
Using Fuzzy Logic to Improve a Clustering

Technique for Function Approximation

A. Guillén, J. González, I. Rojas, H. Pomares, L.J. Herrera, O. Valenzuela, A. Prieto

Department of Computer Architecture and Computer Technology,
University of Granada, 18017 Granada, Spain

Abstract

Clustering algorithms have been applied in several disciplines successfully. One of
those applications is the initialization of Radial Basis Function (RBF) centers com-
posing a Neural Network, designed to solve functional approximation problems. The
Clustering for Function Approximation (CFA) algorithm was presented as a new
clustering technique that provides better results than other clustering algorithms
that were traditionally used to initialize RBF centers. Even though CFA improves
performance against other clustering algorithms, it has some flaws that can be im-
proved. Within those flaws, it can be mentioned the way the partition of the input
data is done, the complex migration process, the algorithm’s speed, the existence of
some parameters that have to be set in order to obtain good solutions, and the con-
vergence is not guaranteed. In this paper, it is proposed an improved version of this
algorithm that solves the problems that its predecessor has using fuzzy logic success-
fully. In the experiments section, it will be shown how the new algorithm performs
better than its predecessor and how important is to make a correct initialization of
the RBF centers to obtain small approximation errors.

Key words: Clustering, RBF, Neural Networks, Function approximation, fuzzy.

1 Introduction

Designing an RBF Neural Network (RBFNN) to approximate a function from
a set of input-output data pairs, is a common solution since this kind of
networks are able to approximate any function [5,12]. Formally, a function
approximation problem can be formulated as, given a set of observations
{(~xk; yk); k = 1, ..., n} with yk = F (~xk) ∈ IR and ~xk ∈ IRd, it is desired to
obtain a function G so yk = G (~xk) ∈ IR with ~xk ∈ IRd. Once this function is
learned, it will be possible to generate new outputs from input data that were
not specified in the original data set.

Preprint submitted to Elsevier Science 8 June 2006

The initialization of the centers of RBFs is the first step to design an RBFNN.
This task has been solved traditionally using clustering algorithms [10,16].
Clustering techniques have been applied to classification problems [8], where
the task to solve is how to organize observed data into meaningful structures.
In classification problems, the input data has to be assigned to a pre-defined
set of labels, thus, if a label is not assigned correctly, the error will be greatly
increased. In the functional approximation problem, a continuous interval of
real numbers is defined to be the output of the input data. Thus, if the gen-
erated output value is near the real output, the error does not increase too
much.

In this context, a new clustering algorithm for functional approximation prob-
lems was designed in our research group: Clustering for Functional Approx-
imation (CFA)[6].The CFA algorithm uses the information provided by the
function output in order to make a better placement of the centers of the
RBFs. This algorithm provides better results in comparison with traditional
clustering algorithms but it has several elements that can be improved.

In this paper, a new algorithm is proposed, solving all the problems presented
in the CFA algorithm using fuzzy logic techniques, and improving results, as
it will be shown in the experiments section.

2 RBFNN Description

A RBFNN F with fixed structure to approximate an unknown function F with
d entries and one output starting from a set of values {(~xk; yk); k = 1, ..., n}
with yk = F (~xk) ∈ IR and ~xk ∈ IRd, has a set of parameters that have to be
optimized:

F (~xk; C,R, Ω) =
m∑

j=1

φ(~xk;~cj, rj) · Ωj (1)

where C = {~c1, ...,~cm} is the set of RBF centers, R = {r1, ..., rm} is the set
of values for each RBF radius, Ω = {Ω1, ..., Ωm} is the set of weights and
φ(~xk;~c j, rj) represents an RBF. The activation function most commonly used
for classification and regression problems is the Gaussian function because it is
continuous, differentiable, it provides a softer output and improves the inter-
polation capabilities [3,14]. The procedure to design an RBFNN for functional
approximation problem is shown below:

(1) Initialize RBF centers ~cj

(2) Initialize the radius rj for each RBF
(3) Calculate the optimum value for the weights Ωj

2

The first step is accomplished by applying clustering algorithms, the new
algorithm proposed in this paper will initialize the centers, providing better
results than other clustering algorithms used for this task.

