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Abstract. Radial Basis Function Neural Networks (RBFNN) has been
applied successfully to solve function approximation problems. In the
design of an RBFNN, it is required a first initialization step for the
centers of the RBFs. Clustering algorithms have been used to initialize
the centers, but these algorithms were not designed for this task but
rather for classification problems. The initialization of the centers is a
very important issue that affects significantly the approximation accu-
racy. Because of this, the CFA (Clustering for Function Approximation)
algorithm has been developed to make a better placement of the centers.
This algorithm performed very good in comparison with other cluster-
ing algorithms used for this task. But it still may be improved taking
into account different aspects, such as the way the partition of the input
data is done, the complex migration process, the algorithm’s speed, the
existence of some parameters that need to be set in a concrete order to
obtain good solutions, and the convergence guaranty. In this paper, it is
proposed an improved version of this algorithm that solves some prob-
lems that affected its predecessor. The approximation of ECG signals is
not straightforward since it has low and high frequency components in
different intervals of a heart stroke. Furthermore, each interval (P wave,
the QRS complex, T wave) is related with the behaviour of specific parts
of the heart. The new algorithm has been tested using the ECG signal as
the target function to be approximated obtaining very small approxima-
tion errors when it is compared with the traditional clustering technique
that were used for the centers initialization task. The approximation of
the ECG signal can be useful in the diagnosis of certain diseases such as
Paroxysmal Atrial Fibrillation (PAF).

1 Introduction

Designing an RBF Neural Network (RBFNN) to approximate a function from a
set of input-output data pairs, is a common solution since this kind of networks
are able to approximate any function [6, 12]. Formally, a function approximation
problem can be formulated as, given a set of observations {(xk; yk); k = 1, ..., n}
with yk = F (xk) ∈ IR and xk ∈ IRd, it is desired to obtain a function G so
yk = G (xk) ∈ IR with xk ∈ IRd. Once this function is learned, it will be possible
to generate new outputs from input data that were not specified in the original
data set.



The initialization of the centers of RBFs is the first step to design an RBFNN.
This task has been solved traditionally using clustering algorithms [10] [13].
Clustering techniques have been applied to classification problems [8], where the
task to solve is how to organize observed data into meaningful structures. In
classification problems, the input data has to be assigned to a pre-defined set of
labels, thus, if a label is not assigned correctly, the error will be greatly increased.
In the functional approximation problem, a continuous interval of real numbers
is defined to be the output of the input data. Thus, if the generated output value
is near the real output, the error does not increase too much.

In this context, a new clustering algorithm for functional approximation prob-
lems was designed in our research group: Clustering for Functional Approxima-
tion (CFA)[7].The CFA algorithm uses the information provided by the function
output in order to make a better placement of the centers of the RBFs. This
algorithm provides better results in comparison with traditional clustering algo-
rithms but it has several elements that can be improved.

In this paper, a new algorithm is proposed, solving all the problems presented
in the CFA algorithm using fuzzy logic techniques, and improving results, as it
will be shown in the experiments section. In this section, the target function
will be the ECG signal of a human person. The approximation an ECG signal is
not straightforward since it has low and high frequency components in different
intervals of a heart stroke. Furthermore, each interval (P wave, the QRS complex,
T wave) is related with specific parts of the heart. Therefore, diverse pathologies
are diagnosed studying in detail specific intervals within the ECG traces, for
instance the P wave is related with the atrial activity while ventricular fibrillation
can be easily detected observing the evolution of the QRS complexes.

For certain diagnosis applications the shape of a certain interval of the ECG
is of interest. Some approaches extract templates of a certain area by averaging
the activity in this area over a number of heart strokes [11] or by extracting
morphological features of these intervals [4, 5] (such as the amplitude of the P
wave, the integral of the P wave). These techniques require the definition of a
P wave interval and the accurate measurement of different characteristics. But
the previous methods are simplified ways to characterize the heart activity in a
certain interval, which can be done more accurately with sophisticated function
approximation methods.

2 RBFNN Description

A RBFNN F with fixed structure to approximate an unknown function F with
n entries and one output starting from a set of values {(xk; yk); k = 1, ..., n}
with yk = F (xk) ∈ IR and xk ∈ IRd, has a set of parameters that have to be
optimized:

F (xk; C, R,Ω) =
m∑

j=1

φ(xk; cj , rj) ·Ωj (1)



where C = {c1, ..., cm} is the set of RBF centers, R = {r1, ..., rm} is the set
of values for each RBF radius, Ω = {Ω1, ..., Ωm} is the set of weights and
φ(xk; c j , rj) represents an RBF. The activation function most commonly used
for classification and regression problems is the Gaussian function because it is
continuous, differentiable, it provides a softer output and improves the inter-
polation capabilities [2, 9]. The procedure to design an RBFNN for functional
approximation problem is shown below:

1. Initialize RBF centers cj

2. Initialize the radius rj for each RBF
3. Calculate the optimum value for the weights Ωj

The first step is accomplished by applying clustering algorithms, the new
algorithm proposed in this paper will initialize the centers, providing better
results than other clustering algorithms used for this task.

