
Allowing MATLAB to use the Message Passing
Interface: MPIMEX

A. Guillen1, I. Rojas2, G. Rubio2, H. Pomares2, and J. González2

1 Informatics Department, University of Jaen, Spain
Computer Architecture and Computer Technology

2 Department
University of Granada, Spain

Abstract. The work consists in the development of an new interface
that allows MATLAB standalone applications to call MPI standard rou-
tines. This interface allows programmers and researchers to design par-
allel algorithms with the MATLAB application using all its advantages.
The new interface is compared with a previous one showing smaller over-
head times and an application of the interface over a distributed parallel
algorithm is shown.

1 Introduction

MATLAB has binary files to be executed in all the most common platforms:
UNIX, Linux, Mac. This program is used by a significant number of researchers
and engineers to develop their applications and test models, however, when paral-
lel programming is tuckled, MATLAB does not provide a mechanism to exploit
explicit parallelism. More concretely, the Message Passing Interface standard,
which is one of the most used libraries in parallel programming, is not sup-
ported. In [3] an interface to call MPI [2] functions was developed, however, it is
only possible to use it when using Linux Operating System (OS) in a x86 archi-
tecture and for the concrete implementation LAM/MPI not considering others
like Sun MPI, OpenMPI, etc.

This paper presents a new interface for MATLAB so its applications can
invoke MPI functions following the standard and ensuring the possibility of
be run in any platform where MATLAB has binaries to be executed on. The
applications must be deployed using the MATLAB Compiler so no instances of
MATLAB are required to be running at the same time, this is specially adequate
for clusters. Thus, the rest of the paper is organized as follows: Section 2 will
introduce briefly the MPI standard, then Section 3 will comment the MATLAB
Compiler, in Section 4 the new interface will be exposed and in Section 5 a
comparative between the new interface and a previous one will be shown as well
as an example of a distributed genetic algorithm that was coded in MATLAB
using the new interface.



2 Message Passing Interface: MPI

As it is defined in http://www-unix.mcs.anl.gov/mpi/, MPI is:

a library specification for message-passing, proposed as a standard
by a broadly based committee of vendors, implementers, and users.

Among the advantages of, MPI that have made this library well known, are:

– The MPI standard is freely available.
– MPI was designed for high performance on both massively parallel machines

and on workstation clusters.
– MPI is widely available, with both free available and vendor-supplied imple-

mentations.
– MPI was developed by a broadly based committee of vendors, implementers,

and users.
– Information for implementers of MPI is available.
– Test Suites for MPI implementations are available.

The Message Passing Interface was designed in order to provide a program-
ming library for inter-process communication in computer networks, which could
be formed by heterogeneous computers. The library is available in many lan-
guages such us C, C++, Java, .NET, python, Ocaml, etc.

MPI is the most used library for inter-communication in High-performance
computing (HPC) application. There are several vendors and public implementa-
tions availables OpenMPI http://www.open-mpi.org/, LAM-MPI http://www.lam-
mpi.org/ and MPICH http://www-unix.mcs.anl.gov/mpi/mpich1/, for instance.

3 MATLAB Compiler

MATLAB software has available a tool called Compiler which allows MATLAB
to generate executable applications (stand-alones) that can be run independently
of MATLAB, this is, there is no need of having MATLAB installed in the com-
puter to run the application. The stand-alone requires a set of libraries which
can be distributed after being generated with MATLAB, this libraries start the
Component Runtime (MCR) that interprets the .m files as the MATLAB appli-
cation would do.

A Component Technology File (CTF) is generated during the compilation
process. This file contains all the .m files that form the deployed application
after being compressed and encrypted so there is no way to access the original
source code. When the application is run for the first time, the content of this
file is decompressed and a new directory is generated.

