New results on semigroups of analytic functions

OSCAR BLASCO

Departamento Análisis Matemático
Universidad Valencia

2013 AHA
Granada, 23 May 2013
www.uv.es/oblasco
1 References
1 References

2 The basic definitions
1 References

2 The basic definitions

3 New results on semigroups of analytic functions
References

The basic definitions

New results on semigroups of analytic functions

A theorem with proof
New results on semigroups of analytic functions

The papers and their authors

BCDMPS

Semigroups of composition operators and integral operators in spaces of analytic functions

BCDMS

Semigroups of composition operators in BMOA and the extension of a theorem of Sarason

Authors:

B = Oscar Blasco, M = Josep Martinez (Univ. Valencia)
C = Manuel Contreras, D = Santiago Diaz-Madrigal (Univ. Sevilla)
S = Aristomenis Siskakis (Univ. Thessaloniki, Grecia)
P = Michael Papadimitrakis (Univ. Crete)
Semigroups of analytic functions

A (one-parameter) semigroup of analytic functions is any continuous homomorphism \(\Phi : (\mathbb{R}^+, +) \rightarrow \{ f \in H^\infty(\mathbb{D}) : \|f\|_\infty \leq 1 \} \), that is

\[
t \mapsto \Phi(t) = \varphi_t
\]

from the additive semigroup of nonnegative real numbers into the composition semigroup of all analytic functions which map \(\mathbb{D} \) into \(\mathbb{D} \).
Semigroups of analytic functions

A (one-parameter) semigroup of analytic functions is any continuous homomorphism \(\Phi : (\mathbb{R}^+,+) \to \{ f \in H^\infty(\mathbb{D}) : \|f\|_\infty \leq 1 \} \), that is

\[
t \mapsto \Phi(t) = \varphi_t
\]

from the additive semigroup of nonnegative real numbers into the composition semigroup of all analytic functions which map \(\mathbb{D} \) into \(\mathbb{D} \). \(\Phi = (\varphi_t) \) consists of \(\varphi_t \in \mathcal{H}(\mathbb{D}) \) with \(\varphi_t(\mathbb{D}) \subseteq \mathbb{D} \) and satisfying

1. \(\varphi_0 \) is the identity in \(\mathbb{D} \),
2. \(\varphi_{t+s} = \varphi_t \circ \varphi_s \), for all \(t, s \geq 0 \),
3. \(\varphi_t(z) \to \varphi_0(z) = z \), as \(t \to 0 \), \(z \in \mathbb{D} \).
Semigroups of analytic functions

A (one-parameter) semigroup of analytic functions is any continuous homomorphism $\Phi : (\mathbb{R}^+, +) \to \{ f \in H^\infty(\mathbb{D}) : \| f \|_\infty \leq 1 \}$, that is

$$t \mapsto \Phi(t) = \varphi_t$$

from the additive semigroup of nonnegative real numbers into the composition semigroup of all analytic functions which map \mathbb{D} into \mathbb{D}. $\Phi = (\varphi_t)$ consists of $\varphi_t \in \mathcal{H}(\mathbb{D})$ with $\varphi_t(\mathbb{D}) \subset \mathbb{D}$ and satisfying

1. φ_0 is the identity in \mathbb{D},
2. $\varphi_{t+s} = \varphi_t \circ \varphi_s$, for all $t, s \geq 0$,
3. $\varphi_t(z) \rightarrow \varphi_0(z) = z$, as $t \rightarrow 0$, $z \in \mathbb{D}$.

Examples:

- $\varphi_t(z) = e^{-t}z$ (Dilation semigroup)
- $\varphi_t(z) = e^{it}z$ (Rotation semigroup)
- $\varphi_t(z) = e^{-t}z + (1 - e^{-t})$
Generators of analytic semigroups

(E. Berkson, H. Porta (1978))
The infinitesimal generator of \((\varphi_t)\) is the function

\[
G(z) := \lim_{t \to 0^+} \frac{\varphi_t(z) - z}{t} = \frac{\partial \varphi_t}{\partial t}(z)\big|_{t=0}, \ z \in \mathbb{D}.
\]
Generators of analytic semigroups

