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Abstract. This paper presents a first approach to try to determine the
weight of a newborn using a set of variables determined uniquely by the
mother. The proposed model to approximate the weight is a Radial Ba-
sis Function Neural Network (RBFNN) because it has been successfully
applied to many real world problems. The problem of determining the
weight of a newborn could be very useful by the time of diagnosing the
gestational diabetes mellitus, since it can be a risk factor, and also to de-
termine if the newborn is macrosomic. However, the design of RBFNNs
is another issue which still remains as a challenge since there is no per-
fect methodology to design an RBFNN using a reduced data set, keeping
the generalization capabilities of the network. Within the many design
techniques existing in the literature, the use of clustering algorithms as
a first initialization step for the RBF centers is a quite common solution
and many approaches have been proposed. The following work presents
a comparative of RBFNNs generated using several algorithms recently
developed concluding that, although RBFNNs that can approximate a
training data set with an acceptable error, further work must be done in
order to adapt RBFNN to large dimensional spaces where the general-
ization capabilities might be lost.

1 Introduction

The problem of predicting the weight of a newborn using some parameters mea-
sured from the mother translates into the problem of approximating a function.
Formally, a function approximation problem can be formulated as, given a set
of observations {(xk; yk); k = 1, ..., n} with yk = F (xk) ∈ IR and xk ∈ IRd, it is
desired to obtain a function G so yk = G (xk) ∈ IR with xk ∈ IRd.

Designing an RBF Neural Network (RBFNN) to approximate a function from
a set of input-output data pairs, is a common solution since this kind of networks
are able to approximate any function [4, 12]. Once this function is learned, it will
be possible to generate new outputs from input data that were not specified in
the original data set, making possible to predict the weight of a newborn.

The most important information that could be obtained is the fetal macro-
somia, this is, a a birth weight of more than 4,000 g. The macrosomia is difficult



to predict and clinical and ultrasonographic estimates tend to have errors [15].
Furthermore, the weight of the fetus is a risk factor for several diseases such
us gestational diabetes mellitus [3], therefore, if we are able to approximate the
weight of the newborn, we will know in advance one of the many elements that
are used to identify diseases.

The rest of the paper is organized as follows, Section 2 describes briefly the
RBFNN model, Section 3 introduces the algorithms used to design the RBFNNs
to predict the newborn weight and Section 4 shows the results. Finally, in Section
5, conclusions are drawn.

2 RBFNN Description

An RBFNN (Figure 1) F with fixed structure to approximate an unknown func-
tion F with n entries and one output starting from a set of values {(xk; yk); k = 1, ..., n}
with yk = F (xk) ∈ IR and xk ∈ IRd, has a set of parameters that have to be
optimized:

F (xk; C, R,Ω) =
m∑

j=1

φ(xk; cj , rj) ·Ωj (1)

where C = {c1, ..., cm} is the set of RBF centers, R = {r1, ..., rm} is the set
of values for each RBF radius, Ω = {Ω1, ..., Ωm} is the set of weights and
φ(xk; c j , rj) represents an RBF. The activation function most commonly used
for classification and regression problems is the Gaussian function because it is
continuous, differentiable, it provides a softer output and improves the interpo-
lation capabilities [2, 14].

The procedure to design an RBFNN starts by setting the number of RBFs
in the hidden layer, then the RBF centers cj must be placed and a radius rj has
to be set for each of them. Finally, the weights Ωj can be calculated optimally
by solving a linear equation system [5].

Fig. 1. A Radial Basis Function Neural Network



3 Algorithms for designing RFBNNs

This section presents the algorithms used to design the RBFNNs that predict the
newborn weight. Some of these algorithms have been recently developed showing
a better performance than classical algorithms used up to date.

3.1 Fuzzy C-means (FCM)

This algorithm presented in [1] uses a fuzzy partition of the data where an
input vector belongs to several clusters with a membership value. It defines an
objective distortion function to be minimized is:

Jh(U,C; X) =
n∑

k=1

m∑

i=1

uh
ik‖xk − ci‖2 (2)

where X = {x1, x2, ..., xn} are the input vectors, C = {c1, c2, ..., cm} are the
centers of the clusters, U = [uik] is the matrix where the degree of membership
is established by the input vector to the cluster, and h is a parameter to control
the degree of the partition fuzziness. After applying the least square method to
minimize the function in Equation 2, we get the equations to reach the solution
trough an iterative process.

3.2 Improved Clustering for Function Approximation Algorithm:
ICFA

This algorithm uses the information provided by the objective function output
in such a way that the algorithm will place more centers where the variability
of the output is higher instead of where there are more input vectors.

