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Abstract. Clustering techniques have always been oriented to solve
classification and pattern recognition problems. This clustering tech-
niques have been used also to initialize the centers of the Radial Basis
Function (RBF) when designing an RBF Neural Network (RBFNN) that
approximates a function. Since classification and function approximation
problems are quite different, it is necessary to design a new clustering
technique specialized in the problem of function approximation. In this
paper, a new clustering technique it is proposed to make the right ini-
tialization of the centers of the RBFs. The novelty of the algorithm is
the employment of a possibilistic partition of the data, rather than a
hard or fuzzy partition as it is commonly used in clustering algorithms.
The use of this kind of partition with the addition of several components
to use the information provided by the output, allow the new algorithm
to provide better results and be more robust than the other clustering
algorithms even if noise exits in the input data.

1 Introduction

The function approximation problem can be formulated as, given a set of obser-
vations {(xk; yk), k = 1, ..., n} with yk = F (xk) ∈ IR and xk ∈ IRd, it is desired
to obtain a function G so yk = G (xk) ∈ IR with xk ∈ IRd. To solve this prob-
lem, Radial Basis Function Neural Networks (RBFNN) are used because of their
capability as universal approximators [5, 11].

The design of a RBFNN is performed by following several steps, in which
the initialization of the centers of the RBFs is the first one. The use of a clus-
tering algorithm is a common solution for a first initialization of the centers [9,
15]. These clustering algorithms were designed for classification problems [8] in-
stead of for the function approximation problem so the results they provide can
be improved significantly. Clustering algorithms try to classify the set of input
data assigning a set of predefined labels, however, in the function approximation
problem, the output of the function belongs to a continuous interval. Clustering
algorithms do not use the information provided by the function output ignoring
the variability of the function. In the function approximation problem, the in-
formation provided by the output of the function to be approximated is needed
to obtain a correct placement of the centers. Centers must be placed in the areas



where the function is more variable and therefore, it will be needed more RBFs
to be able to model the variations of the function, meanwhile, in the areas where
the function is not that variable, less centers will be needed to approximate the
function.

It is necessary to design a clustering algorithm oriented to the function ap-
proximation problem in order to make a right initialization of the RBFs centers.
In this paper, a new algorithm to solve this task is proposed. It is based on
a mixed fuzzy-possibilistic approach improving results, as it will be shown in
the experiments section, in comparison with traditional clustering algorithms
and clustering algorithms designed specifically for the function approximation
problem.

2 RBFNN Description

A RBFNN F with fixed structure to approximate an unknown function F with
n entries and one output starting from a set of values {(xk; yk); k = 1, ..., n}
with yk = F (xk) ∈ IR and xk ∈ IRd, has a set of parameters that have to be
optimized:

F (xk; C, R,Ω) =
m∑

j=1

φ(xk; cj , rj) ·Ωj (1)

where C = {c1, ..., cm} is the set of RBF centers, R = {r1, ..., rm} is the set
of values for each RBF radius, Ω = {Ω1, ..., Ωm} is the set of weights and
φ(xk; c j , rj) represents an RBF. The activation function most commonly used
for classification and regression problems is the Gaussian function because it is
continuous, differentiable, it provides a softer output and improves the inter-
polation capabilities [3, 13]. The procedure to design an RBFNN for functional
approximation problem is shown below:

1. Initialize RBF centers cj

2. Initialize the radius rj for each RBF
3. Calculate the optimum value for the weights Ωj

The first step is accomplished by applying clustering algorithms, the new
algorithm proposed in this paper will initialize the centers, providing better
results than other clustering algorithms used for this task.

3 Previous Clustering Algorithms

This section will describe several clustering algorithms that have been used to de-
termine the centers when designing RBFNN for functional approximation prob-
lems.