(E. Berkson, H. Porta (1978))

The infinitesimal generator of \((\varphi_t)\) is the function

\[
G(z) := \lim_{t \to 0^+} \frac{\varphi_t(z) - z}{t} = \frac{\partial \varphi_t}{\partial t}(z)|_{t=0}, \quad z \in \mathbb{D}.
\]

\[
G(\varphi_t(z)) = \frac{\partial \varphi_t(z)}{\partial t} = G(z) \frac{\partial \varphi_t(z)}{\partial z}, \quad z \in \mathbb{D}, \quad t \geq 0. \tag{1}
\]
Generators of analytic semigroups

(E. Berkson, H. Porta (1978))

The infinitesimal generator of \((\varphi_t)\) is the function

\[
G(z) := \lim_{t \to 0^+} \frac{\varphi_t(z) - z}{t} = \left. \frac{\partial \varphi_t}{\partial t}(z) \right|_{t=0}, \quad z \in \mathbb{D}.
\]

\[
G(\varphi_t(z)) = \frac{\partial \varphi_t(z)}{\partial t} = G(z) \frac{\partial \varphi_t(z)}{\partial z}, \quad z \in \mathbb{D}, \quad t \geq 0. \tag{1}
\]

G has a unique representation

\[
G(z) = (bz - 1)(z - b)P(z), \quad z \in \mathbb{D}
\]

where \(b \in \overline{\mathbb{D}}\) (called the Denjoy-Wolff point of the semigroup) and \(P \in \mathcal{H}(\mathbb{D})\) with \(\text{Re} P(z) \geq 0\) for all \(z \in \mathbb{D}\).
Generators of analytic semigroups

(E. Berkson, H. Porta (1978))

The infinitesimal generator of \((\varphi_t)\) is the function

\[
G(z) := \lim_{t \to 0^+} \frac{\varphi_t(z) - z}{t} = \frac{\partial \varphi_t}{\partial t}(z)|_{t=0}, \quad z \in \mathbb{D}.
\]

\[
G(\varphi_t(z)) = \frac{\partial \varphi_t(z)}{\partial t} = G(z)\frac{\partial \varphi_t(z)}{\partial z}, \quad z \in \mathbb{D}, \quad t \geq 0. \tag{1}
\]

\(G\) has a unique representation

\[
G(z) = (bz - 1)(z - b)P(z), \quad z \in \mathbb{D}
\]

where \(b \in \overline{\mathbb{D}}\) (called the Denjoy-Wolff point of the semigroup) and \(P \in \mathcal{H}(\mathbb{D})\) with \(\text{Re} P(z) \geq 0\) for all \(z \in \mathbb{D}\).

- \(G(z) = -z\) for the dilation semigroup \((b = 0, \; P(z) = 1)\)
- \(G(z) = iz\) for the rotation semigroup \((b = 0, \; P(z) = -i)\)
- \(G(z) = -(z - 1)\) for \(\varphi_t(z) = e^{-t}z + 1 - e^{-t} \quad (b = 1, \; P(z) = \frac{1}{1-z})\)
Each semigroup of analytic functions gives rise to a semigroup \((C_t)\) consisting of composition operators on \(H(\mathbb{D})\) via composition

\[C_t(f) := f \circ \varphi_t, \quad f \in H(\mathbb{D}). \]
Semigroups of operators

Each semigroup of analytic functions gives rise to a semigroup \((C_t)\) consisting of composition operators on \(\mathcal{H}(D)\) via composition

\[
C_t(f) := f \circ \varphi_t, \quad f \in \mathcal{H}(D).
\]

Given a Banach space \(X \subset \mathcal{H}(D)\) and a semigroup \((\varphi_t)\), we say that \((\varphi_t)\) generates a semigroup of operators on \(X\) if \((C_t)\) is a \(C_0\)-semigroup of bounded operators in \(X\), i.e.
Semigroups of operators

Each semigroup of analytic functions gives rise to a semigroup \((C_t)\) consisting of composition operators on \(\mathcal{H}(\mathbb{D})\) via composition

\[
C_t(f) := f \circ \varphi_t, \quad f \in \mathcal{H}(\mathbb{D}).
\]

Given a Banach space \(X \subset \mathcal{H}(\mathbb{D})\) and a semigroup \((\varphi_t)\), we say that \((\varphi_t)\) generates a semigroup of operators on \(X\) if \((C_t)\) is a \(C_0\)-semigroup of bounded operators in \(X\), i.e.