The process that MATLAB follows to generate a stand-alone application is
made automatically and totally transparent to the user so he only has to specify
the .m files that compose the application to be deployed and MATLAB will
perform the following operations:



– Dependence analysis between the .m files
– Code generation: the C or C++ code interface is generated in this step.
– File creation: once the dependencies are solved, the .m files are encrypted

and compressed in the CTF.
– Compilation: the source code of the interface files is compiled.
– Link: the object code is linked with the required MATLAB libraries.

This whole process is depicted in Figure 1.

Fig. 1. Deployment process of an application using the MATLAB Compiler.

As listed above, there is a code generation step where an interface for the
MCR is created. This wrapper files allow a concrete architecture to run the
compiled MATLAB code.

3.1 MPIMEX: A new MPI interface for MATLAB

In [3] the Message Passing Interface ToolBox (MPITB) was presented. This
toolbox has become quite popular, showing the increasing interest of the fussion



between MATLAB and the emerging parallel applications. The main problem
that this toolbox has is that it is implemented only for x86 machines running
Linux and with the LAM/MPI implementation of MPI. As cited in the Intro-
duction, there are a large variety of implementations of the MPI standard so
there is the need of allowing MATLAB use MPI programming in other types of
architectures and other MPI implementations. This is the main reason why the
new interface proposed in this paper was developed.

MATLAB provides a method to run C/C++ and FORTRAN code within a
.m file so the command interpreter can call another function as if it was another
.m file. The file that has the .c source code must be written using a special library
of functions called mex-functions generating what is know as mex-files [1]. Once
the code is written using these special functions, it has to be compiled using the
MATLAB mex compiler that generates an specific .mexXXX where XXX stands
for the concrete architecture MATLAB is running on:

Platform MEX extension
Linux (32-bit) mexglx
Linux x86-64 mexa64
Macintosh (PPC) mexmac
Macintosh (Intel) mexmaci
32-bit Solaris SPARC mexsol
64-bit Solaris SPARC mexs64
Windows (32-bit) mexw32
Windows x64 mexw64

The new interface developed, takes advantage of this feature to invoke the
.c standard functions of MPI within the MATLAB source code so when the
MATLAB Compiler is executed to deploy the application, those functions are
treated as regular .m files. The result is that the deployed application can start
the MPI environment and call all the routines defined by the standard. The
process to generate a stand-alone application that uses MPI is shown in Figure
2.

Coding in MATLAB The new interface has respected carefully the sintaxis of
the standard in order to make easier to use it by people that have already some
experience coding with MPI in C although it is still easier than in C because
it uses some of the advantages of MATLAB. For example, the initialization of
the environment has been simplified comprising three functions of MPI such us
MPI Init, MPI Comm size and MPI Comm rank so all these parameters can be
initialized with a single line of code as an example will show below.

As the interface has been coded in a single file (MPI.mexXXX), a unique
function has to be invoked from the MATLAB code, in this function call, there
is a parameter that indicates the interface which MPI function will call, so the
header of the MPI function is: MPI(MPI function,...) where MPI function is a
string that has to include the exact name of the C functions excluding the prefix



Fig. 2. Deploying application process for a MATLAB program calling the MPI routines

’MPI ’. For example, to invoke the MPI Send function which has the following
header:

Name: MPI Send - Performs a standard-mode blocking send.
C Syntax:

#include ¡mpi.h¿
int MPI Send(void *buf, int count, MPI Datatype datatype, int dest, int tag, MPI Comm comm)

Input Parameters:
buf Initial address of send buffer (choice).
count Number of elements send (nonnegative integer).
datatype Datatype of each send buffer element (handle).
dest Rank of destination (integer).
tag Message tag (integer).
comm Communicator (handle).

the corresponding MPIMEX call within the MATLAB code would be:

MPImex(’Send’,array, numel(array), ’MPI DOUBLE’, destination, tag, ’MPI COMM WORLD’);

where all the parameters correspond to the ones defined in the MPI standard
although, thanks to MATLAB, there is no need to worry about the type of data
of the parameters array, destination and tag.