In order to make the centers closer to the areas where the target function is
more variable, a change in the similarity criteria used in the clustering process
it is needed. To consider these situations, the parameter w is introduced (4)
to modify the values of the distance between a center and an input vector.
w will measure the difference between the estimated output of a center and the
output value of an input vector. The smaller w is, the more the distance between
the center and the vector will be reduced. This distance is calculated now by
modifying the norm in the euclidean distance:

dkj = ‖xk − cj‖2 · w2
kj . (3)

To fulfill this task, the CFA algorithm defines a set O = {o1, ..., om} that
represents a hypothetic output for each center.

wkj =
|F (xk)− oj |

n
max
i=1

{F (xi)} −
n

min
i=1

{F (xi)}
(4)

where F (x) is the function output and oj is the estimated output of cj .



Thus, the objective function to be minimize is redefined as:

Jh(U,C,W ) =
n∑

k=1

m∑

i=1

uh
ik‖xk − ci‖2w2

ik (5)

This function is minimized using an alternating optimization procedure in
the same way as in the FCM algorithm, although new equations are needed to
calculate the positions of the centers, the membership values and the expected
output values:

uik =




m∑

j=1

(
dik

djk

) 2
h−1



−1

ci =

n∑
k=1

uh
ikxkw2

ik

n∑
k=1

uh
ikw2

ik

oi =

n∑
k=1

uh
ikYkd2

ik

n∑
k=1

uh
ik

d2
ik

(6)

where dij is the weighted euclidean distance between center i and input vector j,
and h > 1 is a parameter that allow us to control how fuzzy will be the partition
and usually is equal to 2.

The ICFA algorithm performs a migration step with the objective of reducing
the global distortion of the partition by putting closer two centers. It performs a
pre-selection of the centers, to decide what centers will be migrated, it is used a
fuzzy rule that selects centers that have a distortion value above the average. By
doing this, centers that do not add a significant error to the objective function
are excluded because their placement is correct and they do not need help from
other center. The center to be migrated will be the one that has assigned the
smallest value of distortion and the destination of the migration will be the center
that has the biggest value of distortion. If the total distortion of the partition has
nor decreased after the migration, the centers remain at their original positions.
The idea of a migration step was introduced in [13] as an extension of Hard
C-means.

3.3 Fuzzy Possibilistic CFA

The algorithm that is used in the design is an adaptation of the one presented in
[9] but modifying the way the input data is partitioned. As classical clustering
algorithms, the proposed algorithm defines a distortion function that has to be
minimized. The distortion function is based in a fuzzy-possibilistic approach as
it was presented in [6], although the migration step remains the same as for
ICFA. The function is:

Jh(U,C, T, W ;X) =
n∑

k=1

m∑

i=1

(uhf

ik + t
hp

ik )D2
ikW (7)



restricted to the constraints:
m∑

i=1

uik = 1 ∀k = 1...n and
n∑

k=1

tik = 1 ∀i = 1...m.

As the previous approaches, the final position of the centers is reached by an
alternating optimization approach where all the elements defined in the func-
tion to be minimized are updated iteratively using the equations obtained by
differentiating Jh(U, T, C, W ;X) with uik, tik, ci and oi.

3.4 Possibilistic Centers Initializer (PCI)

This algorithm [8] adapts the algorithm proposed in [9] using a mixed approach
between a possibilistic and a fuzzy partition, combining both approach as it was
done in [16]. The objective function to be minimized is defined as:

Jh(U (p), U (f), C, W ; X) =
n∑

k=1

m∑

i=1

(u(f)
ik )hf (u(p)

ik )hpD2
ikW +

m∑

i=1

ηi

n∑

k=1

(u(f)
ik )hf (1− u

(p)
ik )hp

(8)
where u

(p)
ik is the possibilistic membership of xk in the cluster i, u

(f)
ik is the

fuzzy membership of xk in the cluster i, DikW is the weighted euclidean distance,

ηi is a scale parameter that is calculated by: ηi =

n∑
k=1

(u
(f)
ik

)hf ‖xk−ci‖2

(u
(f)
ik

)hf

This function is obtained by replacing de distance measure in the FCM al-
gorithm by the objective function of the PCM algorithm, obtaining a mixed
approach. The scale parameter determines the relative degree to which the sec-
ond term in the objective function is compared with the first. This second term
forces to make the possibilistic membership degree as big as possible, thus, choos-
ing this value for ηi will keep a balance between the fuzzy and the possibilistic
memberships.

3.5 Output Value-Based Initializer (OVI)

This algorithm [7] changes the perspective of the previous ones, the idea is
to think the output space as a flat surface (Y (xk) = 0), where some of the
values of this surface have been modified by an n-dimensional element, obtaining
yk. From this, it can be assumed that the most common value of the target
function is constant and equal 0. The preprocessing of the output is performed
by making the most frequent output value equal 0. This can be easily performed
by calculating the fuzzy mode of the output values and subtracting it to each
yk. Once this situation is achieved, all the most common values that have an
output around 0 will not affect the distortion significantly so the centers will be
mostly influenced by the input vectors with high output values.