- \(C_t(f) \in X\) for all \(t \geq 0\) and for every \(f \in X\)
- \(\lim_{t \to 0^+} \|C_t(f) - f\|_X = 0\).
Semigroups of operators

Each semigroup of analytic functions gives rise to a semigroup \((C_t)\) consisting of composition operators on \(H(D)\) via composition

\[C_t(f) := f \circ \varphi_t, \quad f \in H(D). \]

Given a Banach space \(X \subset H(D)\) and a semigroup \((\varphi_t)\), we say that \((\varphi_t)\) generates a semigroup of operators on \(X\) if \((C_t)\) is a \(C_0\)-semigroup of bounded operators in \(X\), i.e.

- \(C_t(f) \in X\) for all \(t \geq 0\) and for every \(f \in X\)
- \(\lim_{t \to 0^+} \|C_t(f) - f\|_X = 0\).

Given a semigroup \((\varphi_t)\) and a Banach space \(X\) contained in \(H(D)\) we denote by \([\varphi_t, X]\) the maximal closed linear subspace of \(X\) such that \((\varphi_t)\) generates a semigroups of operators on it.
Previous results on semigroups of analytic functions

Theorem

1. Every semigroup of analytic functions generates a semigroup of operators on the Hardy spaces H^p ($1 \leq p < \infty$), the Bergman spaces A^p ($1 \leq p < \infty$) and the Dirichlet space, i.e. $[\phi_t, X] = X$ in these cases.
Previous results on semigroups of analytic functions

Theorem

1. *Every semigroup of analytic functions generates a semigroup of operators on the Hardy spaces* H^p $(1 \leq p < \infty)$, the Bergman spaces A^p $(1 \leq p < \infty)$ and the Dirichlet space, i.e. $[\varphi_t, X] = X$ in these cases.

2. *No non-trivial semigroup generates a semigroup of operators in the space* H^∞ *of bounded analytic functions*, i.e. $[\varphi_t, H^\infty] = H^\infty$ implies $\Phi = 0$.

References

The basic definitions

New results on semigroups of analytic functions

A theorem with proof

Oscar Blasco
Previous results on semigroups of analytic functions

Theorem

1. Every semigroup of analytic functions generates a semigroup of operators on the Hardy spaces H^p ($1 \leq p < \infty$), the Bergman spaces A^p ($1 \leq p < \infty$) and the Dirichlet space, i.e. $[\varphi_t, X] = X$ in these cases.

2. No non-trivial semigroup generates a semigroup of operators in the space H^∞ of bounded analytic functions, i.e. $[\varphi_t, H^\infty] = H^\infty$ implies $\Phi = 0$.

3. There are plenty of semigroups (but not all) which generate semigroups of operators in the disk algebra.
The case $X = BMOA$

Definition

An analytic function f is said to belong to $BMOA$ if

$$
\|f\|_*^2 = \sup \frac{1}{|I|} \int_{R(I)} |f'(z)|^2 (1 - |z|^2) dA(z) < \infty
$$

where the sup is taken over all arcs $I \subset \partial \mathbb{D}$, $R(I)$ is the Carleson rectangle determined by I, $|I|$ denotes the normalized length of I and $dA(z)$ the normalized Lebesgue measure on $\partial \mathbb{D}$.
The case $X = BMOA$

Definition

An analytic function f is said to belong to $BMOA$ if

$$\|f\|^2 = \sup_I \frac{1}{|I|} \int_{R(I)} |f'(z)|^2 (1 - |z|^2) dA(z) < \infty$$

where the sup is taken over all arcs $I \subset \partial \mathbb{D}$, $R(I)$ is the Carleson rectangle determined by I, $|I|$ denotes the normalized length of I and $dA(z)$ the normalized Lebesgue measure on $\partial \mathbb{D}$.