As commented before, the MPI Init function has been coded in a slightly
different way with the idea of simplifying the coder’s task. When MPI(’Init’) is
invoked, it returns the values of the parameters rank and size provided by the
functions MPI Comm size and MPI Comm rank, so the line of code to initialize
MPI in MATLAB using MPIMEX is:



[rank,size]=MPImex(’Init’);

so the value of the return values is performed exactly as if the MPI function
was a regular MATLAB function. Although the MPI Comm size and MPI Comm rank
are included in this called, they can be invoked separately using other communi-
cators as MPI allows to define different communicators and it assigns a different
rank for the same process. Due to the lack of space, please visit [?] for further
details on how to use it or contact the authors by e-mail.

4 Experiments

This section shows, in first place, a comparison between the new interface devel-
oped and an existing one and then, a real application where MPIMEX has been
used.

4.1 Efficiency gain

The portability among the different platforms is not only the advantage over
previous toolboxes for message passing in MATLAB but the new interface adds
less overhead time when calling MPI routines. To show this efficiency gain, it
was compared the new interface with one of the most popular interfaces used so
far, MPITB. The two classical message passing routines for the communication
between two processes are MPI Send and MPI Recv whose header defined by
the standard is (the MPI Send has been described previously):

Name: MPI Recv - Performs a standard-mode blocking receive.
C Syntax:

#include ¡mpi.h¿
int MPI Recv(void *buf, int count, MPI Datatype datatype,int source, int tag, MPI Comm comm, MPI Status *status)
Input Parameters:

count Maximum number of elements to receive (integer).
datatype Datatype of each receive buffer entry (handle).
source Rank of source (integer).
tag Message tag (integer).
comm Communicator (handle).

Output Parameters
buf Initial address of receive buffer (choice).
status Status object (status).
IERROR Fortran only: Error status (integer).

A simple program that performs a Send and Recv between two processes
running in two processors was implemented. The program was executed 10000
times and on each run, the time lapsed during the MPI function calls was mea-
sured. Results are shown in Table 1 for MPI Send and in Table 2 for MPI Recv,
these data have been graphically represented in Figures 3 y 4 respectively.



Fig. 3. Comparison between MATLAB MPI interfaces for MPI Send

Function MPI Send

# packets MPITB MPIMEX

1 49.85 (168.7) 30.01 (8.2)
5 44.41 (9.8) 28.81 (8.1)
10 47.66 (9.5) 32.33 (10.76)
30 52.69 (7.8) 49.09 (552.1)
60 102.45 (859.7) 46.69 (402.6)
120 93.11 (577.5) 47.52 (281.1)
240 87.92 (409.6) 66.96 (563.1)
360 89.32 (210.3) 79.58 (575.3)
480 100.91 (255.7) 87.32 (417.1)
650 125.09 (461.4) 103.25 (434.2)
750 136.41 (480.1) 109.30 (431.4)
850 145.37 (482.0) 122.20 (444.6)
950 149.08 (326.3) 130.22 (447.8)
1100 169.11 (495.4) 145.61 (449.5)

Table 1. Mean of the time measures in µs. and standard deviation (in brackets) when
calling the MPI Send function using different number of elements.

Fig. 4. Comparison between MATLAB MPI interfaces for MPI Recv



Function MPI Recv

# packets MPITB MPIMEX

1 65.63 (178.1) 35.91 (17.4)
5 59.92 (20.2) 36.63 (33.8)
10 62 (154.4) 36.28 (33.4)
30 60.74 (9.1) 37.31 (29.5)
60 66.72 (6.6) 36.64 (7.0)
120 73.93 (57.8) 42.56 (10.2)
240 77.61 (11.4) 52.75 (15.1)
360 88.01 (15.7) 63.98 (20.9)
480 97.71 (19.3) 76.12 (24.4)
650 113.97 (24.3) 92.52 (38.2)
750 124.24 (27.9) 99.35 (38.4)
850 133.23 (35.8) 110.89 (45.9)
950 142.53 (44.3) 120.05 (51.3)
1100 156.00 (50.6) 135.43 (65)

Table 2. Mean of the time measures in µs. and standard deviation (in brackets) when
calling the MPI Recv function using different number of elements.

