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Note for the reader
The present work constitutes a complete notes on the FisyMat-course

Nonlinear analysis and differential equations carried out in 2018-2019 and
it might contain typos, also can be subjected to changes or improvements.

The work is divided into three theoretical chapters named The topological method,
Sobolev spaces and The variational method, each one with their corresponding exercises

whose solutions are exposed in Spanish at the end of the work.
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Chapter 1

The topological method

The topological method is just an astonishing topological tool that permits to solve systems
of equations in general. The chapter is divided into six sections (three devoted to Brouwer
degree and three devoted to Leray-Schauder degree). The main bibliography used here is [1]
and [7] for the first part of this chapter and [6] and [12] for the second one.

1.1 Introduction and motivation for the Brouwer de-

gree

The problem of solving a general equation is really significant not only in Mathematics but
also in disciplines like Physics, Engineering or Economics, among others and arise in a large
number of applications in daily life. Mathematicians have dealt with the ancient problem
of solving equations all along the history although, unfortunately, it is impossible to solve
explicitly a general equation because it heavily depends on the type of equation. Here, some
examples are presented:

Example 1.

1. 2x−1 + 2x + 2x+1 = 28
This is an example of an expotential equation with base two which can be solved by
making the variable change y = 2x or, if it is preferred, by taking the common factor
2x−1 and writing 2x−1(1 + 2 + 4) = 28 or, equivalently, 2x−1 = 22 and then using the
injectivity of the exponential function with base two to conclude that the solution is
x = 3. Note that there is unicity of solution and it is explicitly calculable.

2. x4 − 5x2 + 6 = 0
This is an example of a biquadratic equation which can be solved by making the variable
change y = x2 and then applying the famous formula for the solutions of a quadratic
equation to conclude that the solutions are x = ±

√
2 and x = ±

√
3. Note that there is

no unicity of solution, but there are a finite number of them, and they all are explicitly
calculable.

5



6 CHAPTER 1. THE TOPOLOGICAL METHOD

3. 4 sin(x)− cos(2x) + 1 = 0
This is an example of a trigonometric equation which can be solved by applying the
cosine double-angle formula and the fact that cos2(x) + sin2(x) = 1 for all x ∈ R to
reduce it to the easier equation sin(x)[sin(x) − 2] = 0 which obviously is equivalent to
sin(x) = 0, so the solutions are of the form xk = kπ for all k ∈ Z. Note that there is
no unicity of solution, moreover there are an infinite number of them, and they all are
still explicitly calculable.

All the equations from the above example can be solved explicitly using basic calculus
and algebra. Nevertheless, this is not always the case: too many equations that apparently
have a simple expression cannot be solved explicitly, for example:

• x5 − 5x− 1 = 0
From the theory of Galois, it is known that polynomial equations of degree greater than four
cannot be solved explicitly in general. The equation x5 − 5x − 1 = 0 is an example of a
polynomial equation of degree five and the classical method for finding integer or rational
roots of a polynomial equation, meaning the Ruffini method, does not work successfully here
but the reality is that the equation has three real solutions, as it is shown by its graph:

Figure 1.1: Graph of x5 − 5x− 1

• ex + x3 + x+ cos(x) = κ
This equation mixes different elementary functions (exponential, potential and trigonometric
ones) and it has only one real solution for each κ ∈ R, as it is shown by its graph:

Figure 1.2: Graph of ex + x3 + x+ cos(x)
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How is it possible to obtain the existence of solution in the previous examples? The
answer is in the well-known Bolzano’s theorem that assures the existence of solution in these
more complicated situations. Futhermore, an additional study of the monotonicity of the
given function together with this theorem, provides a complete study of existence and mul-
tiplicity of the considered equation.

Bolzano’s theorem contains all the conditions of a very good theorem: simple statement,
affordable proof and a large and wide applicability in the scientific world. Bolzano published
in 1817 a paper under the title Purely analytic proof of the theorem that between any two
values which give results of opposite sign there lies at least one real root of the equation [2],
the first analytical proof of that result known today as the Bolzano’s theorem. Despite this
result was already known before Bolzano, there was no rigurous proofs of it: all the existing
proofs before Bolzano used to be based on geometrical arguments. Actually, in these lines
one can appreciate the mathematical rigour that Bolzano was looking for (see pages 160 and
161 of [2]):

But it is clear that it is an intolerable offense against correct method to de-
rive truths of pure (or general) mathematics (i.e., arithmetic, algebra, analysis)
from considerations which belong to a merely applied (or special) part, namely,
geometry.

On the other hand, we strictly require only this: that examples never be put
forward instead of proofs and that the essence of a deduction never be based on the
merely metaphorical use of phrases or on their related ideas, so that the deduction
itself would become void as soon as these were changed.

For a complete biography of the Czech mathematician Bernard Bolzano, see [4]. In his
famous paper of 1817, Bolzano, in addition to exposed a purely analytical proof of the result
he, at the same time, criticised the previous proofs of the theorem because of the aboundance
of geometrical considerations. Among others relevant things, Bolzano gave a formal definition
of the notion of continuity and established the so-called supremum and infimum existence
theorem for a non-empty bounded set of real numbers. With nothing more to add, here is
the statement of the Bolzano’s theorem whose proof is left as an exercise.

Theorem 1 (Bolzano, 1817). Let a, b ∈ R be two real numbers with a < b and f : [a, b]→ R
a real-valued continuous function defined on the real interval [a, b] such that f(a)f(b) < 0,
then there exists c ∈]a, b[ with f(c) = 0 or, equivalently, the equation f(x) = 0 has a solution
in ]a, b[.

Exercise 1. Prove the Bolzano’s theorem.

Equipped with this tool and the monotonicity of the considered function, now it is easy
to prove the existence and unicity of solution of the equation x5 − 5x− 1 = 0 and ex + x3 +
x+ cos(x) = a for all a ∈ R. For example, in the case of the equation x5 − 5x− 1 = 0, just
define the derivable function f : R→ R by f(x) = x5 − 5x− 1 for all x ∈ R. Clearly,

lim
x→±∞

f(x) = ±∞
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which gives the existence of two real numbers a, b ∈ R with a < b such that f(a) < 0
and f(b) > 0, so the Bolzano’s theorem guarantee the existence of solution of the equation
f(x) = 0 or if it is preferable, take a = −1 and b = 1 and then apply the Bolzano’s theorem
to the considered function f . In order to study the multiplicity of solutions, one computes
its derivative f ′,

f ′(x) = 5x4 − 5 ∀x ∈ R

which vanishes at the points +1 and −1. Since f ′(x) > 0 for each x < 1, f ′(x) < 0 for
each x ∈]− 1, 1[ and finally f ′(x) > 0 for each x > 1, it follows that f is strictly increasing
in ] −∞, 1[∪]1,+∞[ and strictly decreasing in ] − 1, 1[. In summary, one ends up with the
fact that x = −1 is a local maximum for f with value f(−1) = 3 and x = 1 is a local
minimum for f with value f(1) = −5 (see Figure 1.1). From the previous calculus, one is
able to sketch the graph of f and conclude that there are exactly three real solutions to the
equation f(x) = 0.

As another example, if the function g : R→ R is defined by g(x) = xm+h(x) for all x ∈ R,

where m ∈ N is odd and h : R → R is a continuous function such that lim|x|→+∞
h(x)
|x|m = 0,

then the equation g(x) = 0 has a solution. This is the case of a polynomial equation of odd
degree, as well as the case where m is odd and the function h is continuous and bounded.

Exercise 2. Prove the existence and unicity of the equation ex + x3 + x+ cos(x) = a for all
a ∈ R. If g : R→ R is the function that maps a real number a to the unique solution xa of
ex + x3 + x+ cos(x) = a, is g continuous?.

Once the existance of solution is proved, one can located the solution as much as wanted
by using the bisection method, for example. As a direct consequence of the Bolzano’s
Theorem, it is obtained the intermediate value theorem.

Corollary 1 (Intermediate value). Let a, b ∈ R be two real numbers with a < b and f :
[a, b]→ R a real-valued continuous function defined on the real interval [a, b], then the image
f([a, b]) of f is a real interval.

The Bolzano’s theorem admits a version for scalar equations with several variables which
can be easily prove by using the theorem 1.

Corollary 2. Let n ∈ N be a natural number, Ω ⊂ Rn a nonempty convex subset of Rn and
f : Ω → R a real-valued continuous function defined on Ω such that there exists two points
a, b ∈ Ω with f(a)f(b) < 0, then there exists c ∈ (a, b) with f(c) = 0.

Remark 1. In the previous corollary, the notation ]a, b[ with a, b ∈ Rn means the open
segment of Rn defined by ]a, b[= {(1− λ)a+ λb : λ ∈]0, 1[}.

Exercise 3. Prove the corollary 2.