$VMOA$ is the subspace of functions satisfying

$$\lim_{|I| \to 0} \frac{1}{|I|} \int_{R(I)} |f'(z)|^2 (1 - |z|^2) dA(z) = 0$$

It is known that $VMOA$ is the closure of the polynomials in $BMOA$ and that $(VMOA)^{**} = BMOA$.
The problem for $BMOA$

Here it is our starting motivation:

Theorem A. (Sarason) *Suppose $f \in BMOA$, then the following are equivalent:*

1. $f \in VMOA$.
2. $\lim_{t \to 0^+} \| f(e^{it} \cdot) - f \|_* = 0$.
3. $\lim_{r \to 1} \| f(r \cdot) - f \|_* = 0$.
The problem for BMOA

Here it is our starting motivation:

Theorem A. (Sarason) *Suppose* \(f \in BMOA \), *then the following are equivalent:*

1. \(f \in VMOA \).
2. \(\lim_{t \to 0^+} \| f(e^{it} \cdot) - f \|_* = 0 \).
3. \(\lim_{r \to 1} \| f(r \cdot) - f \|_* = 0 \).

Note that \(\lim_{t \to 0^+} \| f(e^{it} \cdot) - f \|_* = 0 \) *means* \(f \in [e^{it}z, BMO] \).
The problem for \textit{BMOA}

Here it is our starting motivation:

\textbf{Theorem A.} (Sarason) \textit{Suppose }$f \in \text{BMOA}$, \textit{then the following are equivalent:}

1. $f \in \text{VMOA}$.
2. $\lim_{t \to 0^+} \| f(e^{it} \cdot) - f \|_\star = 0$.
3. $\lim_{r \to 1} \| f(r \cdot) - f \|_\star = 0$.

Note that $\lim_{t \to 0^+} \| f(e^{it} \cdot) - f \|_\star = 0$ means $f \in [e^{it}z, \text{BMO}]$.

Note that $\lim_{r \to 1} \| f(r \cdot) - f \|_\star = 0$ can be written $\lim_{t \to 0^+} \| f(e^{-t} \cdot) - f \|_\star = 0$.

Oscar Blasco

New results on semigroups of analytic functions
The problem for $BMOA$

Here it is our starting motivation:

Theorem A. (Sarason) *Suppose $f \in BMOA$, then the following are equivalent:*

1. $f \in VMOA$.
2. $\lim_{t \to 0^+} \|f(e^{it} \cdot) - f\|_\star = 0$.
3. $\lim_{r \to 1} \|f(r \cdot) - f\|_\star = 0$.

Note that $\lim_{t \to 0^+} \|f(e^{it} \cdot) - f\|_\star = 0$ means $f \in [e^{it} z, BMO]$.

Note that $\lim_{r \to 1} \|f(r \cdot) - f\|_\star = 0$ can be written $\lim_{t \to 0^+} \|f(e^{-t} \cdot) - f\|_\star = 0$

Problems:

1. Describe (φ_t) such that $VMOA = [\varphi_t, BMOA]$.
The problem for BMOA

Here it is our starting motivation:

Theorem A. (Sarason) *Suppose* \(f \in BMOA \), *then* the following are equivalent:

1. \(f \in VMOA \).
2. \(\lim_{t \to 0^+} \| f(e^{it} \cdot) - f \|_* = 0 \).
3. \(\lim_{r \to 1} \| f(r \cdot) - f \|_* = 0 \).

Note that \(\lim_{t \to 0^+} \| f(e^{it} \cdot) - f \|_* = 0 \) means \(f \in [e^{it}z, BMO] \).

