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Abstract. Nature shows many examples where the specialisation of ele-
ments aimed to solve different problems is successful. There are explorer
ants, worker bees, etc., where a group of individuals is assigned a spe-
cific task. This paper will extrapolate this philosophy, applying it to a
multiobjective genetic algorithm. The problem to be solved is the design
of Radial Basis Function Neural Networks (RBFNNs) that approximate
a function. A non distributed multiobjective algorithm will be compared
against several parallel approaches that emerge as a straight forward spe-
cialisation of the crossover and mutation operators in different islands.
The experiments will show how, as in the real world, if the different
island evolve specific aspects of the RBFNNs, the results are improved.

1 Introduction

The problem to be tackled consists in designing an RBFNN that approximate
a set of given values. The use of this kind of neural networks is a common
solution since they are able to approximate any function [4, 11]. Formally, a
function approximation problem can be formulated as, given a set of observations
{(xk; yk); k = 1, ..., n} with yk = F (xk) ∈ IR and xk ∈ IRd, it is desired to obtain

a function F so
n∑

k=1

||yk −F(xk)||2 is minimum. The purpose of the design is

to be able to obtain outputs from input vectors that were not specified in the
original training data set.

An RBFNN F with d entries and one output has a set of parameters that
have to be optimised:

F (xk; C, R,Ω) =
m∑

j=1

φ(xk; cj , rj) ·Ωj (1)

where m is the number of RBFs, C = {c1, ..., cm} is the set of RBF centers,
R = {r1, ..., rm} is the set of values for each RBF radius, Ω = {Ω1, ..., Ωm} is



the set of weights and φ(xk; c j , rj) represents an RBF. The activation function
most commonly used for classification and regression problems is the Gaussian
function because it is continuous, differentiable, it provides a softer output and
it improves the interpolation capabilities [2, 12]. The procedure to design an
RBFNN starts by setting the number of RBFs in the hidden layer, then the
RBF centers cj must be placed and a radius rj has to be set for each of them.
Finally, the weights Ωj can be calculated optimally by solving a linear equation
system [5].

We want to find both a network with the smallest number of neurons and
one with the smallest error. This is a multiobjective optimisation problem. For
some pairs of networks it is impossible to say which is better (one is better on
one objective, one on the other) making the set of possible solutions partially
sorted [10].

2 Multiobjective Algorithm for Function Approximation:
MOFA

Within the many evolutionary algorithms that have been designed to solve multi-
objective optimization problems, the Non-Dominated Sorting Genetic Algorithm
II (NSGA-II) [3] has been shown to have an exceptional performance. This sec-
tion will describe the adaptation of this genetic algorithm to solve the problem
of designing RBFNN for function approximation.

2.1 Encoding RBFNN in the Individuals

As it was shown in Section 1, to design an RBFNN it is needed to specify: the
number of RBFs, the position of the centers of the RBFs, the length of the radii,
and the weights for the output layer.

The individuals in the population of the algorithm will contain those elements
in a vector of real numbers, but not the weights. Instead of the weights, the
approximation error is stored in the chromosome, the reason of this is to save
computational effort when the individuals have to be compared.

2.2 Initial Population

The initial population is generated using clustering algorithms in order to supply
good individuals that will make easier and faster to find good solutions. These
clustering algorithms were designed specifically to provide a good start point
when designing RBFNNs for functional problems. It also includes individuals
generated randomly in order keep diversity in the population. The clustering
algorithms employed for this task are:

– Fuzzy C-means (FCM): This clustering algorithm [1] performs a fuzzy par-
tition of the input data where the same input vector can belong to several
clusters at the same time with a membership degree.



– Improved Clustering for Function Approximation (ICFA): this algorithm [6]
uses supervised clustering in order to identify the areas where the function
is more variable. To do this, it defines the concept of estimated output of a
center to assign a value for the center in the output axis.

– Possibilistic Centers Initialiser (PCI) and Fuzzy-Possibilistic Clustering for
Function approximation (FPCFA): these algorithms [7] modify the way the
input vectors are shared between the centers of the clusters. In the ICFA
algorithm, a fuzzy partition was defined. In these two algorithms the fuzzy
partition is replaced by the ones used in [13] and in [9] respectively.