Example 2. If the function h : R3 → R is continuous and bounded, then the equation
xey + h(x, y, z) = k has solution for each k ∈ R and this follows from the fact that

lim
x→+∞

xey + h(x, y, z) = +∞, ∀y, z ∈ R
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lim
x→−∞

xey + h(x, y, z) = −∞, ∀y, z ∈ R

For example, this is the case of the equation

xey + x2e−x
2

+ sin(xy5 + log(1 + x2)) = 0

On the one hand, the analytical properties that allow to prove the Bolzano’s theorem are
basically two: the supremum existence theorem (something that makes no sense in several
variables) and the locally sign conservation for continuous and nonzero functions (something
that makes no sense for functions of several components). These properties are characteristic
of the set of real numbers, so the reader could wonder if the Bolzano’s theorem is still true
or false when the set of rational numbers plays a role.

Exercise 4. Prove or disprove the next situation: a continuous function h : Q → R such
that there exist a, b ∈ Q with h(a)h(b) < 0, but there is no x ∈ Q with h(x) = 0.

On the other hand, the fundamental properties that allow to prove the Bolzano’s theo-
rem are also two: the fact that the connectedness is a topological invariant, wich means that
continuous functions map connected sets into connected sets and the fact that a non-trivial
set of R is connected if, and only if, is an interval (and obviously this last property has not
translation into greater dimensions). So, at this point, one should note that considering not
only the existence but also the multiplicity of solutions, the situation may be completely
different from the scalar case. In the following, this statement is clarified.

If the function f : I → R is of class C1 on a non-trivial interval I of R with f ′(x) 6= 0 for
all x ∈ I and the equation f(x) = 0 has solution, then the solution is unique because f ′ > 0
or f ′ < 0 in all the interval I (this statement holdsdue to the intermediate value theorem
applied to f ′). However, the function f : R2 → R given by f(x, y) = x+ y for all (x, y) ∈ R2

is of class C1 on R2 and has infinitely many solutions, although both partial derivaties are
positive in R2,

∂f

∂x
(x, y) =

∂f

∂y
(x, y) = 1 > 0 ∀(x, y) ∈ R2

This example must not be surprising, since if f : Rn → R is a differentiable function then
its derivative f ′ is a function defined from Rn to Rn and the sign of the vector f ′(x) cannot
be defined in a appropiate way.

The situation is much more complicated in the case of systems ofo equations of the form
f(x) = 0 with f = (f1, ..., fn) : Rn → Rn and x = (x1, ..., xn) ∈ Rn for some n ∈ N. For
instance, the function f : R2 → R2 given by f(x, y) = ((ey + 1) sinx, (ey + 1) cosx) for all
(x, y) ∈ R2 is continuous and its image contains points in the four quadrants of R2, but the
equation f(x, y) = (0, 0) has no solutions, since f(R2) = R2 \BR2(0, 1).

Exercise 5. Prove that f(R2) = R2 \ BR2(0, 1) where f : R2 → R2 is given by f(x, y) =
((ey + 1) sinx, (ey + 1) cosx) for all (x, y) ∈ R2.
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Apart from the continuity of the considered function, the main hypothesis in Bolzano’s
theorem is that the image of the function takes values into the two sets R+ and R−, but it is
clear from the previous example that the key idea to study systems of equations is not that
the image of the function takes values into the 2n subsets

{(x1, ..., xn) ∈ Rn : x1 > 0, x2 > 0, ..., xn > 0}

{(x1, ..., xn) ∈ Rn : x1 < 0, x2 > 0, ..., xn > 0}
...

{(x1, ..., xn) ∈ Rn : x1 < 0, x2 < 0, ..., xn < 0}

Just to prove the existence of solutions for systems equations the key idea is to demand
a suitable behaviour at the topological boundary of the domain of the considered function.
Turning to Bolzano’s theorem, its hypothesis are given in terms of the behaviour of the
continuous function f on the topological boundary of [a, b], specifically {a, b}.

The most simple generalization of Bolzano’s theorem is to consider n = 2, Ω =]a, b[×]c, d[
an open rectangle in R2 with a, b, c, d ∈ R and a < b and c < d and f = (f1, f2) : Ω → R2

a continuous function defined on Ω. Is there any sign type condition on the boundary
∂Ω = {a}× [c, d]∪{b}× [c, d]∪ [a, b]×{c}∪ [a, b]×{d} and on the components f1 and f2 such
that the system of equations f(x) = 0 has a solution in Ω? Another simple generalization
of Bolzano’s theorem is to consider n = 2, Ω = BR2(0, 1) the unit open euclidean ball in
R2 and f = (f1, f2) : Ω → R2 a continuous function defined on Ω. Is there any sign type
condition on the boundary ∂Ω = S2(1) and on the components f1 and f2 such that the
system of equations f(x) = 0 has a solution in Ω? More generally, if n ∈ N is an arbitrary
natural number, Ω ⊆ Rn is a given general subset of Rn and f = (f1, ..., fn) is a real-valued
continuous function defined on Ω, is it possible to prove that the system of n variables and n
equations f(x) = 0 has, at least, one solution in Ω? Is there a theory or concept that unifies
all these questions from above? Yes, there is: the Brouwer degree.

1.2 The Brouwer degree and systems of equations

The aim of this section is to introduce mathematically the Brouwer degree. It looks hard
to attribute concretely to someone the autorship of the existence of the Brouwer degree
(see Theorem 2). Actually, it might be said that the Brouwer degree is a typical sample
of stepped mathematical construction where the partial developments, begun around 1910,
performed a really fundamental role in the final and general formulation (see [7]). Today
it is known that there exists more than one way to introduce and prove the existence of
the Brouwer degree but all of them are equivalent because of the unicity of the Brouwer
degree (again see theorem 2) so, to some extent, it does not matter how to introduce or
construct the degree. It is noteworthy to mention that the uniqueness of the Brouwer degree
was not proved until the year 1973 by the mathematicians H. Amann and S. Weiss (see [13]).
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The Brouwer degree is a powerful tool that allows to generalizate the Bolzano’s theorem
for continuous functions of several variables and several components. Clearly, the hypothesis
f(a)f(b) < 0 in Bolzano’s theorem means that f(a) and f(b) have different sign, so one can
state the Bolzano’s theorem in this new way.

Bolzano’s theorem (revisited) Let a, b ∈ R be two real numbers with a < b and
f : [a, b] → R a real-valued continuous function defined on the real interval [a, b] such that
f(a)f(b) 6= 0. If 1

2
[sgn(f(b)) − sgn(f(a))] 6= 0, then there exists c ∈]a, b[ with f(c) = 0 or,

equivalently, the equation f(x) = 0 has a solution in ]a, b[.

Note that sgn(f(a)) and sgn(f(b)) make sense by virtue of the fact that f(a) and f(b)
are not zero. The scalar 1/2 multiplying the difference sgn(f(b)) − sgn(f(a)) is written
just by aesthetic. The main goal is to replace the expression 1

2
[sgn(f(b))− sgn(f(a))] with

another mathematical expression that is still valid on higher dimensions.

Exercise 6. If a, b ∈ R are two real numbers with a < b and f : [a, b]→ R a real-valued and
continuous function of class C1 on ]a, b[ such that f(a)f(b) 6= 0 and zero is a regular value
of f (x ∈]a, b[, f(x) = 0⇒ f ′(x) 6= 0), prove that the set f−1({0}) is finite and

1

2
[sgn(f(b))− sgn(f(a))] =

∑
x∈f−1(0)

sgnf ′(x)

In the previous exercise, the summatory is considered zero when f−1(0) = ∅. The advan-
tage of the right-hand side expression is that it can be extended to greater dimensions.

Given a, b ∈ R two real numbers with a < b and f : [a, b] → R a continuous function
defined on [a, b] with f(a)f(b) 6= 0, the Brouwer degree degB(f, ]a, b[, 0) of f at 0 relative to
]a, b[ is

degB(f, ]a, b[, 0) =
1

2

(
f(b)

|f(b)|
− f(a)

|f(a)|

)
=


1 si f(a) < 0 < f(b)

−1 si f(a) > 0 > f(b)

0 si f(a)f(b) > 0

Example 3 (Brouwer degree of a polynomial). Let n ∈ N be a natural number, an, ..., a0 ∈ R
n + 1 real numebers with an 6= 0, p(x) = anx

n + an−1x
n−1 + · · · + a1x + a0 a polynomial of

order n with coefficients an, ..., a0 and ρ > 0 big enough, then

degB(p, ]− ρ, ρ[, 0) =

{
0 si n es par

sgn(an) si n es impar

Henceforth, let n ∈ N be a natural number. Formally, the Brouwer degree in n dimen-
sions is constructed in three steps.