Note that \(\lim_{r \to 1} \| f(r \cdot) - f \|_* = 0 \) can be written

\(\lim_{t \to 0^+} \| f(e^{-t} \cdot) - f \|_* = 0 \)

Problems:
1. *Describe* \((\phi_t) \) *such that* \(VMOA = [\phi_t, BMOA] \).
2. *Given* \((\phi_t) \) *calculate* \([\phi_t, BMOA] \).
The case $X = \text{Bloch}$

Definition

An analytic function f is said to belong to Bloch if

$$\|f\|_{\text{Bloch}} = |f(0)| + \sup_{z \in \mathbb{D}} |f'(z)|(1 - |z|^2) < \infty,$$
The case $X = \text{Bloch}$

Definition

An analytic function f is said to belong to Bloch if

$$\|f\|_{\text{Bloch}} = |f(0)| + \sup_{z \in \mathbb{D}} |f'(z)| (1 - |z|^2) < \infty,$$

bloch is the subspace of functions such that

$$\lim_{|z| \to 1} |f'(z)| (1 - |z|^2) = 0$$
An analytic function f is said to belong to Bloch if

$$
\|f\|_{\text{Bloch}} = |f(0)| + \sup_{z \in \mathbb{D}} |f'(z)| (1 - |z|^2) < \infty,
$$

$bloch$ is the subspace of functions such that

$$
\lim_{|z| \to 1} |f'(z)| (1 - |z|^2) = 0
$$

It is known that $bloch$ is the closure of polynomials in the Bloch space and $(bloch)^{**} = \text{Bloch}$
The problem for *Bloch*

We also start with the well known result

Theorem B. (Anderson-Clunie-Pommerenke) Suppose $f \in Bloch$. Then

$$ f \in bloch \iff \lim_{r \to 1} \| f(r\cdot) - f \|_{Bloch} = 0. $$
The problem for *Bloch*

We also start with the well known result

Theorem B. (Anderson-Clunie-Pommerenke) Suppose \(f \in Bloch \). Then

\[
 f \in bloch \iff \lim_{r \to 1} \| f(r \cdot) - f \|_{Bloch} = 0.
\]

Problems:

3.- Does it hold that \(bloch = [e^{it}z, Bloch] \)?
The problem for *Bloch*

We also start with the well known result

Theorem B. (Anderson-Clunie-Pommerenke) Suppose \(f \in Bloch \). Then

\[
f \in \text{bloch} \iff \lim_{r \to 1} \| f(r \cdot) - f \|_{Bloch} = 0.
\]

Problems:

3.- Does it hold that \(\text{bloch} = [e^{it}z, Bloch] \)?

4.- Describe \((\varphi_t) \) such that \(\text{bloch} = [\varphi_t, Bloch] \).
The problem for Bloch

We also start with the well known result

Theorem B. (Anderson-Clunie-Pommerenke) Suppose $f \in Bloch$. Then

$$f \in bloch \iff \lim_{r \to 1} \|f(r \cdot) - f\|_{Bloch} = 0.$$

Problems:

3.- **Does it hold that** $bloch = [e^{it}z, Bloch]$?
4.- **Describe** (φ_t) **such that** $bloch = [\varphi_t, Bloch]$.
5.- **Given** (φ_t) **calculate** $[\varphi_t, Bloch]$.

Oscar Blasco

New results on semigroups of analytic functions
In general

\[VMOA \subset [\varphi_t, BMOA] \subset BMOA. \]
A basic calculation

In general

$$VMOA \subsetneq [\varphi_t, BMOA] \subsetneq BMOA.$$

Let $\varphi_t(z) = e^{-t}z + 1 - e^{-t}$. Then

$$f(z) = \log\left(\frac{1}{1-z}\right) \in [\varphi_t, BMOA] \setminus VMOA.$$
A basic calculation

In general

\[VMOA \subsetneq [\varphi_t, BMOA] \subsetneq BMOA. \]

Let \(\varphi_t(z) = e^{-t}z + 1 - e^{-t} \). Then
\[f(z) = \log\left(\frac{1}{1-z}\right) \in [\varphi_t, BMOA] \setminus VMOA. \] Indeed
\[
 f(\varphi_t(z)) = \log\left(\frac{1}{1 - \varphi_t(z)}\right) = tf(z)
\]
and therefore
\[
 \lim_{t \to 0} \| f \circ \varphi_t - f \|_* = 0.
\]
Results on **BMOA**

Theorem

Every semigroup \((\varphi_t)\) generates a semigroup of operators on \(VMOA\), i.e. \(VMOA = [\varphi_t, VMOA]\).
Every semigroup \((\varphi_t)\) generates a semigroup of operators on \(VMOA\), i.e. \(VMOA = [\varphi_t, VMOA]\).

