-sufficient data</td>
</tr>
<tr>
<td>Fourier inversion for sub-manifolds</td>
</tr>
<tr>
<td>Fourier inversion for sub-manifolds</td>
</tr>
<tr>
<td>Fourier inversion for sub-manifolds</td>
</tr>
</tbody>
</table>
If $A \cdot \pi_\ell$ is closed (or locally closed) in \hat{G}, then $A \cdot \pi_\ell$ is a smooth manifold and the theorem above tells us that $S(G)/J_S \simeq S(A \cdot \pi_\ell)$ and φ defines a tempered distribution $d\varphi$ on $S(A \cdot \pi_\ell)$.

From this one can show that

$$|\langle \varphi, F \rangle| \leq \sup_{\pi \in A \cdot \pi_\ell} \|\pi(F)\|_{op}, F \in L^1(G).$$
Theorem

Suppose that $J \subset L^1(G)$ is A-prime and $h(J) = A \cdot \pi$ is a closed A-orbit in \hat{G}, then $J = \ker(A \cdot \pi)$.