3 Clustering For Function Approximation Algorithm: CFA

This algorithm uses the information provided by the objective function output
in such a way that the algorithm will place more centers where the variability
of the output is higher instead of where there are more input vectors.

To fulfill this task, the CFA algorithm defines a set O = {o1, ..., om} that
represents a hypothetic output for each center. This value will be obtained as
a weighted mean of the output of the input vectors belonging to a center.

CFA defines an distortion function that has to be minimized in order to con-
verge to a solution:

m∑
j=1

∑
~xk∈Cj

‖~xk − ~cj‖2ωkj

m∑
j=1

∑
~xk∈Cj

ωkj

(2)

where ωkj weights the influence of each input vector in the final position a
center. The bigger the distance between the expected output of a center and
the real output of an input vector is, the bigger the influence in the final result
will be. The calculation of w is obtained by:

ωkj =
|F (~xk)− oj|

n
max
i=1

{F (~xi)} −
n

min
i=1

{F (~xi)}
+ ϑmin, ϑmin > 0. (3)

The first addend in this expression calculates a normalized distance (in the
interval [0,1]) between F (~xk) and oj, the second addend is a minimum contri-
bution threshold. The smaller ϑmin becomes, the more the centers are forced
to be in areas where the output is more variable.

The CFA algorithm is structured in three basic steps: partition of the data,
centers and estimated output updating and a migration step.

The partition is performed as it is done in Hard C-means [4], thus, a Voronoi
partition of the data is obtained. Once the input vectors are partitionated, the
centers and their estimated outputs have to be updated, this process is done
iteratively using the equations shown below:

3

~cj =

∑
~xk∈Cj

~xkωkj

∑
~xk∈Cj

ωkj

(4)

oj =

∑
~xk∈Cj

F (~xk)ωkj

∑
~xk∈Cj

ωkj

(5)

The algorithm, to update centers and estimated outputs, has an internal loop
that iterates until the total distortion of the partition is not decreased signif-
icantly.

The algorithm has a migration step that moves centers allocated in input zones
where the target function is stable, to zones where the output variability is
higher. The idea of a migration step was introduced in [13] as an extension of
Hard C-means.

CFA tries to find an optimal vector quantization where each center makes an
equal contribution to the total distortion [5]. This means that the migration
step will iterate, moving centers that make a small contribution to the total
distortion to the areas where centers make a bigger contribution.

3.1 Flaws in CFA

CFA has some flaws that can be improved, making the algorithm more robust
and efficient and providing better results.

The first disadvantage of CFA is the way the partition of the data is made.
CFA makes a hard partition of the data where an input vector can belong
uniquely to a center, this is because it is based on the Hard C-means algorithm.
When Fuzzy C-means [2] was developed, it demonstrated how a fuzzy partition
of the data could perform better than a hard partition. For the functional
approximation problem, it is more logical to apply a fuzzy partition of the data
because an input vector can activate several neurons with a certain degree of
activation, in the same way an input vector can belong to several centers in a
fuzzy partition.

The second problem is the setting of a parameter which influences critically the
results that can be obtained. The parameter is ϑmin, the minimum contribu-
tion threshold. The smaller this parameter becomes, the slower the algorithm
becomes and the convergence becomes less warranted. The need of a human
expert to set this parameter with a right value is crucial when it is desired to
apply the algorithm to different functions, because a wrong value, will make

4

the algorithm provide bad results.

The third problem of CFA is the iterative process to converge to the solution.
The convergence is not demonstrated because it is presented as a weighted
version of Hard C-means, but the equations proposed do not warrant the con-
vergence of the algorithm. The iterative method is quite inefficient because it
has to iterate many times on each iteration of the main body of the algorithm.

The last problem CFA presents is the migration process. This migration step
is quite complex and makes the algorithm run very slowly. It is based on
a distortion function that require as many iterations as centers, and adds
randomness to the algorithm making it not too robust.

