
Improving the Performance of Multi-objective
Genetic Algorithm for Function Approximation

Through Parallel Islands Specialisation

A. Guillén1, I. Rojas1, J. González1, H. Pomares1, L.J. Herrera1, and B.
Paechter2

1) Department of Computer Architecture and Computer Technology
Universidad de Granada. Spain

2) School of Computing
Napier University. Scotland

Abstract. Nature shows many examples where the specialisation of ele-
ments aimed to solve different problems is successful. There are explorer
ants, worker bees, etc., where a group of individuals is assigned a spe-
cific task. This paper will extrapolate this philosophy, applying it to a
multiobjective genetic algorithm. The problem to be solved is the design
of Radial Basis Function Neural Networks (RBFNNs) that approximate
a function. A non distributed multiobjective algorithm will be compared
against a parallel approach that emerges as a straight forward speciali-
sation of the crossover and mutation operators in different islands. The
experiments will show how, as in the real world, if the different islands
evolve specific aspects of the RBFNNs, the results are improved.

1 Introduction

The problem to be tackled consists in designing an Radial Basis Function Neural
Network (RBFNN) that approximates a set of given values. The use of this kind
of neural networks is a common solution since they are able to approximate any
function [8]. Formally, a function approximation problem can be formulated as,
given a set of observations {(xk; yk); k = 1, ..., n} with yk = F (xk) ∈ IR and

xk ∈ IRd, it is desired to obtain a function G so
n∑

k=1

||yk − G(xk)||2 is minimum.

The purpose of the design is to be able to obtain outputs from input vectors
that were not specified in the original training data set.

An RBFNN F with d entries and one output has a set of parameters that
have to be optimized:

F (xk; C, R,Ω) =
m∑

j=1

φ(xk; cj , rj) ·Ωj (1)

where m is the number of RBFs, C = {c1, ..., cm} is the set of RBF centers,
R = {r1, ..., rm} is the set of values for each RBF radius, Ω = {Ω1, ..., Ωm} is

the set of weights and φ(xk; c j , rj) represents an RBF. The activation function
most commonly used for classification and regression problems is the Gaussian
function because it is continuous, differentiable, it provides a softer output and it
improves the interpolation capabilities [1]. The procedure to design an RBFNN
starts by setting the number of RBFs in the hidden layer, then the RBF centers
cj must be placed and a radius rj has to be set for each of them. Finally, the
weights Ωj can be calculated optimally by solving a linear equation system [3].

We want to find both a network with the smallest number of neurons and
one with the smallest error. This is a multiobjective optimisation problem. For
some pairs of networks it is impossible to say which is better (one is better on
one objective, one on the other) making the set of possible solutions partially
sorted [7].

2 Multiobjective Algorithm for Function Approximation:
MOFA

Within the many evolutionary algorithms that have been designed to solve multi-
objective optimization problems, the Non-Dominated Sorting Genetic Algorithm
II (NSGA-II) [2] has been shown to have an exceptional performance. This sec-
tion will describe the adaptation of this genetic algorithm to solve the problem
of designing RBFNN for function approximation.

2.1 Encoding RBFNN in the Individuals

As it was shown in Section 1, to design an RBFNN it is needed to specify: the
number of RBFs, the position of the centers of the RBFs, the length of the radii,
and the weights for the output layer.

The individuals in the population of the algorithm will contain those elements
in a vector of real numbers, but the weights. The storage of the weights in the
chromosome is useless since they can be obtained optimally by solving a linear
equation system, and for each change in a radius or a center they have to be
updated.

2.2 Crossover operators

Standard crossover operators cannot be applied to our representation. Two spe-
cific crossover operators have been designed considering complete RBFs as genes
to be exchanged by the chromosomes representing RBFNNs.

Crossover operator 1: Neurons exchange This crossover operator, con-
ceptually, would be the most similar one to a standard crossover because the
individuals represent an RBFNN with several neurons and a crossover between
two individuals would result in a neuron exchange. The operator will exchange
only one neuron, selected randomly, between the two individuals.

This crossover operator exploits the genetic material of each individual in a
simple and efficient way without modifying the structure of the network.