The first step defines the Brouwer degree for a function f of class C1 in a non-empty,
open and bounded subset Ω of Rn and at a regular value y ∈ Rn of f with y /∈ f(∂Ω).
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In [5] and [12], it is proved that if Ω ⊆ Rn is a non-empty, bounded and open subset of Rn,
f : Ω→ Rn is a continuous function on Ω and of class C1 on Ω and y ∈ Rn is a regular point
of f , then f−1({y}) is a finite set and the Brouwer degree of f at y relative to Ω is defined
by the following integer number

degB(f,Ω, y) =
∑

x∈f−1({y})∩Ω

sgn det f ′(x)

The second step defines the Brouwer degree for a function f of class C1 in a non-empty,
open and bounded subset Ω of Rn but at an arbitrary point y ∈ Rn with y /∈ f(∂Ω). The
mathematical tool that allows to remove the condition of regular value of f is the Sard’s
lemma. The Sard’s lemma claims that the set of singular values of a C1 function defined on
a non-empty and open subset Ω of Rn has Lebesgue measure zero, and thus define

degB(f,Ω, y) = lim
n→+∞

degB(f,Ω, yn)

where {yn} is a sequence of regular values of f converging to y. In [5] and [12], it is shown
that this is well-defined, namely it does not depend on the chosen sequence {yn}.

Finally, the third and last step defines the Brouwer degree for a continuous function f
on the closure of a non-empty, open and bounded subset Ω of Rn and at an arbitrary point
y ∈ Rn with y /∈ f(∂Ω). The mathematical tool that allows to remove the condition of
C1 function f is the Weierstrass’s approximation theorem. The Weierstrass’s approximation
theorem claims that the for every continuous function f ∈ C(Ω) there exists a sequence
{fn} ⊂ C1(Ω) such that {fn} → f for the uniform norm ‖ · ‖0 on C0(Ω), and thus define

degB(f,Ω, y) = lim
n→+∞

degB(fn,Ω, y).

In [5] and [12], it is shown that this is well-defined, namely it does not depend on the chosen
sequence {fn}.

For the following, fix n ∈ N and let Σ be the set of all triples lists (f,Ω, y) where Ω is
a non-empty, bounded and open subset of Rn, f : Ω→ Rn is a continuous function defined
on Ω and y ∈ Rn a point of Rn such that y /∈ f(∂Ω). Given (f,Ω, y) ∈ Σ, an homotopy
H : Ω× [0, 1]→ Rn is admissible if H(x, t) 6= y for all x ∈ ∂Ω and t ∈ [0, 1]. The reader can
see the proof of the following theorem in [6] or [12], among others.

Theorem 2 (Existance and unicity of the Brouwer degree). There exists a unique application
deg : Σ→ Z (Brouwer degree), where Z stands for the set of integer numbers, such that

(A1) Normalization: if y ∈ Ω, then degB(Id,Ω, y) = 1, where Id denotes the identity
map.

(A2) Additivity: if Ω1,Ω2 ⊆ Ω are two open and disjoint subsets of Ω with y /∈ f(Ω\ (Ω1∪
Ω2)), then degB(f,Ω, y) = degB(f,Ω1, y) + degB(f,Ω2, y).
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(A3) Homotopy invariance: if H : Ω × [0, 1] → Rn is a continuous and admissible
homotopy for all t ∈ [0, 1] and y = y(t) is a curve such that H(x, t) 6= y(t), x ∈
∂Ω, t ∈ [0, 1], then degB(H(·, t),Ω, y(t)) is independent of t.

Remark 2. The axiom (A3) is equivalent to the following two alternative axioms:

• if H : Ω×[0, 1]→ Rn is a continuous and admissible homotopy, then degB(H(·, t),Ω, y)
is independent of t.

• degB(f,Ω, y) = degB(f − y,Ω, 0).

There are massive amount of properties of the Brouwer degree. Here, the most important
are presented.

As a direct consequence of the axiom (A2) of the Brouwer degree, it follows these two
results.

Proposition 1 (Excision). If (f,Ω, y) ∈ Σ and Λ ⊆ Ω is a closed subset contained in Ω and
y /∈ f(Λ), then

degB(f,Ω, y) = degB(f,Ω \ Λ, y)

Proposition 2 (Additivity). If m ∈ N, (f,Ω, y) ∈ Σ and Ω1, ...,Ωm ⊆ Ω open and disjoint
subsets of Ω such that y /∈ f(Ω \ ∪mk=1Ωk), then (f,Ωk, y) ∈ Σ for every k = 1, ...,m and

degB(f,Ω, y) =
m∑
k=1

degB(f,Ωk, y)

The next property is the required result that generalizes the Bolzano’s theorem. Its proof
is left as an exercise and it follows from the axiom (A2) of the Brouwer degree.

Exercise 7 (Existance property). Prove that if (f,Ω, y) ∈ Σ and degB(f,Ω, y) 6= 0, then
the equation f(x) = y has, at least, one solution in Ω.

Proposition 3 (Dependence on the connected component). If (f,Ω, y) ∈ Σ and y∗ and y
belong to the same connected component of Rn \ f(∂Ω), then degB(f,Ω, y) = degB(f,Ω, y∗)

Proposition 4 (Dependence on the boundary). If (f,Ω, y), (g,Ω, y) ∈ Σ and f |∂Ω = g|∂Ω,
then degB(f,Ω, y) = degB(g,Ω, y).

Proof. Define the continuous homotopy H : Ω × [0, 1] → Rn by H(x, t) = (1 − t)f(x) +
tg(x) for all (x, t) ∈ Ω × [0, 1]. For every (x, t) ∈ ∂Ω × [0, 1], clearly H(x, t) = f(x) =
g(x) 6= y, hence the homotopy invariance of the Brouwer degree yields degB(f,Ω, y) =
degB(g,Ω, y).

Exercise 8. If a, b ∈ R are two real numbers with a < b and f : [a, b] → R is a continuos
function with f(a)f(b) 6= 0, prove that

degB(f, ]a, b[, 0) =
1

2
[sgnf(b)− sgnf(a)]
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I Hint : use the proposition 4.

The Brouwer degree at zero for the particular case of linear functions is quite easy to
calculate. Let A ∈ Mn(R) be a regular matrix of order n, Ω ⊆ Rn a non-empty, open and
bounded subset of Rn containing the origin and consider the linear function ϕA : Ω → Rn

defined by ϕA(x) = Ax for all x ∈ Rn. On the one hand, since A is regular the only solution
to the system Ax = 0 is x = 0, so ϕ−1

A (0) = 0. On the other hand, since ϕA is linear it
follows ϕ′A = A. Consequently, (ϕA,Ω, 0) ∈ Σ and

degB(ϕA,Ω, 0) =
∑

x∈ϕ−1
A (0)∩Ω

sgn detϕ′A(x) = sgn detA

For example, if Ω ⊆ Rn a non-empty, open and bounded subset of Rn containing the
origin, one has degB(−Id,Ω, 0) = (−1)n. More properties of Brouwer degree can be found
in [5] and [12].

Example 4. Let ρ > 0 be a positive number, B = BR2(0, ρ) the open ball in R2 centered at
the origin of radius ρ and f : B → R2 the linear function given by

f(x, y) = (2x+ y, x− 2y) =

(
2 1
1 −2

)(
x
y

)
∀(x, y) ∈ B

The matrix A =

(
2 1
1 −2

)
has determinant equal to −5, then, from the previous paragraph,

deg(f,B, 0) = sgn(−5) = −1. At this point, the existence property provide the existence of
one solution to the system of equations{

2x+ y = 0

x− 2y = 0

The example 4 is not interesting at all. Everyone knows that the previous system of
equations have one, and only one, solution (x, y) = (0, 0) and it is not necessary to apply
the Brouwer degree theory here, but what about the following system of equations? Can the
reader stop and think for a moment how to obtain the existance of solution for this second
system of equations?

(∗)

{
2x+ y + sin(x+ y) = 0

x− 2y + cos(x+ y) = 0

This system admit solution and it belongs to B(0, r) provided that r > 1/
√

5 and the way to
prove it is using the Brouwer degree. First, suppose that the system has a solution (x0, y0),
then {

2x0 + y0 = − sin(x0 + y0)

x0 − 2y0 = − cos(x0 + y0)
⇒

{
(2x0 + y0)2 = (− sin(x0 + y0))2

(x0 − 2y0)2 = (− cos(x0 + y0))2
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Adding these two equations,

(2x0 + y0)2 + (x0 − 2y0)2 = 1

and simplifying, it follows
x2

0 + y2
0 = 1/5.