This distortion function combines the information provided by a coordinate
in the input vector space and its corresponding output in such a way that, if
a neuron is near an input vector and the output of the input vector is high,



the activation value of that neuron respect that input vector will be high. The
distortion function is defined as:

δ =
n∑

k=1

m∑

i=1

D2
ikal

ik|Y p
k | (9)

where Dik represents the euclidean distance from a center ci to an input vector
xk, aik is the activation value that determines how important the input vector
xk is for the center ci, l is a parameter to control the degree of overlapping
between the neurons, Yk is the preprocessed output of the input vector xk, and
p allows the influence of the output when initializing the centers to increase or
decrease.

The OVI algorithm calculates how much an input vector will activate a neu-
ron in function of its output value. From this, the value of the radius can be set
as the distance to the farthest input vector that activates a center. In order to do
that, a threshold has to be established to decide when an input vector activates
or does not activate a center.

Using the values of the A matrix, an activation threshold (ϑoverlap) that
allows us to calculate the distance to the farthest input vector that activates a
neuron can be established. The proposed algorithm selects the radius for each
center independently of the positions of the other centers, unlike in the KNN
heuristic [11], and it allows to maintain an overlap between the RBFs, unlike in
the CIV heuristic [10].

Each radius is defined as:

ri = max{ Dik / aik > ϑoverlap , 1 ≤ i ≤ m , 1 ≤ k ≤ n } (10)

The selection of a threshold makes the algorithm more flexible, because it
can increase or decrease the degree of overlap between the RBFs.

4 Experimental Results

The data used for the experiments was provided by the Preventative Medicine
Department at the University of Granada and consists in a cohort of 969 preg-
nant women considering the following parameters: number of cigarettes smoked
during the pregnancy, mother’s weight at the beginning and at the end of the
pregnancy, gestation days and the mother’s age. A set of 500 randomly chosen
elements from the original set was used for training and the rest for test.

To compare the results provided by the different algorithms, it will be used
the normalized root mean squared error (NRMSE) which is defined as:

NRMSE =

√√√√√√√

n∑
k=1

(yk −F(xk;C,R, Ω))2

n∑
k=1

(
yk − Ȳ

)2
(11)



where Ȳ is the average of the outputs of the target function, in this case, the
final weight of the newborn.

The radii of the RBFs were calculated using the k-neighbors algorithm with
k=1, except for the OVI algorithm which uses its own technique as described
above. The weights were calculated optimally by solving a linear equation sys-
tem.

Table 1 shows the approximation errors for the training and test data sets.
As the results show, the performance of the algorithms is quite similar although
the OVI algorithm seems to perform better than the rest probably as a con-
sequence of its own method to calculate the radii. All the algorithms are able
to fit the training set with a reasonable error for any number of centers with
no improvement of error when increasing the number of RBFs. Unfortunately,
the test errors are unacceptable for all the algorithms showing how the RBFNNs
loose their generalization capabilities in high dimensional spaces using a reduced
amount of data.

Table 1. Mean of the approximation error (NRMSE) for the training and test sets.

Training

Clusters FCM ICFA FPCFA PCI OVI

5 0.639 0.652 0.642 0.638 0.635
6 0.680 0.642 0.641 0.644 0.640
7 0.675 0.633 0.629 0.636 0.625
8 0.674 0.632 0.653 0.669 0.617
9 0.644 0.655 0.631 0.629 0.619
10 0.644 0.623 0.645 0.650 0.631

Test

Clusters FCM ICFA FPCFA PCI OVI

5 4.583 4.461 4.518 4.575 4.545
6 4.569 4.606 4.499 4.625 4.619
7 4.639 4.550 4.634 4.479 4.579
8 4.593 4.573 4.575 4.451 4.621
9 4.580 4.570 4.577 4.614 4.607
10 4.628 4.588 4.597 4.601 4.591

5 Conclusions

This work has presented an application of RBFNNs to a real world problem: the
prediction of a newborn’s weight. This parameter could be quite useful in the
diagnosis of macrosomia which can lead to complications at the childbirth and
also to be considered in the diagnosis of other diseases which has the newborn



weight as a risk factor. The RBFNNs were designed using a classical methodology
where the centers of the RBFs are initialized using clustering techniques and
applying local search algorithms. The results showed how, for the training set,
the RBFNNs were able to approximate reasonably well the weights although test
errors become unacceptable, independently of the algorithm used. This results
cheer to keep on researching on this subject although aiming at other aspects
such us how the Radial Basis Function behave in high dimensional spaces.
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13. G. Patanè and M. Russo. The Enhanced-LBG algorithm. Neural Networks,
14(9):1219–1237, 2001.



14. I. Rojas, M. Anguita, A. Prieto, and O. Valenzuela. Analysis of the operators
involved in the definition of the implication functions and in the fuzzy inference
proccess. International Journal of Approximate Reasoning, 19:367–389, 1998.

15. M. A. Zamorski and W.S. Biggs. Management of Suspected Fetal Macrosomia.
American Family Physician, 63(2), January 2001.

16. J. Zhang and Y. Leung. Improved possibilistic C–means clustering algorithms.
IEEE Transactions on Fuzzy Systems, 12:209–217, 2004.