4 Improved CFA Algorithm: ICFA

Let’s introduce the new elements in comparison with CFA, and let’s see the
reasons why this new elements are introduced.

4.1 Input Data Partition

As it was commented before, for the functional approximation problem, it is
more adequate to use a fuzzy partition since an input vector can activates
several neurons at the same time. The CFA algorithm uses a hard partition
of the data. In ICFA, in the same way as it is done in Fuzzy C-means, a fuzzy
partition of the data is used, thus, an input vector belongs to several centers
at a time with a certain membership degree.

4.2 Parameter w

In CFA, the estimated output of a center is calculated using a parameter ω
(3). The calculation of ω implies the election of a minimum contribution value
(ϑmin) that will affect seriously the performance and the computing time of the
algorithm. In order to avoid the establishment of a parameter, ICFA removes
this threshold defining a new weighing parameter, w, which is calculated by:

wkj = |F (~xk)− oj| (6)

where F (~xk) is the function output for the input ~xk and oj is the estimated
output of ~cj. There is no need to normalize the weighing parameter because

5

we will consider normalized functions and the parameter ϑmin is not necessary
since the way in which w is used ensures the convergence of the algorithm
independently of this parameter.

4.3 Objective Function and Iterative Process

In order to make the centers closer to the areas where the target function is
more variable, a change in the similarity criteria used in the clustering process
it is needed. In Fuzzy C-means, the similarity criteria is the euclidean distance.
Proceeding this way, only the coordinates of the input vectors are used, thus,
the membership values ujk for the matrix U = [ujk] for a given center will be
small for the input vectors that are far from that center, and the values will be
big if the input vector is close to that center. For the functional approximation
problem, this is not always true because, given a center, its associated cluster
can own many input vectors even if they are far from this center but they
have the same output values.

To consider these situations, the parameter w is introduced (6) to modify the
values of the distance between a center and an input vector. w will measure
the difference between the estimated output of a center and the output value
of an input vector. The smaller w is, the more the distance between the center
and the vector will be reduced. This distance is calculated now by modifying
the norm in the euclidean distance:

DkjW = ‖~xk − ~cj‖2 · w2
kj (7)

where wkj = |Yk − oj|. The distortion function to be minimized is redefined
as:

Jh(U,C, W) =
n∑

k=1

m∑

j=1

uh
jkDkjW (8)

constrained by:

• m∑
j=1

ujk = 1 ∀k = 1...n

• 0 <
n∑

k=1
ujk < n ∀j = 1...m.

This function is minimized using an alternating optimization procedure in the
same way as in [2], which consists in the Picard iteration algorithm that on
each iteration calculates the membership function, then the positions of the
centers and finally their expected outputs using the following equations:

6

ujk =

m∑

i=1

(
DjkW

DikW

) 1
h−1

−1

~cj =

n∑
k=1

uh
jk~xkw

2
kj

n∑
k=1

uh
jkw

2
kj

oj =

n∑
k=1

uh
jkYkd

2
jk

n∑
k=1

uh
jkd

2
jk

(9)

where djk is the euclidean distance between ~cj and ~xk, and h > 1 is a parameter
that allow us to control how fuzzy will be the partition and usually is equal
to 2.

These equations are the equivalence of the ones defined for CFA (4) where
the centers and their expected outputs are updated. These equations are de-
rived by simply setting the derivative of the distortion function (extended by
Lagrange multipliers to incorporate the constraints) with respect to the para-
meter to be optimized (U ,C and O) equal to zero, so convergence is warranted,
unlike in CFA. ICFA, requires only one step of updating, being much more
efficient than CFA where an internal loop is required on each iteration of the
algorithm to update the centers and the outputs.

4.4 Migration Step

As in CFA, a migration step is incorporated to the algorithm. CFA’s migration
iterates many times until each center contributes equally to the distortion
function defined to be minimized. On each iteration, all centers are considered
to be migrated, making the algorithm inefficient and, since it adds random
decisions, the migration will affect directly to the robustness of the final results.