Take r > 1/
√

5, Ω = B(0, r) and consider the funtions f ∈ C(Ω) and g ∈ C(Ω) given by

f(x, y) = (2x+ y, x− 2y) ∀(x, y) ∈ Ω

g(x, y) = (sin(x+ y), cos(x+ y)) ∀(x, y) ∈ Ω

and the continuous homotopy H : Ω× [0, 1]→ R2 defined by

H(x, y, t) = f(x, y) + tg(x, y) ∀((x, y), t) ∈ Ω× [0, 1]

If (x, y) ∈ ∂Ω and λ ∈ [0, 1], then

‖H(x, y, t)‖2 ≥ ‖f(x, y)‖2 − t‖g(x, y)‖2 ≥
√

5− λ > 0

where it has been used that ‖g(x, y)‖2 = 1 and ‖f(x, y)‖2 = 5(x2 + y2) = 5r > 5/
√

5 =
√

5.
This implies that H is an admissible homotopy and, in view of the homotopy invariance of
the Brouwer degree, degB(f + g,Ω, 0) = degB(f,Ω, 0), but f is just the linear function of
the example 4 and 0 ∈ Ω, so

degB(f + g,Ω, 0) = degB(f,Ω, 0) = −1 6= 0

Finally, the existence property concludes the required existence of solution for the system of
equations (∗). Roughly speaking, note that basically the priori bound of solutions leads to
existance of solution and this explains one famous quote of the mathematician J. Mawhin:
I am limited, therefore I exist!.

Exercise 9. Prove the existence of solution of{
8x+ 6y + log(x2+2)

x2+y2+1
− sin(y − 7) + 15 = 0

3x− y + exp(−y2 − 4) + cos(xy) + 1 = 0

1.3 Brouwer fixed point theorem

A fixed point of a function f : Ω → Rn defined on a non-empty subset Ω of Rn is a point
x ∈ Ω such that f(x) = x. This section is focused on the Brouwer fixed point theorem,
a result that provides the existence of a fixed point for continuous functions defined on a
subset homeomorphic to a non-empty, convex, closed and bounded subset of Rn, in its most
general version. Let us start with the most simple and classical version:

Theorem 3 (Brouwer’s fixed point). Let n ∈ N be a natural number, ρ ∈ R+ a positive real
number, B = BRn(0, ρ) the closed ball in Rn centered at the origin of radius ρ and f : B → B
a continuous function defined on B with values on B. Then f has, at least, one fixed point
in B. Equivalently, the equation f(x) = x has solution in Ω.
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Proof. Define the function g : B → Rn by g(x) = x− f(x) for all x ∈ B and the continuous
homotopy H : B × [0, 1] → Rn by H(x, t) = x − tf(x) for all (x, t) ∈ B × [0, 1]. If there
exists a point x ∈ ∂B such that f(x) = x, f has a fixed point on ∂BRn(0, ρ) and the
proof is finished. If not, on the one hand, if x ∈ ∂B and t ∈ [0, 1[, x − tf(x) = 0 implies
ρ = ‖x‖ = t‖f(x)‖ < ‖f(x)‖ ≤ ρ (contradiction) and, on the other hand, if x ∈ ∂B and
t = 1, x− tf(x) = 0 implies ρ = ‖x‖ = ‖f(x)‖ but the assumption is that f(x) 6= x for every
x ∈ ∂BRn(0, ρ) (contradiction). The homotopy invariance, together with the normalization,
of the Brouwer degree yield degB(Id − f,BRn(0, ρ), 0) = degB(Id,BRn(0, ρ), 0) = 1 6= 0.
Finally, the existance property of the Brouwer degree provides a point x∗ ∈ BRn(0, ρ) such
that (Id− f)(x∗) = 0 or, equivalently, f(x∗) = x∗ and f has a fixed point on BRn(0, ρ).

The Brouwer’s fixed point theorem was first proved in dimension three by Brouwer himself
in 1909. Next year, in 1910, Hadamard extended the result to an arbitrary dimension and
finally in 1912, Brouwer also proved it for every dimesion but now using the so called Brouwer
degree.

Remark 3. In dimension one, Brouwer’s fixed point theorem is equivalent to Bolzano’s
theorem.

Theorem 4. Let n ∈ N be a natural number, K ⊆ Rn a non-empty, convex, closed and
bounded subset of Rn and f : K → K a continuous function defined on K and with values
on K, then f has, at least, one fixed point in K.

Note that the proof of the previous theorem does not work here because the interior of
K can be the empty set. In R, there are not non-empty, convex, closed and bounded subsets
with empty interior owing to the fact that convex subsets of R are just the real intervals.
In greater dimensions, this already happens: think in a non-empty and closed segment of
R2, for example. The proof of the previous theorem is based on the Dugundji extension’s
theorem that is next stated. The reader can see the proof of it in [15].

Theorem 5 (Dugundji). Let K ⊂ Rn a non-empty and compact subset of Rn, Λ ⊂ Rn a
non-empty subset of Rn and f : K → Λ a continuous function defined on K. Then there
exists a function F : Rn → Rn from Rn to Rn such that

(a) F is continuous

(b) F |K = f

(c) F (Rn) ⊆ conv(Λ)

Proof of theorem 4. In the case of the theorem 4, Λ = K and K is a non-empty, convex and
compact (closed and bounded) subset of Rn, so the Dugundji theorem asserts the existence
of a continuous extension function F : Rn → Rn of f with F (Rn) ⊆ conv(K). Since K is
convex and closed, conv(K) = K and therefore the image of F is contained in K and so the
restriction toK of F , i.e. f = F |K : K → K. Finally, sinceK is bounded, one can takeR > 0
such that K ⊂ B(0, R) and consider the restriction F |B(0,R) : B(0, R)→ K ⊂ B(0, R), then

the theorem 3 provides a point x∗ ∈ B(0, R) with F |B(0,R)(x∗) = x∗ but F (B(0, R)) ⊂ K, so
x∗ ∈ K and then by the fact that F |K = f , it is concluded that f(x∗) = x∗ or, equivalently,
x∗ is a fixed point of f in K.



1.4. INTRODUCTION AND MOTIVATION FOR THE LERAY-SCHAUDER DEGREE17

To conclude, the proof of the most general statement is left as an easy exercise.

Theorem 6. Let n ∈ N be a natural number, Ω ⊂ Rn a subset of Rn that is homeomorphic
to a non-empty, convex, closed and bounded subset K of Rn and f : Ω → Ω a continuous
function defined on Ω with values on Ω. Then f has, at least, one fixed point in Ω.

Exercise 10. Prove the previous theorem.

More applications of Brouwer degree can be found in [5] and [12].

A really hard and interesting question concerning fixed points of continuous functions is
now also left as an exercise for the reader. In dimension one, it is effortless to imagine a
real-valued and continuous function defined on a non-trivial, closed interval with only one
fixed point, or with only two fixed points, or with only three fixed points,... or with infinite
fixed points too! (and not necessarily the identity map). The following exercise establishes
that there always exists a continuous function with exactly the fixed points given by a closed
set.

Exercise 11. Prove that if ρ ∈ R+ is a positive real number and C ⊂ BRn(0, ρ) is a non-
empty and closed subset contained in the closed ball centered at the origin and of radius ρ,
then there exists a continuous function f : BRn(0, ρ) → BRn(0, ρ) such that the set of the
fixed points of f is exactly the set C.

I Hint : use the distance function d(·, C).

1.4 Introduction and motivation for the Leray-Schauder

degree

What happend when one walks into infinte-dimensional spaces? There is a big problem: it
is not possible to define a topological degree similar to Brouwer degree when the considered
space is infinite-dimensional. First of all, some concepts and properties of the infinite di-
mension are recalled next.

A basis B of a real finite-dimensional vector space X is a set of elements of X that has
both the linear independence and the spanning property.

{e1, ..., en} ⊂ X linearly independant⇐⇒ ∀λ1, ..., λn ∈ R,
n∑
k=1

λkek = 0⇒ λ1 = · · · = λn = 0

{e1, ..., en} ⊂ X spanning set of X ⇐⇒ ∀x ∈ X, ∃λ1, ..., λn ∈ R : x =
n∑
k=1

λkek

The coefficients of this linear combination are referred to as components or coordinates
on B of the vector. A real vector space X has finite dimension n ∈ N if there exists a
basis of B ⊂ X with exactly n vectors. Every vector space admits basis and, by the basis
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theorem, if there is one basis of X formed by n components then all the bases of X have
also n components. Equivalently, B is a basis of X if, and only if, every element of X may
be written in a unique way as a (finite) linear combination of elements of B:

{e1, ..., en} ⊂ X base de X ⇐⇒ ∀x ∈ X, ∃!λ1, ..., λn ∈ R : x =
n∑
k=1

λkek

A real vector space X has infinite dimension if it has not finite dimension. For instance,
if a, b ∈ R are two real numbers with a < b, then the space C([a, b],R) of continuous and real-
valued funtions defined on [a, b] has infinite dimension. The easiest way to prove this is to
find a linearly independant and infinite subset of C([a, b],R). The set P = {xn : n ∈ N∪{0}}
is contained in C([a, b],R), has infinite elements and is linearly independant. Unfortunately,
it is not a spanning set, so P is not a basis of C([a, b],R).