Crossover operator 2:Addition of the neuron with the smallest local
error This operator consists in the addition into one parent of the neuron
with the smallest local error belonging to the other parent. The local error of
a neuron is defined as the sum of the errors between the real output and the
output generated by the RBFNN for the input vectors that activate that neuron.

To make sure that the offsprings are different of their ancestors, before adding
the neuron with the smallest local error, the crossover will make sure that the
neuron to be added does not exist in the individual, otherwise the second neu-
ron with the smallest local error will be considered and so on. This restriction
combined with the way the NSGA-II proceeds helps to avoid the “competing
convention”problem [4].

Once the offspring are obtained, they go through a refinement process that
consists in the prune of the RBFs which doesn’t influence the output of the
RBFNN, to do this, all the weights that connect the processing units to the
output layer are calculated and the neurons that don’t have a significant weight
will be removed.

2.3 Mutation Operators

The mutation operators add randomness into the process of finding good solu-
tions. The mutation operators are desired to be as much simple as they can so it
can be shown clearly, without the interference of introducing expert knowledge,
the effects of the parallelization at a very basic level. For an RBFNN, two kind
of modifications can be performed:

– Changes in the structure of the RBFNN (Increase and decrease operators):
Addition and Deletion of an RBF. The first one adds an RBF in one random
position over the input vectors space, setting its radius with a random value.
All the random values are taken from an uniform distribution in the interval
[0,1] since the input vectors and their output are normalized. The second
operator is the opposite to the previous one, deleting a random existing
RBF from the network. This mutation is constrained so that is not applied
when the individual has less than two neurons.

– Changes in the elements of the structure (Movement operators): The third
and the fourth operators refer to real coded genetic algorithms as presented
in [5]. The third operator adds to all the coordinates of a center a random
distance chosen in the interval [-0.5,0.5] from a uniform distribution. The
fourth one has exactly the same behavior but changing the value of the
radius of the selected RBF.

3 Island Specialisation

In order to obtain results of maximum quality and take advantage of each type of
operator, a parallel implementation was studied. This implementation is based

on the island paradigm where there are several islands (in our parallel imple-
mentation these map to processors) that evolve independent populations and,
exchange information or individuals.

From the point of view of evolving the topology and structure of the RBFNN,
we propose the following specialization: combine crossover 1 and the movement
mutation operators in one island and the crossover 2 and the movement and
increasing mutation operators. This combination of operators aims to boost the
exploration capabilities of the crossover 2 and the exploitation ones of crossover
1. Since the crossover 2 explore more topologies by increasing the size of the
NNs, the specialisation can be done by letting this island to produce only bigger
networks. The other island with the crossover 1, will take care of exploitation of
the chromosomes and will decrease the size of the networks.

4 Experiments

The experiments were performed using a two dimensional function that was
generated using a Gaussian RBFNN with randomly chosen parameters over a
grid of 25x25 points.

Although some metrics have been applied to compare nondominated sets [6],
in [9] it is suggested that: “as long as a derived/known Pareto front can be visu-
alized, pMOEA1 effectiveness may still best be initially observed and estimated
by the human eye” . Therefore the experimental analysis of the algorithms will
be based on the plots of the resulting Pareto fronts.

The algorithms were executed using the same initial population of the same
size and the same values for all the parameters. The crossover probability and
mutation probability were 0.5, the size of the population 100 and the number of
generations was fixed to 100. The probabilities might seem high but it’s necessary
to have a high mutation probability to allow the network to increase its size,
and the centers and radii to move. The high crossover probability makes it
possible to show the effects of the crossover operators. Several executions were
made changing the migration rate, allowing the algorithms to have 2 (each 40
generations), 4 (each 20 generations), 9 (each 10 generations), and 19 (each 5
generations) migrations through the 100 generations.

The results are shown in Figure 1 where the Pareto fronts obtained from each
algorithm are represented according to the objectives that have to be minimized,
this is, the approximation error and the number of neurons in the network.

The parallel implementation will be compared with non distributed algo-
rithms that are considered as those that have no communication. Within the
non distributed algorithms, three different possibilities are determined by the
crossover operators and all of these algorithms will use the four mutation oper-
ators at the same time. The first algorithm uses only the crossover 1, the second
algorithm uses the crossover 2 and the third non distributed algorithm chooses
randomly between the two crossover operators each time it has to be applied.