Let \(G\) be the infinitesimal generator of \((\varphi_t)\). Then,

\[
[\varphi_t, BMOA] = \{ f \in BMOA : Gf' \in BMOA \}.
\]
More results on BMOA

Theorem

Let \((\varphi_t) \) be a semigroup with infinitesimal generator \(G \). Assume that for some \(0 < \alpha < 1 \),

\[
\frac{(1 - |z|)^\alpha}{G(z)} = O(1) \quad \text{as} \quad |z| \to 1.
\] (2)

Then \(VMOA = [\varphi_t, BMOA] \).
More results on $BMOA$

Theorem

Let (φ_t) be a semigroup with infinitesimal generator G. Assume that for some $0 < \alpha < 1$,

$$
\frac{(1 - |z|)^\alpha}{G(z)} = O(1) \text{ as } |z| \to 1.
$$

(2)

Then $VMOA = [\varphi_t, BMOA]$.

Corollary

Suppose $(\varphi_t(z))$ is a semigroup whose generator G satisfies the condition (2). Then for a function $f \in BMOA$ the following are equivalent

1. $f \in VMOA$.
2. $\lim_{t \to 0^+} \|f \circ \varphi_t - f\|_* = 0$.

Oscar Blasco
Results on Bloch

Theorem

Any semigroup of analytic functions (φ_t) generates a C_0-semigroup in Bloch, i.e. $[\varphi_t, \text{bloch}] = \text{bloch}$.
Results on *Bloch*

Theorem

Any semigroup of analytic functions (φ_t) *generates a* C_0-*semigroup in Bloch*, *i.e.* $[\varphi_t,\text{bloch}] = \text{bloch}$.

Theorem

There are not non-trivial semigroups of analytic functions (φ_t) *generating a* C_0-*semigroup in Bloch*, *i.e.* if $[\varphi_t,\text{Bloch}] = \text{Bloch}$ then $\varphi_t(z) = 0$.
References

The basic definitions

New results on semigroups of analytic functions

A theorem with proof

Results on Bloch

Theorem

Any semigroup of analytic functions \((\varphi_t) \) generates a \(C_0 \)-semigroup in \(\text{bloch} \), i.e. \([\varphi_t, \text{bloch}] = \text{bloch}\).

Theorem

There are not non-trivial semigroups of analytic functions \((\varphi_t) \) generating a \(C_0 \)-semigroup in \(\text{Bloch} \), i.e. if \([\varphi_t, \text{Bloch}] = \text{Bloch}\) then \(\varphi_t(z) = 0 \).

Theorem

Let \(G \) be the infinitesimal generator of \((\varphi_t) \). Then,

\[
[\varphi_t, \text{Bloch}] = \{ f \in \text{Bloch} : Gf' \in \text{Bloch} \}.
\]
Main results on *Bloch* and *BMOA*

Suppose now that X is either *VMOA* or *bloch* so that the second dual X^{**} is *BMOA* or *Bloch* respectively. Let (φ_t) be a semigroup on \mathbb{D} and let (C_t) be the induced semigroup of composition operators on X^{**} and denote $S_t = C_t|_X$.

Theorem

Let (φ_t) be a semigroup and X be one of the spaces *VMOA* or *bloch*. Denote by Γ the generator of the induced composition semigroup (S_t) on X and let $\lambda \in \rho(\Gamma)$. Then

1. $[\varphi_t, \text{BMOA}] = \text{VMOA}$ if and only if $R(\lambda, \Gamma) = (\lambda I - \Gamma)^{-1}$ is weakly compact on VMOA.

2. $[\varphi_t, \text{Bloch}] = \text{Bloch}$ if and only if $R(\lambda, \Gamma)$ is weakly compact on Bloch.

Oscar Blasco

New results on semigroups of analytic functions
Main results on *Bloch* and *BMOA*

Suppose now that X is either *VMOA* or *bloch* so that the second dual X^{**} is *BMOA* or *Bloch* respectively. Let (φ_t) be a semigroup on \mathbb{D} and let (C_t) be the induced semigroup of composition operators on X^{**} and denote $S_t = C_t|_X$.