After the initialization of half of the individuals of the population with the
clustering techniques, a few iterations of a local search algorithm are applied
to each one and the results are appended to the population. This procedure
increments the diversity and, as experimentally has been proven, improves the
quality of the results.

The size of the RBFNNs coded by each individual should be small in the
initialization step for two reasons: 1) to make the initialization as fast as possible
and 2) to allow the genetic algorithm to determine the sizes of the RBFNNs
from an incremental point of view, saving the computational effort that would
be required to deal with big networks from the first generations.

2.3 Crossover operators

Standard crossover operators cannot be applied to our representation. Two spe-
cific crossover operators have been designed considering complete RBFs as genes
to be exchanged by the chromosomes representing RBFNNs.

Crossover operator 1: Neurons exchange This crossover operator, con-
ceptually, would be the most similar one to a standard crossover because the
individuals represent an RBFNN with several neurons and a crossover between
two individuals would result in a neuron exchange. The operator will exchange
only one neuron, selected randomly, between the two individuals. This crossover
operator exploits the genetic material of each individual in a simple and efficient
way without modifying the structure of the network.

Crossover operator 2: Addition of the neuron with the smallest local
error This operator consists in the addition into one parent of the neuron with
the smallest local error belonging to the other parent. The local error is defined
as the sum of the errors between the real output and the output generated by
the RBFNN. Not all the input vectors are considered, only the ones that activate
each RBF. To know if an input vector activates a neuron, its activation function
is calculated for each input vector and if it is higher than a determined threshold,
the input vector activates the neuron.

This operator gives the opportunity to increase the number of RBFs in one
individual although once the cross has been performed, a refinement step is done.



This refinement consists of prunning the RBFs which do not influence the output
of the RBFNN. To do this, all the weights that connect the processing units to
the output layer are calculated and the neurons that do not have a significant
weight are removed. The calculation of the weights is performed optimally by
solving a linear equation system [5].

Crossover 1 Crossover 2

Fig. 1. Crossover operators 1 and 2

2.4 Mutation Operators

The mutation operators add randomness into the process of finding good solu-
tions. These mutations allow the algorithm to explore the solution space avoiding
being trapped in local minima. The modifications can be purely random or can
be performed using problem specific knowledge. The mutation operators are de-
sired to be as much simple as they can so it can be shown clearly, without the
interference of introducing expert knowledge, the effects of the parallelization at
a very basic level. For an RBFNN, two kind of modifications can be performed:

– Changes in the structure of the RBFNN (Increase and decrease operators):
Addition and Deletion of an RBF. The first one adds an RBF in one random
position over the input vectors space, setting its radius with a random value.
All the random values are taken from an uniform distribution in the interval
[0,1] since the input vectors and their output are normalised. The second
operator is the opposite to the previous one, deleting a random existing
RBF from the network. This mutation is constrained so that is not applied
when the individual has less than two neurons.

– Changes in the elements of the structure (Movement operators): The third
and the fourth operators refer to real coded genetic algorithms as presented
in [8]. The third operator adds to all the coordinates of a center a random
distance chosen in the interval [-0.5,0.5] from a uniform distribution. The
fourth one has exactly the same behaviour but changing the value of the
radius of the selected RBF.

3 Island Specialisation

In order to obtain results of maximum quality and take advantage of each type
of operator, several parallel implementations were studied. All these implemen-



tations are based on the island paradigm where there are several islands (in
our parallel implementation these map to processors) that evolve independent
populations and, exchange information or individuals.

The design of an RBFNN, involves two well defined tasks: the design of the
structure and the determination of the value of the parameters that build that
structure. From this point of view many island specialisations were analysed
although in this paper only the more representative ones are commented:

1)Division of the crossover operators (P1). This approach allows specialisa-
tion of the first stage of the evolution process, that is, the reproduction process.
The two crossover operators are separated and executed in different islands. The
mutation process remains the same for both types of islands. The following al-
gorithms study the possible ways of specialising the mutation stage but always
using the specialised crossover topology. As it will be shown in the experiments,
allowing specialisation of the crossover operators gives significant improvements.