ICFA only makes one iteration and instead of considering all centers to be mi-
grated, it performs a pre-selection of the centers to be migrated. The distortion
of a center is the contribution to the distortion function to be minimized. To
decide what centers will be migrated, a fuzzy rule that selects centers that
have a distortion value above the average is used. By doing this, centers that
do not add a significant distortion value to the distortion function are excluded
because their placement is correct and they do not need help from another
center.

There is a fixed criteria to choose the centers to be migrated, in opposite to
CFA where a random component was introduced at this point. The center to
be migrated will be the one that has assigned the smallest value of distortion.
The destination of the migration will be the center that has the biggest value
of distortion. The repartition of the input vectors between those two it is like

7

0 1 2 3 4 5 6 7 8 9 10 15 20 25 30 40

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Iteration

D
is

to
rt

io
n

V
al

ue

ICFA with migration
ICFA without migration

Fig. 1. Values for the distortion function with and without migration when approx-
imating f1 with 5 centers. The migration was performed in steps 2,5 and 6.

in CFA. If the error is smaller than the one before the migration step, the
migration is accepted, otherwise is rejected.

Figure 1 shows the values of the distortion function on each iteration of the
algorithm for two executions, one with migration and other without migration.
The target function is f1 (Fig. 3) that will be introduced in the experiments
section. In the figure, it is easy to appreciate how adding the migration process,
it is possible to escape from local minima and reach smaller distortion values.

4.5 ICFA General Scheme

Once all the elements that compose the algorithm have been described, the
general scheme that ICFA follows is shown in Figure 2.

8

Fig. 2. General scheme for the ICFA algorithm

In ICFA, the start point is not a random initialization of matrix U as in
Fuzzy C-means. In the new algorithm, centers will be distributed uniformly
through the input data space. Proceeding like this, all random elements of
the previous algorithm are excluded, obtaining the maximum robustness. The
centers expected outputs must be initialized using the same value, thanks to
this, all the centers will be in the same condition respect to the target function
output so the weighting parameter will influence the centers in the same way in
the first iteration of the algorithm. The initialization value is not too important
and does not influence in a significant way the final configuration of the centers
although a fixed value of 1 is assigned in order to avoid any random element in
the algorithm. This leads to obtain always the same output for a fixed input,
providing a standard deviation of zero when multiple executions are run with
the same input.

5 Experimental Results

Several experiments were done to show how the proposed algorithm improves
the results of its predecessor, the CFA algorithm.

To compare the results provided by the different algorithms it will be used the
normalized mean squared error (NRMSE), which is defined as:

9

NRMSE =

√√√√√√√√

n∑
k=1

(F (~xk)−F(~xk; C,R, Ω))2

n∑
k=1

(
F (~xk)− F̄

)2
(10)

Where F̄ is the average of the output of the input vectors.

The steps followed to generate the RBFNN, once the algorithms placed the
centers, are:

• Get the radius of the RBFs using the k-neighbors algorithm with k=1
• Calculate weights optimally by solving a linear equation system.

Once the RBFNNs were obtained, it was applied a local search algorithm
(Levenberg-Marquardt [11]) to improve results by adjusting RBF centers and

radii. The RBF function used to compute the output was: e
− ||~xk−~cj ||2

r2
j

5.1 Experiment 1

The data used for this experiment consists in the real values of reflectance for
different wavelengths of emitted by a piece of iberian pig. Samples were mea-
sured by using a portable Vis/NIR Spectrometer FieldSpec Pro JR (Analytical
Spectral Devices, Inc; Boulder, Colorado, USA) and were scanned applying
directly the sound on the meet and recording the reflectance in the 350-2500
nm spectral range. The spectrum of each muscle was the average of 10 suc-
cessive scans. Previous to the measure, the spectrometer was calibrated using
a white spectralon 3.62. Figure 3 represents the data once it was normalized,
the training set is represented by crosses and the test set is represented by
points. It could be useful to have a model that interpolates the reflectance of
the meat since this is strongly related with its tenderness. These models could
be analyzed to see if the differences between them correspond to variations on
the tenderness of the meat and from that, the tenderness could be predicted.
Table 1 shows the approximation errors for the training set before and after
applying the local search algorithm and Table 2 shows the approximation er-
rors for the test set. The ICFA algorithm is compared with the CFA algorithm,
the Gustafson-Kessel (GK) [7] and the FCM algorithm.