Exercise 12. Prove that C = {xn : n ∈ N ∪ {0}} is linearly independent but is not a basis
of C([a, b],R).

In fact, every linearly independent subset B of a vector space X can be extended into a
basis of X, so it is clear that there exists a basis of C([a, b],R) that contains P. In general,
it turns imposible to find explicitly a basis of a infinite-dimensional space, like C([a, b],R).
Moreover, as a consequence of Baire’s theorem, the bases of C([a, b],R) are uncountable in-
finite sets.

A norm on a real vector space X is a map ‖ · ‖ : X → R with the following properties

• ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if, and only if, x = 0.

• ‖λx‖ = |λ|‖x‖ for all λ ∈ R and x ∈ X.

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X.

A normed space (X, ‖ · ‖) is a vector space X equipped with a norm ‖ · ‖.

One can equipped Rn with so many different norms, for example

‖x‖p = (|x1|p + · · ·+ |xn|p)1/p ∀x = (x1, ..., xn) ∈ Rn, ∀p ∈ [1,∞[

‖x‖∞ = max
1≤k≤n

{|xk|} ∀x = (x1, ..., xn) ∈ Rn

One can equipped C([a, b],R) with so many different norms, for example

‖f‖ =

∫ b

a

|f(t)| dt ∀f ∈ C([a, b],R)

‖f‖0 = max
a≤t≤b

{|f(t)|} ∀f ∈ C([a, b],R)

It is known that there are great differences between the finite and the infinite dimensions.
All norms in Rn are equivalent, while this is not true for C([a, b],R). The equivalence of norms
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is significant, because it assures that one can study the topological properties independent
of the considered norm. Another remarkable difference between the finite and the infinite
dimensions is the Bolzano-Weierstrass theorem, which holds only for finite dimension. The
Bolzano-Weierstrass theorem states that every bounded sequence in Rn has a convergent
subsequence. This is false for infinite dimension as the reader can see in the next exercise.

Exercise 13. If X = (C([a, b],R), ‖ · ‖0), the sequence {fn} of X given by fn(t) = tn for all
t ∈ [a, b] and n ∈ N is bounded and it has not a convergent subsequence.

This section started by confirming the imposibility of an analogous of Brouwer degree in
infinite-dimensional spaces. The reason why this happends lies on the Brouwer fixed point
theorem. Imagine for a moment that one has already construct a topological degree in infi-
nite dimnesion and similar to Brouwer degree, then the Brouwer degree theorem would still
remains true since only the axioms (A1) − (A2) − (A3) are used in its proof. Here is the
problem! the Brouwer fixed point is not true for infinite-dimensional spaces, in other words,
for each infinite-dimensional space there is a continuous function on the closed unit ball into
itself that has no fixed points. This statement is really hard to prove, but in order to clarify
it, it is showed a particular example now:

Consider the space X = (c0, ‖ · ‖) of all the convergent sequences of real numbers with
limit zero and the norm given by ‖{xn}‖ = maxn∈N |xn| for all {xn} ∈ c0. Clearly, X is
a infinte-dimensional space as {en : n ∈ N} is a infinite and linearly independant subset

of X, where en = {0, ..., 0,
n)

1 , 0, ...0} for each n ∈ N. Note that {en} is not a basis of X:
the sequence {1/n} ∈ X cannot be expressed by a finite linear combination of elements of
{en : n ∈ N}. Futhermore, it is proved with no difficulty that X is a Banach space. Here,
the closed unit ball is

BX(0, 1) = {{xn} ∈ c0 : ‖{xn}‖ ≤ 1} = {{xn} ∈ c0 : |xn| ≤ 1, n ∈ N}

The function f : BX(0, 1)→ BX(0, 1) that maps every sequence {xn} to the sequence

f({xn}) =

{
1 + ‖ {xn} ‖

2
, x1, x2, ..., xn, ...

}
is well-defined, continuous but it has no fixed points. Indeed, if {xn} ∈ c0 and ‖xn‖ ≤ 1,

then ‖f({xn})‖ = max
{

1+‖{xn}‖
2

, |x1|, |x2|, ..., |xn|, ...
}
≤ 1 and, in addition, is more than

continuous, f is 1-lipschitz: given {xn}, {yn} ∈ c0,

‖f({xn})− f({yn})‖ = maxn∈N |f({xn})− f({yn})| =

= maxn∈N

{
|‖{xn}‖−‖{yn}‖|

2
, |x1 − y1|, |x2 − y2|, ...

}
≤

≤ ‖{xn} − {yn}‖
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Finally, is clear from f({xn}) = {xn} that {xn} must be the constant sequence

xn =
1 + ‖{xn}‖

2
, n ∈ N

which does not converge to zero and this complete the reasoning, there is no sequence {xn}
in X such that f({xn}) = {xn}.

All this does not mean that it is imposible to define a useful degree in infinite-dimensional
spaces. In fact, mathematicians from 1930s kept trying to define this topological tool
in infinite-dimensional spaces because of its diverse applications to integral equations or
boundary-value problems. Mathematicians realized that the functions that appears in the
applications satisfy an additional property to due continuity and this property helped them
to construct a “Brouwer fixed point theorem” version for infinite dimension. Concretely, this
was done by the French and German mathematicians, J. Leray and J. Schauder, respectively.
They both create a degree for functions of the form I − T where I is the identity map and
T is a compact function.

Definition 1. Given (X, ‖ · ‖) a (real) normed space and Ω ⊆ X a non-empty, bonded and
open subset of X, an operator T : Ω→ X is compact if

1. T is continuous.

2. T (Ω) is relatively compact (⇔ T (Ω) is compact).

Remark 4. In the situation of the previous definition, note that if dimX < ∞, then T is
compact if, and only if, T is continuous.

Remark 5. If dimX = ∞, there are continuous functions that are not compact. The
identity map is continuous but not compact, otherwise Id(BX(0, 1)) = BX(0, 1) would be
relatively compact and also compact. However, the closed unit ball in infinite-dimensional
spaces is never compact!. Actually, dimX <∞ if, and only if, Bx(0, 1) is compact.

Remark 6. If X = (Rn, ‖ · ‖) for some n ∈ N, then Ω ⊆ X is relatively compact if, and
only if, Ω is bounded. Of course, it does not matter what norm is being considered due to
the fact that all the norms on Rn are equivalent.

Remark 7 (Arzelà-Ascoli theorem). If X = (C0([a, b],R), ‖ · ‖0) for some a, b ∈ R with
a < b, then Ω ⊆ X is relatively compact if, and only if, Ω is

1. uniformly bounded: ∃M > 0 : |f(x)| ≤M, ∀x ∈ [a, b], ∀f ∈ X

2. equicontinuous: ∀ε > 0 ∃δ(ε) > 0 : x, y ∈ [a, b], |x−y| < δ ⇒ |f(x)−f(y)| < ε, ∀f ∈ Ω

For a fixed but arbitrary function f , the uniformly boundness assures that f is bounded, but
this is already known because f is continuous and defined on the compact [a, b].
For a fixed but arbitrary function f , the equicontinuity assures that f is uniformly continuous,
but this is already known by the Heine theorem.

A really useful sufficient condition for equicontinuity follows from the mean value theorem
and it is stated next.
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Sufficient condition for equicontinuity. If the functions of Ω ⊂ C0([a, b],R) are deriv-
able and there exists K ≥ 0 such that |f ′(x)| ≤ K for all x ∈ [a, b] and for all f ∈ Ω, then
Ω is equicontinuous.

Compact operators verify the following property that allowed to define a degree in infinite-
dimensional spaces whose proof can be read in [12].

Theorem 7. Let (X, ‖ · ‖) be a Banach space, Ω ⊆ X a non-empty, bonded and open subset
of X and T : Ω → X a compact function, then there exists a sequence {Tn} of functions
defined on Ω and with values on X such that

1. Tn is compact for all n ∈ N.

2. Tn converges uniformly to T in Ω.

3. for every n ∈ N, Im(Tn) ⊂ Xn, where Xn is a subspace of finte-dimension of X.

1.5 The Leray-Schauder degree

For the following, let Σ be the set of all triples lists (I − T,Ω, y) where Ω is a non-empty,
bounded and open subset of X, I is the identity map on Ω, T : Ω→ X is a compact function
defined on Ω and y ∈ X a point of X such that y /∈ (I−T )(∂Ω). Given (I−T,Ω, y) ∈ Σ, an
homotopy H : Ω× [0, 1]→ X is admissible if I(x)−H(x, t) 6= y for all x ∈ ∂Ω and t ∈ [0, 1].
The reader can see the proof of the following theorem in [6] or [12], among others.

Theorem 8 (Leray-Schauder, 1934). Let (X, ‖ · ‖) be a Banach space, then there exists a
unique application degLS : Σ→ Z (Leray-Schauder degree) such that

(B1) Normalization: if y ∈ Ω, then degLS(I,Ω, y) = 1 .