3.1 Fuzzy C-means (FCM)

This algorithm uses a fuzzy partition of the data where an input vector belongs to
several clusters with a membership value. The objective function to be minimized
is:

Jh(U,C; X) =
n∑

k=1

m∑

i=1

uh
ik‖xk − ci‖2 (2)

where X = {x1, x2, ..., xn} are the input vectors, C = {c1, c2, ..., cm} are the
centers of the clusters, U = [uik] is the matrix where the degree of membership
is established by the input vector to the cluster , and h is a parameter to control
the degree of the partition fuzziness. After applying the minimum square method
to minimize the function in Equation 2 [2], we get the equations to reach the
solution trough and iterative process:

uik =




m∑

j=1

(
DikA

DjkA

) 2
h−1



−1

(3)

ci =

n∑
k=1

uh
ikxk

n∑
k=1

uh
ik

(4)

where DjkA = ||xk − cj ||2, and || · || is the inner product norm in IRd. Using
this iterative process we calculate matrix U from matrix C or vice versa starting
from a random initialization of any of the matrices: (Ct−1 → Ut → Ct or Ut−1 →
Ct → Ut). The stop criteria is usually considered as ‖Ct−1 − Ct‖ < threshold,
this is, when the centers do not move significantly.

3.2 Improved Possibilistic C-means (IPCM)

The Possibilistic C-means [10] determines a possibilistic partition of the data,
in which a possibilistic membership measures the absolute degree of typicality
of a point to a cluster. This approach is robust because noisy points will not
affect significantly the possibilistic partition as they would in a fuzzy partition.
This algorithm tends to find identical clusters [1] so an improved version of this
algorithm is proposed in [14]. This new approach combines a fuzzy partition with
a possibilistic partition determining the following function to be minimized:

Jh(U (p), U (f), C;X) =
n∑

k=1

m∑

i=1

(u(f)
ik )hf (u(p)

ik )hpd2
ik+

m∑

i=1

ηi

n∑

k=1

(u(f)
ik )hf (1− u

(p)
ik )hp

(5)
where:



– u
(p)
ik is the possibilistic membership of xk in the cluster i.

– u
(f)
ik is the fuzzy membership of xk in the cluster i.

– hp and hf are the weighting exponents for the possibilistic and the fuzzy
membership functions.

– ηi is a scale parameter that is calculated using:

ηi =

n∑
k=1

(u(f)
ik )hf (u(p)

ik )hpd2
ik

(u(f)
ik )hf (u(p)

ik )hp

(6)

As in the previous algorithms, an iterative process drives to the solution.

3.3 Clustering for Function Approximation (CFA)

This algorithm uses the information provided by the objective function output
in such a way that the algorithm will place more centers where the variability
of the output is higher instead of where there are more input vectors.

To fulfill this task, the CFA algorithm defines a set O = {o1, ..., om} that
represents a hypothetic output for each center. This value will be obtained as a
weighted mean of the output of the input vectors belonging to a center.

CFA defines an objective function that has to be minimized in order to
converge to a solution:

m∑
j=1

∑
xk∈Cj

‖xk − cj‖2ωkj

m∑
j=1

∑
xk∈Cj

ωkj

(7)

where ωkj weights the influence of each input vector in the final position a center.
The CFA algorithm is structured in three basic steps: Partition of the data,

centers and estimated output updating and a migration step.
The partition is performed as it is done in Hard C-means [4], thus, a Voronoi

partition of the data is obtained. Once the input vectors are partitioned, the
centers and their estimated outputs have to be updated, this process is done
iteratively using the equations shown below:

cj =

∑
xk∈Cj

xkωkj

∑
xk∈Cj

ωkj
oj =

∑
xk∈Cj

F (xk)ωkj

∑
xk∈Cj

ωkj
. (8)

The algorithm, to update centers and estimated outputs, has an internal
loop that iterates until the total distortion of the partition is not decreased
significantly.

The algorithm has a migration step that moves centers allocated in input
zones where the target function is stable, to zones where the output variability



is higher. The idea of a migration step was introduced in [12] as an extension of
Hard C-means and the objective is to find an optimal vector quantization where
each center makes an equal contribution to the total distortion [5].