2)Crossover 1 + Movement + Decreasing and Crossover 2 + Movement +
Increasing (P2). This combination of operators aims to boost the exploration
capabilities of the crossover 2 and the exploitation ones of crossover 1. Since
the crossover 2 explore more topologies by increasing the size of the NNs, the
specialisation can be done by letting this island to produce only bigger net-
works. The other island with the crossover 1, will take care of exploitation of the
chromosomes and will decrease the size of the networks.

3)Crossover 1 + Movement + Increasing and Crossover 2 + Movement +
Decreasing (P3). This algorithm is the opposite to the previous one. The aim is
to not allow the crossover 2 to create too big NNs by adding the operator that
removes an RBF. If the NNs in the population become too big, the computational
time would be highly increased. To be able to explore more different topologies,
the island with the crossover 1 will increase the number of RBFs using the
increasing mutation operator.

4)Crossover 1 + Movement and Crossover 2 + Increasing and Decreasing
(P4). This approach is the one that specialises the most each island on each
task of the design of an RBFNN. The island with the crossover 1 will take
care of changing the parameters of the centers and the radii and at the same
time, will exploit the genetic information contained in one topology through its
crossover operator. The second island will just take care of the modifications on
the structure of the RBFNN by increasing or decreasing its size through both
the crossover and mutation operators.

4 Experiments

This section analyses the behaviour of the algorithms described above to show
that specialisation of islands to use different operators can lead to better results.
The experiments were performed using a two dimensional function (Figure 2)

that was generated using a gaussian RBFNN (e
− ||xk−ci||2

r2
i ) over a grid of 25x25

points using the randomly chosen parameters in Table 1.



RBF centers radii weights

0.7181 0.8162 0.2237 0.4996
0.5692 0.9771 0.0715 2.4712
0.4608 0.2219 0.0628 0.4887
0.4453 0.7037 0.2332 -0.7052
0.0877 0.5221 0.0327 -0.2006
0.4435 0.9329 0.2352 -0.8020
0.3663 0.7134 0.1755 1.2668
0.3025 0.2280 0.2119 -0.5123
0.8518 0.4496 0.0523 1.0884
0.7595 0.1722 0.1138 -0.5318
0.9498 0.9688 0.0203 2.0797
0.5579 0.3557 0.2237 0.5002
0.0142 0.0490 0.0715 2.2935
0.5962 0.7553 0.0628 -0.8135

Table 1. Parameters for the function f2

As it can be seen in Figure 2, the target function presents a fairly irregular
topology, making it quite difficult to be approximated.

The algorithms were executed using the same initial population of the same
size and the same values for all the parameters. The crossover probability and
mutation probability were 0.5, the size of the population 100 and the number
of generations was fixed to 100. The probabilities might seem high but it is
necessary to have a high mutation probability to allow the network to increase
its size, and the centers and radii to move. The high crossover probability makes
it possible to show the effects of the crossover operators. Several executions were
made changing the migration rate, allowing the algorithms to have 2 (each 40
generations), 4 (each 20 generations), 9 (each 10 generations), and 19 (each 5
generations) migrations through the 100 generations.

The results are shown in Figures 3, and 4 where the Pareto fronts obtained
from each algorithm are represented according to the objectives that have to be
minimised, that is, the approximation error and the number of neurons in the
network.

The first experiment shows how specialisation of the crossover operators over
two machines can improve the performance. The the other experiments show that
as the specialisation increases, the results continue to improve.

4.1 Parallel Approach P1 vs. sequential approaches

The three different sequential algorithms are determined by the crossover op-
erators and all of these algorithms use all the four mutation operators at the
same time. The first sequential algorithm uses only the crossover 1, the second
algorithm uses the crossover 2 and the third non distributed algorithm chooses
randomly between the two crossover operators each time it has to be applied.