(B2) Additivity: if Ω1,Ω2 ⊆ Ω are two open and disjoint subsets of Ω with y /∈ (I−T )(Ω\
(Ω1 ∪ Ω2)), then degLS(f,Ω, y) = degLS(f,Ω1, y) + degLS(f,Ω2, y).

(B3) Homotopy invariance: if H : Ω× [0, 1]→ X is a compact and admissible homotopy
for all t ∈ [0, 1] (I(x)−H(x, t) 6= y(t), x ∈ ∂Ω, t ∈ [0, 1]), then degLS(H(·, t),Ω, y(t))
is independent of t.

Remark 8. When the dimension of the Banach space X is finite, the Leray-Schauder degree
is nothing but the Brower degree!.

The Leray-Schauder degree enjoys of similar properties of Brouwer degree.

Proposition 5 (Excision). If (I −T,Ω, y) ∈ Σ and Λ ⊆ Ω is a closed subset contained in Ω
and y /∈ f(Λ), then

degLS(I − T,Ω, y) = degLS(I − T,Ω \ Λ, y)
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Proposition 6 (Additivity). If m ∈ N, (fI − T,Ω, y) ∈ Σ and Ω1, ...,Ωm ⊆ Ω open and
disjoint subsets of Ω such that y /∈ (I − T )(Ω \ ∪mk=1Ωk), then (I − T,Ωk, y) ∈ Σ for every
k = 1, ...,m and

degLS(I − T,Ω, y) =
m∑
k=1

degLS(I − T,Ωk, y)

Proposition 7 (Existence property). If (I − T,Ω, y) ∈ Σ and degLS(f,Ω, y) 6= 0, then the
equation x− Tx = y has, at least, one solution in Ω.

Proposition 8 (Dependence on the connected component). If (I − T,Ω, y) ∈ Σ and y∗
and y belong to the same connected component of X \ (I − T )(∂Ω), then degLS(f,Ω, y) =
degLS(f,Ω, y∗)

Proposition 9 (Dependence on the boundary). If (I − T,Ω, y), (I∗T ,Ω, y) ∈ Σ and T |∂Ω =
T ∗|∂Ω, then degLS(IT ,Ω, y) = degLS(I − T ∗,Ω, y).

More properties of Leray-Schauder degree can be found in [6], [12] and [14].

1.6 The Schauder fixed point theorem and boundary

value problems

Theorem 9 (Schauder, 1930). Let X be a real Banach space and K ⊆ X a non-empty,
convex, bounded and closed subset of X and T : K → K a compact funcion defined on K
with values on K, then T has, at least, one fixed point in K. Equivalently, the equation
Tx = x has solution in K.

Exercise 14. Prove the Schauder fixed point theorem.

Exercise 15 (Schauder fixed point theorem extended). Prove or disprove the following
claim: if X is a real Banach space, T : D → D is a compact map and D is homeomorphic to
a non-empty, convex, bounded and closed subset of X, then T has, at least, one fixed point
in D.

Exercise 16. Prove that if X is a Banach space with dimX =∞ and K ⊂ X is compact,
then K◦ = ∅.

Corollary 3. Let X be a real Banach space and K ⊆ X a non-empty, convex and compact
subset of X and T : K → K a continuous funcion defined on K with values on K, then T
has, at least, one fixed point in K. Equivalently, the equation Tx = x has solution.

One of the most important applications of the Leray-Schauder degree lies on boundary
values problems. For instance, given a, b ∈ R with a < b and a continuous and bounded
function f : [a, b]× R→ R, the problem

(BV P )

{
−x′′(t) = f(t, x(t)), t ∈]a, b[

x(a) = x(b) = 0
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has, at least, one solution in C2([a, b],R). This problem is translated to an integral equation
via the associated Green’s function K ∈ C([a, b]× [a, b],R). It is proved that x ∈ C2([a, b],R)
is a solution of (BV P ) if, and only if, x ∈ C([a, b],R) and

x(t) =

∫ b

a

K(t, s)f(s, x(s)) ds ∀t ∈ [a, b].

Exercise 17. Consider the functional space X = (C([a, b],R), ‖·‖0) and the map T : X → X
defined by

T (x)(t) =

∫ b

a

K(t, s)f(s, x(s)) ds ∀t ∈ [a, b]

for every x ∈ X, where K ∈ C([a, b]× [a, b],R). Prove the following assertions:

a) T is well-defined.

b) T is continuous.

c) If B ⊂ X is bounded, then T |B : B → X is compact (use Arzelà-Ascoli theorem).

d) Apply the Schauder fixed point to get a fixed point of T , meaning a solution of

x(t) =

∫ b

a

K(t, s)f(s, x(s)) ds
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Chapter 2

Sobolev spaces

The chapter is divided into four sections (Introduction, Lebesgue spaces, Sobolev spaces and
Eigenvalues of linear Dirichlet boundary value problem). The main bibliography used here
is [8].

2.1 Introduction

The variational method is an analitycal method used to solve problems concerning partial
differential equations, among others. This method consists of defining a functional on a
certain functional space so that its critical points turn out to be solutions of the original
problem. In other words, we solve one partial differential equation suject to some conditions
by finding critical points of a suitable funcional defined on a suitable functional space, which
is often easier to manage. Let’s think in the following example,

(P )

{
u′′ = u+ f, x ∈]0, π[

u(0) = u(π) = 0

where u = u(x) is the unknown function and f : R→ R is a given and continuous function.
It seems logic to set the functional space X = {v ∈ C2[0, π] : v(0) = v(π) = 0} where to find
the possible solutions to (P ). Imagine that u ∈ C2[0, π] is a solution of (P ) and v ∈ X is an
arbitrary function of X, then multiplying the equation u′′ = u + f by v and integrating on
[0, π], one gets

−
∫ π

0

u′(x)v′(x) dx =

∫ π

0

u(x)v(x) dx+

∫ π

0

f(x)v(x) dx (2.1)

after applying the integration by parts formula and using the fact that v(0) = v(π) = 0,∫ π

0

u′′(x)v(x) dx = u′(x)v(x)]
π
0 −

∫ π

0

u′(x)v′(x) dx = −
∫ π

0

u′(x)v′(x) dx

Since v ∈ X is arbitrary, the equation (2.1) is equivalent to write∫ π

0

[u′(x)v′(x) + u(x)v(x) + f(x)v(x)] dx = 0 ∀v ∈ X (2.2)

25
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Conversely, if equation (2.2) holds true for all v ∈ X, then it must be u′′ − u− f = 0 on
[0, π]. This is clear from the fact that u′′−u− f is continuous on [0, π], so if there exists one
point x0 ∈ [0, π] with u′′(x0) − u(x0) − f(x0) > 0 (analogous for < 0) it follows that there
exists an open interval J centered at x0 such that u′′ − u− f is non-negative on J . Finally,
one can define a function v0 ∈ X with the property of being zero outside J and non-negative
inside J and consequently it should be∫ π

0

[u′′(x)− u(x)− f(x)]v0(x) dx > 0

which is a contradiction.

The aim here is to define a functional I : X → R such that the “derivative” I ′(u) (this
will be defined rigorously later) at a function u ∈ X is given by

I ′(u)(v) =

∫ π

0

[u′(x)v′(x) + u(x)v(x) + f(x)v(x)] dx ∀v ∈ X

so this means that u ∈ X is a solution of (P ) if, and only if, I ′(u) ≡ 0. By definition, u
is a critical point of a functional I when I ′(u) ≡ 0. The functional I we are looking for is
nothing but

I(u) =
1

2

∫ π

0

(u′(x))2 dx+
1

2

∫ π

0

u(x)2 dx+

∫ π

0

f(x)u(x) dx ∀u ∈ X

One typical way to see that a certain function u is a critical point of I is just proving
that u is a global minimum or maximum or a saddle point of I, actually.