The results show how much the performance of the CFA algorithm has been
improved. The new algorithm places the centers in better positions obtaining
an small approximation error right after the initialization procedure. After
applying the local search algorithm, it is shown how the initialization provided
by the ICFA algorithm is better since it allows to find better local minima.

10

It is important to notice how robust is the new algorithm in comparison with
the other algorithms. Another remarkable fact is that the RBFNNs generated
using the ICFA algorithm do not suffer from overfitting, obtaining small test
errors.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3. Target Function f1

5.2 Experiment 2

The second experiment is taken from the UCI Machine Learning Repository
[15]. The goal is to predict the fuel consumption of several kinds of vehicles
considering the following features: displacement, horsepower, weight, acceler-
ation and model year. The proposed algorithm is compared with the Modified
Gath-Geva fuzzy clustering algorithm (MGGC) [1], the ANFIS algorithm [9]
included in the MATLAB fuzzy toolbox and with the Fuzzy Model Identi-
fication toolbox (FMID) based on the GK algorithm. From the 392 entries,
196 samples were used for training and the rest for test. In [1], the algorithms
were used to design TS fuzzy models with four rules, therefore the RBFNNs
generated using the CFA and ICFA algorithms had 4 neurons.

Table 3 shows the approximation errors for the training and test sets. The
smallest approximation error is achieved by the ANFIS algorithm however,
due to overfitting, the test error is the highest. The ICFA provides the second
smallest approximation error for the training set and the smallest approxima-
tion error for the test set. This demonstrates that the RBFNNs designed using
the ICFA algorithm keep their generalization capability.

11

Before LS

Clusters FCM GK CFA ICFA

5 0.270(0.015) 0.310(0.000) 0.316(0.029) 0.219(0)

6 0.255(0.013) 0.316(0.092) 0.316(0.004) 0.207(0)

7 0.276(0.040) 0.265(0.044) 0.403(0.139) 0.237(0)

8 0.250(0.034) 0.273(0.049) 0.258(0.007) 0.480(0)

9 0.259(0.062) 0.256(0.029) 0.231(0.043) 0.206(0)

10 0.206(0.051) 0.232(0.022) 0.235(0.011) 0.168(0)

11 0.254(0.059) 0.192(0.041) 0.216(0.033) 0.159(0)

After LS

Clusters FCM GK CFA ICFA

5 0.145(0.023) 0.182(0.001) 0.173(0.003) 0.167(0)

6 0.160(0.018) 0.141(0.022) 0.172(0.005) 0.085(0)

7 0.133(0.035) 0.096(0.045) 0.181(0.012) 0.090(0)

8 0.108(0.053) 0.070(0.017) 0.163(0.010) 0.046(0)

9 0.072(0.050) 0.065(0.022) 0.102(0.046) 0.045(0)

10 0.044(0.004) 0.088(0.057) 0.110(0.046) 0.041(0)

11 0.059(0.020) 0.061(0.025) 0.063(0.032) 0.030(0)
Table 1
Mean and Standard Deviation (in brackets) of the approximation error (NRMSE)
for function f1 before and after local search algorithm (LS)

5.3 Experiment 3

The third experiment is also taken from the UCI Machine Learning Repository
[15] and consists, as it is described in the UCI database, in:

”a system involving a servo amplifier, a motor, a lead screw/nut, and a sliding
carriage of some sort. It may have been on of the translational axes of a robot
on the 9th floor of the AI lab. In any case, the output value is almost certainly
a rise time, or the time required for the system to respond to a step change in
a position set point.”