3.4 Fuzzy Clustering for Function Approximation (FCFA)

The FCFA algorithm [6, 7] is based in the CFA and FCM. The main difference
between CFA and FCFA is the application of fuzzy logic to the algorithm. FCFA
performs a fuzzy partition of the data and iterates in the same way as FCM
does, thus, it improves the speed of the algorithm in comparison with CFA
because it only needs one step of actualization instead of an internal loop. The
algorithm considers the input data as the input data vectors concatenated with
their outputs. Proceeding like this, the expected output of a center correspond
with its last coodinate. FCFA also makes a modification in the migration process
performing a pre-selection of the centers to be migrated modifying the criteria
used to decide if a center should be migrated or not. This pre-selection is based
on a fuzzy ruled system.

4 Possibilistic Centers Initializer (PCI)

The new algorithm proposed uses a possibilistic partition and a fuzzy parti-
tion, combining both approach as it was done in [14]. The objective function
Jh(U (p), U (f), C, W ; X) to be minimized is defined as:

n∑

k=1

m∑

i=1

(u(f)
ik )hf (u(p)

ik )hpD2
ikW +

m∑

i=1

ηi

n∑

k=1

(u(f)
ik )hf (1− u

(p)
ik )hp (9)

where:

– u
(p)
ik is the possibilistic membership of xk in the cluster i.

– u
(f)
ik is the fuzzy membership of xk in the cluster i.

– DikW is the weighted euclidean distance.
– ηi is a scale parameter that is calculated using:

ηi =

n∑
k=1

(u(f)
ik )hf d2

ik

(u(f)
ik )hf

(10)

This function is obtained by replacing de distance measure in the FCM al-
gorithm by the objective function of the PCM algorithm, obtaining a mixed
approach. The scale parameter determines the relative degree to which the sec-
ond term in the objective function is compared with the first. This second term
forces to make the possibilistic membership degree as big as possible, thus, choos-
ing this value for ηi will keep a balance between the fuzzy and the possibilistic
memberships. When calculating ηi, the distance is not weighted because the es-
timated outputs, in the initialization of the algorithm, are not appropriate to
calculate w.



4.1 Weighting Parameter

To make the output of the target function to be approximated influence the
placement of the centers, it is necessary to change the similarity criteria in the
clustering process. The combination of the possibilistic and the fuzzy approach
has to be influenced by the output of the function to be minimized. In order to
do this, the euclidean distance used as the similarity criteria will be weighted
using the parameter w. The calculation of w is obtained by:

wkj = |F (xk)− oj | (11)

where oj represents the expected output of a center, this is, the hypothetic
position of the center cj in the output axis. The euclidean distance dij between
a center i and an input vector will be weighted using the following equation:

DijW = dij · wij . (12)

Proceeding this way, DijW will be small if the center is near the input vector
and they have similar output values. Thus a center can own input vectors that
are far from him if they have similar output values, and will not own input
vectors that, even though are near the center, have a big difference in the output
values. This will allow the algorithm to place more centers where the output of
the target function to be approximated is more variable.

4.2 Iterative process

As in all the previous algorithms based on a fuzzy or a possibilistic partition,
the solution is reached by an alternating optimization approach where all the
elements defined in the function to be minimized (Equation 9) are actualized
iteratively. For the new algorithm proposed in this paper, the equations are:

u
(p)
ik =

1

1 +
(

DikW

ηi

) 1
hp−1

(13)

u
(f)
ik =

1
m∑

j=1

(
(u

(p)
ik

)(hp−1)/2DikW

(u
(p)
jk

)(hp−1)/2DjkW

) 2
hf−1

(14)

ci =

n∑
k=1

(u(p)
ik )(hp)(u(f)

ik )(hf )xkw2
ik

n∑
k=1

(u(p)
ik )(hp)(u(f)

ik )(hf )w2
ik

(15)

oi =

n∑
k=1

(u(p)
ik )(hp)(u(f)

ik )(hf )Ykd2
ik

n∑
k=1

(u(p)
ik )(hp)(u(f)

ik )(hf )d2
ik

(16)



These equations are obtained by differentiating Jh(U (p), U (f), C, W ;X) (Equa-
tion 9) with respect u

(p)
ik , u

(f)
ik , ci and oi. This approach is the same followed in

FCM, IPCM and the convergence is guaranteed.