3 Clustering For Function Approximation Algorithm:
CFA

This algorithm uses the information provided by the objective function output
in such a way that the algorithm will place more centers where the variability
of the output is higher instead of where there are more input vectors.

To fulfill this task, the CFA algorithm defines a set O = {o1, ..., om} that
represents a hypothetic output for each center. This value will be obtained as a
weighted mean of the output of the input vectors belonging to a center.

CFA defines an objective function that has to be minimized in order to
converge to a solution:

m∑
j=1

∑
xk∈Cj

‖xk − cj‖2ωkj

m∑
j=1

∑
xk∈Cj

ωkj

(2)

where ωkj weights the influence of each input vector in the final position a center.
The bigger the distance between the expected output of a center and the real
output of an input vector is, the bigger the influence in the final result will be.
The calculation of w is obtained by:

ωkj =
|F (xk)− oj |

n
max
i=1

{F (xi)} −
n

min
i=1

{F (xi)}
+ ϑmin, ϑmin > 0. (3)

The first addend in this expression calculates a normalized distance (in the
interval [0,1]) between F (xk) and oj , the second addend is a minimum contri-
bution threshold. The smaller ϑmin becomes, the more the centers are forced to
be in areas where the output is more variable.



The CFA algorithm is structured in three basic steps: Partition of the data,
centers and estimated output updating and a migration step.

The partition is performed as it is done in Hard C-means [3], thus, a Voronoi
partition of the data is obtained. Once the input vectors are partitionated, the
centers and their estimated outputs have to be updated, this process is done
iteratively using the equations shown below:

cj =

∑
xk∈Cj

xkωkj

∑
xk∈Cj

ωkj
oj =

∑
xk∈Cj

F (xk)ωkj

∑
xk∈Cj

ωkj
. (4)

The algorithm, to update centers and estimated outputs, has an internal
loop that iterates until the total distortion of the partition is not decreased
significantly.

The algorithm has a migration step that moves centers allocated in input
zones where the target function is stable, to zones where the output variability
is higher. The idea of a migration step was introduced in [14] as an extension of
Hard C-means.

CFA tries to find an optimal vector quantization where each center makes
an equal contribution to the total distortion [6]. This means that the migration
step will iterate, moving centers that make a small contribution to the error to
the areas where centers make a bigger contribution.

3.1 Flaws in CFA

CFA has some flaws that can be improved, making the algorithm more robust
and efficient and providing better results.

The first disadvantage of CFA is the way the partition of the data is made.
CFA makes a hard partition of the data where an input vector can belong
uniquely to a center, this is because it is based on the Hard C-means algo-
rithm. When Fuzzy C-means [1] was developed, it demonstrated how a fuzzy
partition of the data could perform better than a hard partition. For the func-
tional approximation problem, it is more logical to apply a fuzzy partition of the
data because an input vector can activate several neurons with a certain degree
of activation, in the same way an input vector can belong to several centers in a
fuzzy partition.

The second problem is the setting of a parameter which influences critically
the results that can be obtained. The parameter is ϑmin, the minimum contri-
bution threshold. The smaller this parameter becomes, the slower the algorithm
becomes and the convergence becomes less warranted. The need of a human
expert to set this parameter with a right value is crucial when it is desired to
apply the algorithm to different functions, because a wrong value, will make the
algorithm provide bad results.

The third problem of CFA is the iterative process to converge to the solu-
tion. The convergence is not demonstrated because it is presented as a weighted



version of Hard C-means, but the equations proposed do not warrant the con-
vergence of the algorithm. The iterative method is quite inefficient because it
has to iterate many times on each iteration of the main body of the algorithm.

The last problem CFA presents is the migration process. This migration step
is quite complex and makes the algorithm run very slow. It is based on a distor-
tion function that require as many iterations as centers, and adds randomness
to the algorithm making it not too robust.

4 Improved CFA Algorithm: ICFA

Let’s introduce the new elements in comparison with CFA, and let’s see the
reasons why this new elements are introduced.

4.1 Input Data Partition

As it was commented before, for the functional approximation problem, is better
to use a fuzzy partition, but CFA uses a hard partition of the data. In ICFA, in
the same way as it is done in Fuzzy C-means, a fuzzy partition of the data is
used, thus, an input vector belongs to several centers at a time with a certain
membership degree.