”This is an interesting collection of data provided by Karl Ulrich. It covers an
extremely non-linear phenomenon - predicting the rise time of a servomech-

12

Clusters FCM GK CFA ICFA

5 0.154(0.020) 0.190(0.001) 0.184(0.007) 0.174(0)

6 0.163(0.013) 0.151(0.024) 0.180(0.006) 0.092(0)

7 0.139(0.034) 0.102(0.045) 0.187(0.011) 0.094(0)

8 0.115(0.055) 0.078(0.016) 0.167(0.010) 0.050(0)

9 0.078(0.049) 0.072(0.024) 0.111(0.048) 0.050(0)

10 0.050(0.007) 0.097(0.058) 0.120(0.045) 0.046(0)

11 0.075(0.020) 0.071(0.022) 0.075(0.036) 0.034(0)
Table 2
Mean and Standard Deviation (in brackets) of the approximation error (NRMSE)
for the test set for function f1

Table 3
Mean and Standard Deviation (in brackets) of the approximation error (NRMSE)
for the MPG data set

Training Test

FMID 0.3396 0.3818

ANFIS 0.2506 11.8222

MGGC 0.3459 0.3688

CFA 0.3459 0.3637

ICFA 0.3306 0.3494

anism in terms of two (continuous) gain settings and two (discrete) choices of
mechanical linkages.”

The data has 167 instances with 4 attributes and one output:

1. motor: A,B,C,D,E 2. screw: A,B,C,D,E 3. pgain: 3,4,5,6 4. vgain: 1,2,3,4,5
5. class: 0.13 to 7.10

The motor and screw attributes were mapped to numbers from 1 to 5.

From the original 167 instances, 165 were taken and the K-fold cross validation
was performed with K=11, this provides 11 training sets of 150 instances and
11 test sets of 15 instances. Results are shown in Table 4. The RBFNNs
generated using the ICFA algorithm approximate better the training sets and
are able to interpolate the output of the function in a better way than the
ones generated using the other algorithms, providing smaller errors with the
test data sets.

13

Table 4
Mean and Standard Deviation (in brackets) of the approximation error (NRMSE)
for function the servo-robot problem with the training and test data using cross
validation

Training

Clusters FCM CFA ICFA

5 0.300(0.090) 0.302(0.076) 0.257(0.072)

6 0.312(0.091) 0.278(0.053) 0.260(0.066)

7 0.249(0.070) 0.271(0.069) 0.207(0.045)

8 0.211(0.046) 0.239(0.043) 0.187(0.050)

9 0.226(0.064) 0.210(0.041) 0.204(0.067)

10 0.202(0.082) 0.230(0.054) 0.192(0.057)

11 0.177(0.042) 0.207(0.028) 0.193(0.062)

12 0.197(0.060) 0.191(0.055) 0.175(0.049)

13 0.204(0.060) 0.189(0.055) 0.168(0.044)

14 0.171(0.034) 0.175(0.050) 0.168(0.031)

Test

Clusters FCM CFA ICFA

5 0.281(0.112) 0.257(0.089) 0.235(0.090)

6 0.238(0.094) 0.267(0.103) 0.228(0.127)

7 0.182(0.095) 0.242(0.100) 0.185(0.067)

8 0.168(0.087) 0.220(0.107) 0.134(0.046)

9 0.174(0.080) 0.151(0.078) 0.174(0.100)

10 0.126(0.069) 0.168(0.112) 0.127(0.076)

11 0.136(0.063) 0.164(0.079) 0.132(0.065)

12 0.109(0.038) 0.124(0.074) 0.112(0.063)

13 0.111(0.050) 0.124(0.071) 0.082(0.072)

14 0.101(0.105) 0.085(0.041) 0.079(0.061)

5.4 Execution times

Many aspects from the CFA algorithm have been changed in the new proposed
algorithm, the result of these changes is not only that the approximation errors

14

0 200 400 600 800 1000 1200 1400 1600

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (sec.)