4.3 General Scheme

The PCI algorithm follows the scheme shown below to place the centers:

Initialize C1 using Fuzzy C-means
Initialize O1 using fuzzy membership function
Do

Calculate w
Calculate the distance between Ci and X
Calculate the new Ui

Calculate the new Ci from Ui

Calculate the new Oi from Ci

i=i+1
While(abs(Ci−1-Ci<threshold)

As in [14], the FCM algorithm is used to find a proper start point, making
the algorithm much more robust. In the first step, the expected output oi of each
center ci will correspond with the output value of the input vector that belongs
to ci with the highest membership value.

5 Experimental Results

The experiment will consists in the approximation of the function f1 represented
in Fig. 1, that has been generated using an RBFNN with the following parame-
ters:

centers radii weights
119.029 15.595 -3.748
175.106 4.279 -1.016
39.796 16.350 3.855
71.087 9.164 1.857
93.030 37.518 4.095

200 points uniformly distributed were generated between the interval [1,399]
using the RBFNN described above with a gaussian activation function . The
function has been designed to show the importance of the output variability on
the target function. In this function there is an interval where the variability of
the output is high and another interval where the function is almost constant.
This fact will make the initialization of the centers very important because the
centers will have to be concentrated in the areas where the function is more
variable.



Once the clustering algorithm were executed and the corresponding RBFNNs
were generated, the normalized root mean squared error (NRMSE) has been used
in order to determine the quality of the approximation.

The radii of the RBFs were calculated using the k-neighbors algorithm with
k=1. The weights were calculated optimally by solving a linear equation system.

FCM, IPCM, CFA, FCFA and PCI were executed several times providing
the results shown in Table 1. In this table it is shown the approximation error
right after the initialization procedure. In Table 2 are shown the results after
applying a local search algorithm (Levenberg-Marquardt) to make a fine tune of
the RBF centers and radii. The results are depicted in Fig. 2.

Table 1. Mean and Standard Deviation of the approximation error (NRMSE) for
function f1.

Clusters FCM IPCM CFA FCFA PCI

4 0.633(0.002) 0.592(2E-4) 0.595(0.022) 0.361(0.035) 0.444(1E-4)
5 0.619(0.001) 0.584(0.001) 0.515(0.035) 0.345(0.034) 0.343(0.001)
6 0.544(0.003) 0.537(0.001) 0.412(0.041) 0.312(0.046) 0.287(3E-4)

Table 2. Mean and Standard Deviation of the approximation error (NRMSE) for
function f1 after local search algorithm.

Clusters FCM IPCM CFA FCFA PCI

4 0.182(0.011) 0.187(0.015) 0.186(0.012) 0.149(0.030) 0.100(1E-4)
5 0.308(0.001) 0.256(0.026) 0.178(0.045) 0.104(0.043) 0.048(0.022)
6 0.187(0.069) 0.125(0.045) 0.098(0.071) 0.082(0.019) 0.0002(3E-4)

The results show how there is a need of using specific clustering algorithms
to initialize the centers when designing an RBFNN for the functional approxi-
mation problem. Classical clustering do not use the information provided by the
output of the target function to be approximated. Thus they are not able to
detect the areas where the output is more variable, providing poor results. The
approximation error decreases significantly when specific clustering algorithms
designed for this task are employed.

The new algorithm proposed in this paper has shown that can performs better
than all the previous clustering. PCI not only performs better, but is more robust
because the standard deviations of the solutions are very small, indicating that
it finds the same configuration on each execution of the algorithm. The previous
clustering algorithms for functional approximation were not too robust, so it can
be appreciated how a mixed fuzzy-possibilistic approach can solve that problem.
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Fig. 1. Target Function (blue line) and training set (red dots).
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Fig. 2. Mean and Standard Deviation of the approximation error (NRMSE) before and
after local search algorithm.



6 Conclusions

RBFNNs provides good results when they are used for functional approximation
problems. The first step in the design of those RBFNNs was performed by clus-
tering algorithms. In this paper, a new clustering algorithm designed specifically
for the center initialization task has been presented. The novelty of this algorithm
in comparison with other clustering algorithms designed for this task, is the use
of a mixed possibilistic and fuzzy approach when making the partition of the
data. The results shown how this approach allow to make a better initialization
of the centers, providing better results when approximating functions.
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