Theorem

Let (φ_t) be a semigroup and X be one of the spaces *VMOA* or *bloch*. Denote by Γ the generator of the induced composition semigroup (S_t) on X and let $\lambda \in \rho(\Gamma)$. Then

1. $[\varphi_t, BMOA] = VMOA$ if and only if $R(\lambda, \Gamma) = (\lambda I - \Gamma)^{-1}$ is weakly compact on $VMOA$.

2. $[\varphi_t, Bloch] = bloch$ if and only if $R(\lambda, \Gamma)$ is weakly compact on bloch.
A theorem and its proof

Theorem

Let G be the infinitesimal generator of (φ_t). Then,

$$\{ f \in BMOA : Gf' \in BMOA \} \subset [\varphi_t, BMOA].$$

Proof:

Let $f \in BMOA$ such that $m := Gf' \in BMOA$. First of all, one shows that

$$(f \circ \varphi_t)'(z) - f'(z) = \int_0^t (m \circ \varphi_s)'(z) \, ds; \quad \text{for } t \geq 0, \ z \in \mathbb{D}.$$
A theorem and its proof

Theorem

Let G be the infinitesimal generator of (φ_t). Then,

$$\{ f \in BMOA : Gf' \in BMOA \} \subset [\varphi_t, BMOA].$$

Proof:

Let $f \in BMOA$ such that $m := Gf' \in BMOA$. First of all, one shows that

$$(f \circ \varphi_t)'(z) - f'(z) = \int_0^t (m \circ \varphi_s)'(z)ds; \quad \text{for } t \geq 0, \ z \in \mathbb{D}.$$

Next let I be an interval in $\partial \mathbb{D}$ and $R(I)$ the corresponding Carleson rectangle.
For $0 \leq t \leq 1$ we have

$$
\int_{R(I)} |(f \circ \varphi_t)'(z) - f'(z)|^2 (1 - |z|^2) dA(z)
$$

$$
= \int_{R(I)} \left(\int_0^t |(m \circ \varphi_s)'(z)|^2 ds \right)^2 (1 - |z|^2) dA(z)
$$

$$
\leq \int_{R(I)} t \left(\int_0^1 |(m \circ \varphi_s)'(z)|^2 ds \right) (1 - |z|^2) dA(z)
$$

where we have applied Cauchy-Schwarz in the inside integral.
Hence

\[
\|f \circ \varphi_t - f\|_\star = \sup_{I \subseteq \partial \mathbb{D}} \left(\frac{1}{|I|} \int_{R(I)} \left| (f \circ \varphi_t)'(z) - f'(z) \right|^2 (1 - |z|^2) dA(z) \right)^{\frac{1}{2}}
\]

\[
\leq \sup_{I \subseteq \partial \mathbb{D}} \left(\frac{1}{|I|} \int_{R(I)} t \left(\int_0^1 \left| (m \circ \varphi_s)'(z) \right|^2 ds \right) (1 - |z|^2) dA(z) \right)^{\frac{1}{2}}
\]

\[
\leq \sup_{I \subseteq \partial \mathbb{D}} \left(t \int_0^1 \left(\frac{1}{|I|} \int_{R(I)} \left| (m \circ \varphi_s)'(z) \right|^2 (1 - |z|^2) dA(z) \right) ds \right)^{\frac{1}{2}}
\]

\[
\leq \left(t \int_0^1 \|m \circ \varphi_s\|_\star^2 ds \right)^{\frac{1}{2}}
\]

\[
\leq \sqrt{t} \sup_{s \in [0,1]} \|m \circ \varphi_s\|_\star
\]

\[
\leq \sqrt{t} C \|m\|_\star \sup_{s \in [0,1]} (1 - \log(1 - \varphi_s(0))) \leq C' \sqrt{t},
\]

where we have used \(\|m \circ \psi\|_\star \leq C \|m\|_\star \log\left(\frac{e}{1 - \psi(0)} \right) \) for any \(\psi : \mathbb{D} \to \mathbb{D} \) analytic.

Therefore \(f \in [\varphi_t, BMOA] \).