A
pp

ro
xi

m
at

io
n

E
rr

or

ICFA +/− Dev
CFA +/− Dev

m=7

m=8

m=6

m=7

m=6 m=5

m=8 m=10

m=11

m=10
m=11

m=9

m=5

m=9

Fig. 4. Execution time and approximation errors for the different executions using
several number of centers and f1 as input.

are smaller but the execution time has been significantly reduced. As it was
commented before, the updating of the centers positions and their expected
outputs have been simplified to just one calculation instead of an internal
loop within the algorithm. The migration process was also accelerated by
removing the loop that processed all the centers on each iteration, just doing
one iteration considering only the centers with the maximum and the minimum
utility. To illustrate this, Figure 4 depicts the execution time and the error
obtained for function f1. This figure shows how with the ICFA algorithm can
obtain better results in less time.

6 Conclusions

RBFNNs provide good results when they are used for functional approxima-
tion problems. The CFA algorithm was designed in order to make an adequate
initialization of the centers of the RBFs overcoming the results provided by
the clustering algorithms that were used traditionally for this task. CFA had
some problems and disadvantages that could be improved. In this paper, a new
algorithm which fix all the problems in CFA is proposed. This new algorithm
performs much better than its predecessor providing smaller approximation
errors in less time.

From the analysis of the results, the following conclusions are obtained:

• It has been demonstrated how important an initialization step is when de-
signing RBFNN for functional approximation problems. The design of spe-
cific clustering algorithms shows how the results can be improved signifi-
cantly.

15

• The new algorithm proposed in this paper outperforms the CFA algorithm
which was shown to be very effective for the centers initialization task. The
improvements obtained are: smaller execution times, maximum robustness
and smaller approximation errors.

Acknowledgments

This work has been partially supported by the Spanish CICYT Project TIN2004-
01419.

References

[1] János Abonyi, Robert Babuska, and Ferenc Szeifert. Modified gath-geva fuzzy
clustering for identification of takagi-sugeno fuzzy models. IEEE Transactions
on Systems, Man, and Cybernetics, Part B, 32(5):612–621, 2002.

[2] J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum, New York, 1981.

[3] A. G. Bors. Introduction of the Radial Basis Function (RBF) networks. OnLine
Symposium for Electronics Engineers, 1:1–7, February 2001.

[4] R. O. Duda and P. E. Hart. Pattern classification and scene analysis. New
York: Wiley, 1973.

[5] A. Gersho. Asymptotically Optimal Block Quantization. IEEE Transanctions
on Information Theory, 25(4):373–380, July 1979.

[6] J. González, I. Rojas, H. Pomares, J. Ortega, and A. Prieto. A new Clustering
Technique for Function Aproximation. IEEE Transactions on Neural Networks,
13(1):132–142, January 2002.

[7] E.E. Gustafson and W.C. Kessel. Fuzzy clustering with a fuzzy covariance
matrix. IEEE CDC, pages 761–766, 1979.

[8] J. A. Hartigan. Clustering Algorithms. New York: Wiley, 1975.

[9] Jyh-Shing Roger Jang and Chuen-Tsai Sun. Neuro-fuzzy modeling and control.
Proceedings of the IEEE, 1995.

[10] N. B. Karayiannis and G. W. Mi. Growing radial basis neural networks: Merging
supervised and unsupervised learning with network growth techniques. IEEE
Transactions on Neural Networks, 8:1492–1506, November 1997.

[11] D. W. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear
Inequalities. SIAM J. Appl. Math., 11:431–441, 1963.

[12] J. Park and J. W. Sandberg. Universal approximation using radial basis
functions network. Neural Computation, 3:246–257, 1991.

16

[13] G. Patanè and M. Russo. The Enhanced-LBG algorithm. Neural Networks,
14(9):1219–1237, 2001.

[14] I. Rojas, M. Anguita, A. Prieto, and O. Valenzuela. Analysis of the operators
involved in the definition of the implication functions and in the fuzzy inference
proccess. International Journal of Approximate Reasoning, 19:367–389, 1998.

[15] C.L. Blake S. Hettich and C.J. Merz. UCI repository of machine learning
databases. 1998.

[16] Q. Zhu, Y. Cai, and L. Liu. A global learning algorithm for a RBF network.
Neural Networks, 12:527–540, 1999.

17