As the results show, there is a larger overhead time when using MPITB than
when using the new developed interface. This is the consequence of performing
an unique call to a mexfile as explained in the subsection above. As the size
of the packet increases, the overhead time becomes inappreciable, however, for
fine grained applications where there exists many communications steps, this
overhead time can become crucial for the application to be fasted.

4.2 Application over a distributed heterogeneous genetic algorithm

This section shows how this new interface becomes quite useful for model de-
veloping, making it fast and simple. The algorithm presented in [6] was able to
be executed in a Sun Fire E15K. This machine can reach the number of 106
processors UltraSPARC III Cu 1.2 GHz with a memory of 1/2 TeraByte. The
wandwith of the Sun Fire can reach 172.7 Gigabytes per second.

The algorithm consists in a distributed heterogeneous genetic algorithm that
has the task of design Radial Basis Function Neural Networks (RBFNN) to
approximate functions [7]. The parallelism that can be extrated from this ap-
plication has two perspectives: data parallelism and functional parallelism. The
functional parallelism makes reference to the one that can be obtained when
distributing the different tasks so, as was demonstrated in [4, 5] this kind of par-
allelism, when applied to genetic algorithms does not only increase the efficiency
but also improves the results. The data parallelism can be applied to genetic
algorithms from two perspectives: referencing the data as the individuals or as
the input for the problem. In this case, the first one was considered so an initial
population of 300 individuals processed by a initial set of three specialized island
was evolved. Then, the population was divided and processed by other groups
of island as it is shown in Figure ??.



The algorithm was executed using a synthetic function to be approximated
and the execution times are shown in Table 3 and in Figure 5. The speedup
obtained thanks to the parallelism is represented in Figure 6.

Execution time

3 Proc. 2620(117.21)
6 Proc. 809.5(5.29)
9 Proc. 504.3(21.59)
12 Proc. 346.3(20.55)
15 Proc. 281.6(25.73)
30 Proc. 165.2(21.07)

Table 3. Execution times in seconds and standard deviation (in brackets).

Fig. 5. Execution times in seconds.

5 Conclusions

This paper has presented a new interface that allows MATLAB users to take
advantage of the message passing paradigm so they can design parallel applica-
tions using the MPI standard. The benefits of this new interface in comparison



Fig. 6. Speedup obtained when increasing the number of processors.

with previous ones is that it is possible to use it independently of the platform
the application will be run on, the implementation of the MPI standard and it
also has smaller overhead times.

References

1. http://www.mathworks.com/support/tech-notes/1600/1605.html#intro.
2. http://www-unix.mcs.anl.gov/mpi/, 2005.
3. J. Fernndez, M. Anguita, E. Ros, and J.L. Bernier. SCE Toolboxes for the de-

velopment of high-level parallel applications. Lecture Notes in Computer Science,
3992:518–525, 2006.

4. A. Guillén, I. Rojas, J. Gonz ález, H. Pomares, L.J. Herrera, and B. Paechter.
Improving the Performance of Multi-objective Genetic Algorithm for Function Ap-
proximation Through Parallel Islands Specialisation. Lecture Notes in Artificial
Intelligence, 4304:1127–1132, 2006.

5. A. Guillén, I. Rojas, J. Gonz ález, H. Pomares, L.J. Herrera, and B. Paechter.
Boosting the performance of a multiobjective algorithm to design RBFNNs through
parallelization. Lecture Notes in Artificial Intelligence, 2007.

6. A. Guillen, H. Pomares, J. Gonzalez, I. Rojas, L.J. Herrera, and A. Prieto. Par-
allel Multi-objective Memetic RBFNNs Design and Feature Selection for Function
Approximation Problems. Lecture Notes in Artificial Intelligence, 4507:341–349,
2007.

7. J. Park and I. Sandberg. Approximation and Radial Basis Function Networks.
Neural Computation, 5:305–316, 1993.