For the sequential algorithms, as it is shown in Figure 3, the crossover opera-
tor 1 obtains better results for small networks but it is not able to grow them as



much as the crossover operator 2 does. When the two operators are applied to-
gether the results improve significantly, obtaining a better Pareto front although
the crossover operator 2 is able to design networks with a smaller approximation
error when the size of them is big.

Figure 3 shows that the parallel model outperforms the three previous pos-
sibilities, although its important to notice that it is dependent on the migration
rate. If the migration rate is high (every 5 generations) the behaviour is almost
the same as with the crossover operators combined in one algorithm. When the
migration rate becomes too low (every 40 generations) the performance is de-
creased in comparison with the mixed approach although it always obtains better
results than any of the other possibilities. So the migration rate should be high
enough to share the individuals but allowing each operator to use its properties
to evolve its individuals in the best way.

Fig. 2. Target function f2 and original position of the centers of the RBFs
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4.2 Comparison Between Parallel Approaches (P1, P2, P3, and P4)

Having shown that the parallel approach could lead to better solutions, the
different parallel algorithms were compared. Figure 4 shows the results of the
four parallel algorithms studied using different migration rates.

The results show that parallel implementation P3 has poor performance in
comparison with the other approaches. This implementation is the less spe-
cialised from the other ones because the mutation operators perform the op-
posite task of the crossover operators. The second type of island (crossover 2
+ decreasing + movement) is able to reduce the number of RBFs, annulling
the exploration effect of the crossover 2 that increases the size of the RBFNNs.
The first type of island (crossover 1 + increasing + movement) increases the
size of the network not being able to exploit the genetic recombination by its
crossover operator. The objective of studying this implementation was to show
if a smoothed specialization could improved the results.
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Fig. 3. Pareto front obtained performing several migration steps for P1 and the non
distributed approaches

Algorithms P2 and P4 could be considered the most specialised because their
mutation operators are oriented to only one task (P4) or to complement the
features of the crossover operators on each island, unlike P3 where the mutation
operators counteract the effects of the crossovers. For P2, the best results are
obtained for few migrations while P4 achieves the best results with the maximum
number of migrations. If the best results for both algorithms are compared, P2
obtains slightly better results for smaller networks and P4 obtains better results
for larger networks and it finds more elements in the Pareto. The behaviour of
these two algorithms is logical, P2 is able to exploit more the solutions since it
reduces the size of the networks and recombines the genes in a more exhaustive
way, so it achieves the best results when there are not many migration steps. P4
explores more topologies than P2, that is why it obtains a more complete Pareto
front. The reason why it gets the best results with the highest migration rate is
because the exploration island must have fast feedback about the exploitation of
the individuals in its Pareto set, although there is a limit; when if the migration
rate becomes too frequent, the islands do not have the chance to exploit and
explore, decreasing the quality of the results.



2 4 6 8 10 12 14 16
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

number of RBFs

A
pp

ro
xi

m
at

io
n 

E
rr

or

P1
P2
P3
P4

2 4 6 8 10 12 14 16 18 20 22
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

number of RBFs

A
pp

ro
xi

m
at

io
n 

E
rr

or

P1
P2
P3
P4

2 steps 4 steps

0 5 10 15 20 25 30
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

number of RBFs

A
pp

ro
xi

m
at

io
n 

E
rr

or

P1
P2
P3
P4

2 4 6 8 10 12 14 16 18 20 22
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

number of RBFs

A
pp

ro
xi

m
at

io
n 

E
rr

or

P1
P2
P3
P4

9 steps 19 steps

Fig. 4. Pareto front obtained performing several migration steps for P1, P2, P3 and
P4

5 Conclusions

The design of an RBFNN is a complex task that can be solved using evolutionary
approaches that provide satisfactory results. This paper has presented a multi-
objective GA that designs RBFNNs to approximate functions. This algorithm
has been analysed considering sequential approaches and approaches that have
been specialised by defining separate islands that apply different combinations of
mutation and crossover operators. The results confirm that the specialisation on
the different aspects of the design of RBFNNs through the parallel approaches
leads to better results.
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