4.2 Parameter w

In CFA, the estimated output of a center is calculated using a parameter w (3).
The calculation of w implies the election of a minimum contribution value (ϑmin)
that will affect in a serious way the performance and the computing time of the
algorithm.

In order to avoid the establishment of a parameter, ICFA removes this thresh-
old, and the difference between the expected output of a center and the real
output of the input data is not normalized. Thus, the calculation of w is done
by:

wkj =
|F (xk)− oj |

n
max
i=1

{F (xi)} −
n

min
i=1

{F (xi)}
(5)

where F (x) is the function output and oj is the estimated output of cj .

4.3 Objective Function and Iterative Process

In order to make the centers closer to the areas where the target function is
more variable, a change in the similarity criteria used in the clustering process
it is needed. In Fuzzy C-means, the similarity criteria is the euclidean distance.
Proceeding this way, only the coordinates of the input vectors are used, thus,
the values of the membership matrix U for a given center will be small for the
input vectors that are far from that center, and the values will be big if the



input vector is close to that center. For the functional approximation problem,
this is not always true because, given a center, its associated cluster can own
many input vectors even if they are far from this center but they have the same
output values.

To consider these situations, the parameter w is introduced (5) to modify
the values of the distance between a center and an input vector. w will measure
the difference between the estimated output of a center and the output value
of an input vector. The smaller w is, the more the distance between the center
and the vector will be reduced. This distance is calculated now by modifying the
norm in the euclidean distance:

dkj = ‖xk − cj‖2 · w2
kj . (6)

The objective function to be minimize is redefined as:

Jh(U,C,W ) =
n∑

k=1

m∑

i=1

uh
ik‖xk − ci‖2w2

ik (7)

where wik = |Yk − oi|. This function is minimized applying the LS method,
obtaining the following equations that will converge to the solution:

uik =




m∑

j=1

(
dik

djk

) 2
h−1



−1

ci =

n∑
k=1

uh
ikxkw2

ik

n∑
k=1

uh
ikw2

ik

oi =

n∑
k=1

uh
ikYkd2

ik

n∑
k=1

uh
ik

d2
ik

(8)

where dij is the weighted euclidean distance between center i and input vector j,
and h > 1 is a parameter that allow us to control how fuzzy will be the partition
and usually is equal to 2.

These equations are the equivalence of the ones defined for CFA (4) where
the centers and their expected outputs are updated. These equations are ob-
tained applying Lagrange multipliers and calculating the respect derivatives of
the function, so convergence is warranted, unlike in CFA. ICFA, requires only
one step of updating, being much more efficient than CFA where an internal
loop is required on each iteration of the algorithm to update the centers and the
outputs.

4.4 Migration Step

As in CFA, a migration step is incorporated to the algorithm. CFA’s migration
iterates many times until each center contributes equally to the error of the func-
tion defined to be minimized. On each iteration, all centers are considered to be



migrated, making the algorithm inefficient and, since it adds random decisions,
the migration will affect directly to the robustness of the final results.

ICFA only makes one iteration and instead of considering all centers to be
migrated, it performs a pre-selection of the centers to be migrated. The distortion
of a center is the contribution to the error of the function to be minimized. To
decide what centers will be migrated, it is used a fuzzy rule that selects centers
that have a distortion value above the average.By doing this, centers that do
not add a significant error to the objective function are excluded because their
placement is correct and they do not need help from other center. The idea is
that if two centers introduce a big error, putting them together can decrease the
total error.

There is a fixed criteria to choose the centers to be migrated, in opposite to
CFA where a random component was introduced at this point. The center to
be migrated will be the one that has assigned the smallest value of distortion.
The destination of the migration will be the center that has the biggest value
of distortion. The repartition of the input vectors between those two it is like in
CFA. If the error is smaller than the one before the migration step, the migration
is accepted, otherwise is rejected.

4.5 ICFA General Scheme

Once all the elements that compose the algorithm have been described, the
general scheme that ICFA follows is:

Do
Calculate the weighted distance between Ci and X using w
Calculate the new Ui, Ci using Ui and Oi using Ci

Migrate
While(abs(Ci−1-Ci<threshold)

In ICFA, the start point is not a random initialization of matrix U as in
Fuzzy C-means. In the new algorithm, centers will be distributed uniformly
through the input data space and their estimated outputs will be equal to the
difference between the maximum and the minimum value of the output function.
Proceeding like this, the robustness of the algorithm is only affected by the
random component added in the migration with the simulated annealing.