1 pMOEA stands for parallel MultiObjective Evolutionary Algorithms

For the non distributed algorithms, as it is shown in Figure 1, the crossover
operator 1 obtains better results for small networks but it is not able to grow
them as much as the crossover operator 2 does. When the two operators are
applied together the results improve significantly, obtaining a better Pareto front
although the crossover operator 2 is able to design networks with a smaller
approximation error when the size of them is big.

Figure 1 shows that the parallel model outperforms the three previous possi-
bilities for all the migration rates. This means that the parallelization is positive
independently of the migration rate. If the results are analyzed in detail, it is
possible to see how, for low migration rates, the exploitation capabilities of the
algorithm increases obtaining smaller networks with better approximation errors
meanwhile for high migration rates, the exploration capabilities are boosted, ob-
taining a more complete Pareto.

0 5 10 15 20 25
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

number of RBFs

A
pp

ro
xi

m
at

io
n

E
rr

or

Op 1
Op 2
Mixed
Parallel

0 5 10 15 20 25
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

number of RBFs

A
pp

ro
xi

m
at

io
n

E
rr

or
Op 1
Op 2
Mixed
Parallel

2 migrations 4 migrations

0 5 10 15 20 25
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

number of RBFs

A
pp

ro
xi

m
at

io
n

E
rr

or

Op 1
Op 2
Mixed
Parallel

0 5 10 15 20 25
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

number of RBFs

A
pp

ro
xi

m
at

io
n

E
rr

or

Op 1
Op 2
Mixed
Parallel

9 migrations 19 migrations

Fig. 1. Pareto front obtained performing several migration steps for the parallel algo-
rithm and the non distributed approaches

5 Conclusions

The design of an RBFNN is a complex task that can be solved using evolutionary
approaches that provide satisfactory results. This paper has presented a multiob-
jective GA that designs RBFNNs to approximate functions. This algorithm has
been analyzed considering a non distributed approach that has been specialised
by defining separate islands that applied different combinations of mutation and
crossover operators. The results confirm that the specialisation on the different
aspects of the design of RBFNNs through the parallel approach could lead to
obtain better results.

Acknowledgements. This work has been partially supported by the Spanish
CICYT Project TIN2004-01419 and the HPC-Europa programme, funded under
the European Commission’s Research Infrastructures activity of the Structur-
ing the European Research Area programme, contract number RII3-CT-2003-
506079.

References

1. A. G. Bors. Introduction of the Radial Basis Function (RBF) networks. OnLine
Symposium for Electronics Engineers, 1:1–7, February 2001.

2. K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evolutionary Computation, 6(2):182–197,
2002.

3. J. González, I. Rojas, J. Ortega, H. Pomares, F.J. Fernández, and A. Dı́az. Multi-
objective evolutionary optimization of the size, shape, and position parameters of
radial basis function networks for function approximation. IEEE Transactions on
Neural Networks, 14(6):1478–1495, November 2003.

4. P. J. B. Hancock. Genetic Algorithms and Permutation Problems: a Comparison
of Recombination Operators for Neural Net Structure Specification. In D. Whitley,
editor, Proceedings of COGANN workshop, IJCNN, Baltimore. IEEE, 1992.

5. F. Herrera, M. Lozano, and J. L. Verdegay. Tackling real-coded genetic algorithms:
operators and tools for the behavioural analysis . Artificial Intelligence Reviews,
12(4):265–319, 1998.

6. J. Knowles and D. Corne. On metrics for comparing non-dominated sets, 2002. In
Congress on Evolutionary Computation (CEC 2002).

7. V. Pareto. Cours D’Economie Politique, volume I and II. F. Rouge, Lausanne,
1896.

8. J. Park and J. W. Sandberg. Universal approximation using radial basis functions
network. Neural Computation, 3:246–257, 1991.

9. D. A. van Veldhuizen, J. B. Zydallis, and G. B. Lamont. Considerations in engi-
neering parallel multiobjective evolutionary algorithms. IEEE Trans. Evolutionary
Computation, 7(2):144–173, 2003.