Consider in X the following norm

‖u‖ =

(∫ π

0

|u(x)|2 dx+

∫ π

0

|u′(x)|2 dx
)1/2

∀u ∈ X (2.3)

The functional I is bounded from below. Indeed,

I(u) =
1

2

∫ π

0

[
(u(x)′)2 + u(x)2

)
] dx+

∫ π

0

f(x)u(x) dx ≥

≥ 1

2

∫ π

0

[
(u(x)′)2 + u(x)2

)
] dx+

(∫ π

0

f(x)2 dx

)1/2(∫ π

0

u(x)2 dx

)1/2

≥

≥
∫ π

0

(u′(x))2 dx− 1

2

∫ π

0

f(x)2 dx ≥ −1

2

∫ π

0

f(x)2 dx

where we used the Hölder inequality firstly and the fact that 1/2t2−at ≥ −a2/2 for all t ∈ R
secondly. Besides, I is coercive, that is I(u) → +∞ as ‖u‖ → +∞. In order to prove this,
one just write the following inequalities,
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I(u) =
1

2

∫ π

0

[
(u(x)′)2 + u(x)2

)
] dx+

∫ π

0

f(x)u(x) dx ≥

≥ 1

2

∫ π

0

[
(u(x)′)2 + u(x)2

)
] dx+

(∫ π

0

f(x)2 dx

)1/2(∫ π

0

u(x)2 dx

)1/2

≥

≥ 1
4

∫ π
0

(u′(x))2 dx+ 1
4

∫ π
0
u(x)2 dx+ 1

4

∫ π
0
u(x)2 dx−

(∫ π
0
f(x)2 dx

)1/2 (∫ π
0
u(x)2 dx

)1/2 ≥

≥ 1

4
‖u‖2 − cte

At this point, it is known that I is bounded from below, coercive and, although it was not
proved, is C1 on X. It is easy to check the following result when the considered functional
space has finite-dimension:

Proposition 10. If N ∈ N and I : RN → R is a C1-funtional on RN that is bounded from
below (resp. from above) and coercive, then I has global minimum (resp. global maximum).

Notwithstanding, this is false when RN is replaced by an arbitrary space X of arbitrary
dimension. In order to be able to apply a similar result which provides that a functional
I : X → R attains its global minimum at some point in X, some more additional hypothesis
are needed: X must be a Banach space. For instance, it is not hard to think in a C1-
functional I : Q → R bounded from below and coercive, but without a global minimum
in Q. Note that Q is not complete, since the sequence {3, 3.1, 3.14, 3.141, 3.1415, ...} is a
Cauchy sequence of rational numbers and it does not converge to a rational number. To
avoid this situation it is required the fact that X is a Banach space. Unfourtunately, the
space X = {v ∈ C2[0, π] : v(0) = v(π) = 0} equipped with the norm (2.3) is not a Banach
space, namely there exists a Cauchy sequence of elements of X that does not converge to an
element of X.

Exercise 18. Prove that X = {v ∈ C2[0, π] : v(0) = v(π) = 0} equipped with the norm (2.3)
is not a Banach space.

We will come back to these kind of results in the last chapter, but firstly here are some
necessary mathematical background and preliminary theory.

2.2 Brief reminder of Lebesgue spaces

Given a natural number N ∈ N, p ∈ [1,∞] and a non-empty and open subset Ω of RN , the
Lebesgue space Lp(Ω) is the following vector space

Lp(Ω) = {f : Ω→ R measurable /

∫
Ω

|f(x)|p dx <∞} (1 ≤ p <∞)

L∞(Ω) = {f : Ω→ R measurable / ∃C ≥ 0 : |f(x)| ≤ C a.e. on Ω}
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Lebesgue spaces can be equipped with the norms

‖f‖Lp(Ω) =

(∫
Ω

|f(x)|p dx
)1/p

∀f ∈ Lp(Ω) (1 ≤ p <∞)

‖f‖L∞(Ω) = inf
{
C ∈ R+

0 : |f(x)| ≤ C a.e. on Ω
}
∀f ∈ L∞(Ω)

The definitions from above are norms on the corresponding Lebesgue spaces and this
follows from the Hölder’s inequality. Several important properties of Sobolev spaces are
stated now and their proof can be read in [8]. Firstly, let us recall some definitions concerning
functional spaces.

Definition 2 (Reflexive space). A Banach space E is reflexive when the canonical injection
J : E → E∗∗ from the space E into its bidual space E∗∗ (see [8]) is surjective, i.e. J(E) = E∗∗

(E is identified with E∗∗).

Definition 3 (Separable space). A metric space E is separable when there exists a count-
able and dense subset of E.

Proposition 11 (Basic properties of Lebesgue spaces). Let m ∈ N be a natural number and
Ω ⊂ R a non-empty and open subset of R, then

(a) Lp(Ω) is a Banach space for 1 ≤ p ≤ ∞.

(b) Lp(Ω) is a reflexive space for 1 < p <∞.

(c) Lp(Ω) is a separable space for 1 ≤ p <∞.

(d) L2(Ω) is a Hilbert space with the following scalar product

〈f, g〉L2 = 〈f, g〉L2 =

∫
Ω

f(x)g(x) dx ∀f, g ∈ L2(Ω)

Given a non-empty and open subset Ω of RN , we wonder if there is a relationship between
Lp(Ω) and Lq(Ω). Yes, there is but we have to distinguish two cases.

Case 1. The measure µ(Ω) of Ω is finite.
If 1 ≤ p < q ≤ ∞, then Lq(Ω) ⊂ Lp(Ω) and the inclusion is continuous. For any f ∈ Lq(Ω),
applying Hölder’s inequality with exponents q/(q − p) and q/p,

‖f‖Lp(Ω) =

(∫
Ω

|f(x)|p dx
)1/p

=

(∫
Ω

1 · |f(x)|p dx
)1/p

≤

≤

[(∫
Ω

1 dx

) q−p
q
(∫

Ω

(|f(x)|p)q/p dx
) p

q

]1/p

=

=

[(∫
Ω

1 dx

) q−p
pq

][(∫
Ω

|f(x)|q dx
) 1

q

]
= µ(Ω)

q−p
pq ‖f‖Lq(Ω) <∞
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Case 2. The measure µ(Ω) of Ω is infinite.
In this case there is no relationship by far and it is not hard to think in a counterxample,
at least, in one dimension. For any values p and q, there exist functions u and v such that
u ∈ Lp(Ω) but u /∈ Lq(Ω) and v ∈ Lq(Ω) but v /∈ Lp(Ω).

So, in general, for an arbitrary subset Ω ⊂ RN (of finite or infinite measure), one cannot
conclude anything about the relationship among the Lebesgue spaces. However, if a function
belongs to two Lebesegue spaces of exponents p and q with p < q, then it must belong to
all the Lebesgue spaces with exponents in [p, q]. This is the same as saying that, for a given
function u : Ω → R, the set {p ∈ [1,∞] : u ∈ Lp(Ω)} is an interval. Of course, it could be
the hole [1,∞] or the empty set or just one point. This is called the theorem of interpolation
of Lebesgue spaces and is proved next.

Theorem 10 (Interpolation of Lebesgue spaces). Let Ω ⊂ RN a non-empty and open subset
of RN and 1 ≤ p ≤ l ≤ q < ∞, then Lp(Ω) ∩ Lq(Ω) ⊂ Ll(Ω). In addition, if f ∈
Lp(Ω) ∩ Lq(Ω), then

‖f‖Ll(Ω) ≤ ‖f‖
p(q−l)
l(q−p)
Lp(Ω) · ‖f‖

q(l−p)
l(q−p)
Lq(Ω)

Proof. We are going to apply Hölder’s inequality with the exponents p/α and q/β where

α =
p(q − l)
q − p

and β =
q(l − p)
q − p

Note that

α + β = l and
α

p
+
β

q
= 1

We compute the following integral for any f ∈ Lp(Ω) ∩ Lq(Ω) and any l ∈ [p, q]. Clearly,

fα ∈ L p
α (Ω) and fβ ∈ L

q
β (Ω),

‖f‖lLl(Ω) =

∫
Ω

|f(x)|l dx =

∫
Ω

|f(x)|α|f(x)|β dx ≤

≤
(∫

Ω

(|f(x)|α)p/α dx

)α/p(∫
Ω

(|f(x)|β)q/β dx

)β/q
=

=

(∫
Ω

|f(x)|p dx
)α/p(∫

Ω

|f(x)|q dx
)β/q

=

= ‖f‖αLp(Ω)‖f‖
β
Lq(Ω) <∞

this computation shows that f ∈ Ll(Ω) and also is the required inequality.

Exercise 19. Take some arbitrary interval I and find a function f : Ω = (0,∞)→ R such
that f ∈ Lp(Ω) if, and only if, p ∈ I.
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2.3 Introduction to Sobolev spaces

2.3.1 Sobolev spaces in one dimension

Proposition 12. Let I ⊂ R be a non-empty and open interval of R and two real-valued
functions u ∈ C1(I) and f ∈ C0(I), then the following two statements are equivalent:

(i) u′ = f

(ii)

∫
I

u(x)v′(x) dx = −
∫
I

f(x)v(x) dx ∀v ∈ C∞0 (I)

Proof.

i)⇒ ii) Given an arbirary v ∈ C∞0 (I), since v has compact support on I, there exists a compact
interval ]a, b[⊂ I such that v(x) = 0 for all x ∈ I\]a, b[ and so, by integration by parts
formula,

∫
I

u(x)v′(x) dx =

∫ b

a

u(x)v′(x) dx = u(x)v(x)]ba −
∫ b

a

u′(x)v(x) dx =

= −
∫ b

a

u′(x)v(x) dx = −
∫ b

a

f(x)v(x) dx = −
∫
I

f(x)v(x) dx

ii)⇒ i) Given an arbirary v ∈ C∞0 (I), again by integration by parts formula∫
I

(u′ − f)(x)v(x) dx =

∫
I

u′(x)v(x) dx−
∫
I

f(x)v(x) dx =

=

∫ b

a

u′(x)v(x) dx−
∫ b

a

f(x)v(x) dx =

= −
∫ b

a

u(x)v′(x) dx−
∫ b

a

f(x)v(x) dx = 0

Due to u′− f is a continuous function, the fact that
∫
I
(u′− f)(x)v(x) dx = 0 for each

v ∈ C∞0 (I) implies that u′ − f = 0 in I.