5 Experimental Results

The first experiment consists in approximate a normal person ECG signals. To
compare the results provided by the different algorithms, it will be used the
normalized root mean squared error (NRMSE).

The radii of the RBFs were calculated using the k-neighbors algorithm with
k=1. The weights were calculated optimally by solving a linear equation system.



The data set used for this experiment consist in the record of the signals
P,Q,R,S,T obtained by using the electrocardiogram technique. The data is pro-
vided by PhysioNet at its Prediction Challenge Database. The signal used be-
longs to the first minute of record ”n01”.

Table 1 shows the errors when approximating the first pulse of ECG (Fig. 1)
using the ICFA, Fuzzy C-means and CFA algorithms. In Fig. 1 are represented
graphically the results shown in Table 1. In this table are represented the results
before and after applying the Levenberg-Mardquardt local search algorithm. As
it is shown, the new algorithm proposed makes a better placement of the centers
providing good results even before applying the local search algorithm.

Table 1. Mean and Standard Deviation of the approximation error (NRMSE) for
function the ECG signal (Training Pulse)

Clusters FCM CFA ICFA

4 0.966(0.009) 0.948(0.010) 0.449(0)
5 0.938(3E-4) 0.914(0.001) 0.446(0)
6 0.929(1E-4) 0.883(0.023) 0.437(0)
7 0.915(020) 0.871(0.020) 0.422(0)
8 0.914(0.001) 0.846(0.010) 0.336(0)
9 0.893(3E-4) 0.838(0.017) 0.506(0)

Clusters FCM CFA ICFA

4 0.238(0.036) 0.495(0.236) 0.160(0)
5 0.880(0.001) 0.204(0.009) 0.066(0)
6 0.515(0.383) 0.154(0.029) 0.068(0)
7 0.694(0.351) 0.101(0.044) 0.055(0)
8 0.657(0.334) 0.067(0.029) 0.050(0)
9 0.658(0.353) 0.077(0.030) 0.044(0)
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Fig. 1. ECG signal, in red, the first heartbeat of training, in green, the test heartbeat.
Mean and Standard Deviation of the approximation error (NRMSE) after local search
algorithm.

The results clearly show the improvement in performance of ICFA in com-
parison with CFA and its predecessors, not improving only the results, but the
robustness. The ICFA algorithm provides the best approximation in comparison



with the others clustering algorithms using only 5 centers. This means that it
identifies the 5 low and high frequency components in different intervals of a
heart stroke (P wave, the QRS complex, T wave). In Figure 2 this is illustrated,
this figure shows the placement of the centers after the execution and the local
search algorithm using ICFA. It is clear how it places one center on each signal.
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Fig. 2. ECG signal and its approximation. Each star represents one center.

The approximation of the signals is tested with the next pulse on the ECG
obtaining the results shown in Table 2, in this table we can appreciate how the
RBFNN generated using the new algorithm still makes a good approximation of
the signal.

Table 2. Mean and Standard Deviation of the approximation error (NRMSE) for the
ECG signal (Test Pulse)

Clusters FCM CFA ICFA

4 0.972(0.) 0.954(0.008) 0.458(0)
5 0.946(3E-4) 0.925(0.001) 0.462(0)
6 0.936(1E-4) 0.895(0.023) 0.457(0)
7 0.924(020) 0.883(0.044) 0.432(0)
8 0.923(0.001) 0.857(0.010) 0.352(0)
9 0.907(3E-4) 0.848(0.020) 0.507(0)

Clusters FCM CFA ICFA

4 0.254(0.042) 0.513(0.243) 0.184(0)
5 0.894(0.001) 0.209(0.015) 0.114(0)
6 0.525(0.383) 0.172(0.021) 0.100(0)
7 0.702(0.351) 0.121(0.039) 0.083(0)
8 0.665(0.334) 0.083(0.013) 0.085(0)
9 0.665(0.353) 0.088(0.016) 0.075(0)

6 Conclusions

RBFNNs provides good results when they are used for functional approximation
problems. The CFA algorithm was designed in order to make the right initializa-
tion of the centers for the RBFs improving the results provided by the clustering



algorithms that were used traditionally for this task. CFA had some mistakes and
disadvantages that could be improved. In this paper, a new algorithm which fix
all the problems in CFA is proposed. This new algorithm performs much better
than its predecessor.

If we use function approximation to characterize ECG traces with a restricted
number of centres. These centres (their position with respect to the QRS com-
plex) and their specific characteristics (amplitude, sigma) embed automatically
features that can be of interest for diagnosis of heart diseases. The evolution of
these features along a ECG trace can be of interest for instance to predict heart
crisis such as atrial or ventricular fibrillation which is part of our future work.
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