This proposition leads to introduce the weak derivation. For that aim, it is useful to
recall the following property:

Exercise 20. If I ⊂ R is a non-empty and open interval, prove that

L1
loc(I)

def
= {u : I → R | ∀x∗ ∈ I, ∃ρ > 0 : u ∈ L1(I ∩ [x∗ − δ, x∗ + δ])} =

= {u : I → R | u ∈ L1(K), ∀K ⊂ I compact}
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Definition 4 (Weak derivation). Given I ⊂ R a non-empty and open interval and u, f ∈
L1
loc(I), f is the weak derivative of u when∫

I

u(x)v′(x) dx = −
∫
I

f(x)v(x) dx ∀v ∈ C∞0 (I)

Remark 9. If a function is classically derivable, then it is also weakly derivable and both
derivatives coincide. This is nothing but the integration by parts theorem.

Remark 10. Given a non-empty and open interval I ⊂ R, if a function u ∈ L1
loc(I) is weakly

derivable, then its weak derivative is unique. This follows easily from the fundamental lemma
of Calculus of variations.

Example 5. In this example, we calculate the weak derivative of the function u :]−1, 1[→ R
given by u(x) = |x| for all x ∈ (−1, 1) which clearly is not classically derivable at the origin,
but yes it is weakly derivable as it is shown next. Let us define the function f :]− 1, 1[→ R
by

f(x) = sgn(x) =


−1 si − 1 < x < 0

0 si x = 0

1 si 0 < x < 1

We claim that u′ = f (in the weak sense, obviously). In order to prove this, we need to show
that ∫ 1

−1

|x|v′(x) dx = −
∫ 1

−1

sgn(x)v(x) dx ∀v ∈ C∞0 (]− 1, 1[)

Let v be an arbitrary function in C∞0 (]− 1, 1[), then we write the following∫ 1

−1

|x|v′(x) dx =

∫ 0

−1

−xv′(x) dx+

∫ 1

0

xv′(x) dx =

= −xv(x)]0−1 +

∫ 0

−1

v(x) dx+ xv(x)]10 −
∫ 0

−1

v(x) dx =

=

∫ 0

−1

v(x) dx−
∫ 1

0

v(x) dx = −
∫ 1

−1

sgn(x)v(x) dx

Example 6. It is reasonable to think that the possible weak derivative of the sign function
is the zero-constant function. In this example, we show that the weak derivative of the sign
function is not the zero function. Let v be an arbitrary function in C∞0 (] − 1, 1[), then by
Barrow’s rule ∫ 1

−1

sgn(x)v′(x) dx =

∫ 0

−1

−v′(x) dx+

∫ 1

0

v′(x) dx = −2v(0)

and −2v(0) needs not to be zero for all v ∈ C∞0 (]− 1, 1[).
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The previous example only shows that zero function is not the weak derivative of the
sign function on ]− 1, 1[. the question is: is really the sign function weakly derivable? The
answer is no and the next proposition will help us to understand why. Its proof follows from
the definition of weak derivative.

Proposition 13 (Local property of weak derivative). Let be I, J ⊂ R two non-empty and
open subsets of R with J ⊂ I and u : I → R a weakly derivable function on I, then the
restriction u|J : J → R is also weakly derivable with (u|J)′ = u′|J .

How can be this proposition used in order to see that the sign function has no weak
derivative? Suppose that u = sgn is weakly derivable on ]− 1, 1[, then

(u|]−1,0[)
′ = f |]−1,0[ ⇒ (−1)′ = f |]−1,0[ ⇒ f |]−1,0[ ≡ 0 a.e. on ]− 1, 0[

(u|]0,1[)
′ = f |]0,1[ ⇒ (+1)′ = f |]0,1[ ⇒ f |]0,1[ ≡ 0 a.e. on ]0, 1[

So, if u was weakly derivable, its weak derivative f = u′ would be zero but this contradicts
the example 6.

Notation. From now on, W 1(I) will denote the set of functions u : I → R that are weakly
derivable on I. By induction, one can define Wm(I) =

{
u ∈ W 1(I) : u′ ∈ W k−1(I)

}
for each

natural number m ≥ 2, in other words Wm(I) is the set of m-times weakly derivable func-
tions. Note that Wm(I) is a vector space, that is, the addition of two functions u and v of
Wm(I) belongs to Wm(I) with (u + v)′ = u′ + v′ on I and the multiplication of a function
u of Wm(I) by a scalar k ∈ R belongs to Wm(I) with (ku)′ = ku′ on I.

It is known that if a function u is derivable on a non-empty and open interval I (in the
classical sense) and its derivative u′ is constantly zero, then u is constant on I. An analogous
result is fulfilled for weak derivative.

Proposition 14. Let I ⊂ R be a non-empty and open interval and u ∈ W 1(I) such that
u′ = 0 a.e. on I, then there exists K ∈ R with u(x) = K at almost every point x ∈ I.

Proof. By definition, u ∈ L1
loc(I) and∫

I

u(x)v′(x) dx = −
∫
I

0 · v(x) dx = 0 ∀v ∈ C∞0 (I)

Take a function ψ ∈ C∞0 (I) with
∫
I
ψ(x) dx = 1 and for every φ ∈ C∞0 (I) we write,

φ(x) = φ(x)−
∫
I

φ(x) dx · ψ(x)︸ ︷︷ ︸
α(x)

+

∫
I

φ(x) dx · ψ(x)︸ ︷︷ ︸
β(x)

∀x ∈ I

Clearly, α, β ∈ C∞0 (I),
∫
I
α(x) dx = 0 and there exists an interval ]a, b[⊂ I such that α(x) = 0

for all x ∈ I\]a, b[. Consider the function v : I → R defined as

v(x) =

∫ x

a

α(t) dt ∀x ∈ I
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Since v′ = α, one has that v ∈ C∞(I) and also v has compact support on I:

x ≤ a⇒ α = 0⇒ v(x) = 0

x ≥ b⇒ v(x) =

∫ b

a

α(t) dt︸ ︷︷ ︸
=
∫
I α(t) dt=0

+

∫ x

b

α(t)︸︷︷︸
=0

dt = 0

Overall, ∫
I

u(x)v′(x) dx =

∫
I

u(x)α(x) dx = 0

and let us calculate the quantity

γ =

∫
I

(
u(x)−

∫
I

u(t)ψ(t) dt

)
φ(x) dx

Since α = φ− (
∫
I
φ)ψ, one may write for every φ ∈ C∞0 (I)

γ =

∫
I

(
u(x)−

∫
I

u(t)ψ(t) dt

)(
α(x) +

∫
I

φ(t) dt · ψ(x)

)
dx =

=

∫
I

u(x)α(x) dx︸ ︷︷ ︸
0

+

∫
I

φ(t) dt ·
∫
I

u(x)ψ(x) dx−

−
∫
I

u(t)ψ(t) dt ·
∫
I

α(x) dx︸ ︷︷ ︸
0

−
∫
I

u(t)ψ(t) dt ·
∫
I

φ(t) dt ·
∫
I

ψ(x) dx︸ ︷︷ ︸
1

= 0

So, we get that ∫
I

(
u(x)−

∫
I

u(t)ψ(t) dt

)
φ(x) dx = 0 ∀φ ∈ C∞0 (I)

which implies that

u(x) =

∫
I

u(t)ψ(t) dt a.e. on I

The next result is interesting itself, it asserts that every weakly derivable function u on
a non-empty and open interval I is continuous on it, actually. This must be understood as
there exists a continuous function u on I such that u = u a.e. on I, namely there is one and
only one continuous representative on I of u. Moreover, the Barrow’s rule holds true as it is
shown now.
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Proposition 15. Let I ⊂ R be a non-empty and open interval and u ∈ W 1(I), then there
exists a unique u ∈ C0(I) such that u(x) = u(x) for almost all point of I. Futhermore, the
next equality holds for every pair of points α, β ∈ I∫ β

α

u′(t) dt = u(β)− u(α)

Remark 11. Note that in the previous proposition it does not make sense to write∫ β

α

u′(t) dt = u(β)− u(α)

because u is a locally integrable function on I and it is not defined pointwise on I. One can
change the value of u at the points α and β and still have the same function!

Proof. Take a fixed point x0 of I and define φ =
∫ x
x0
u′. By the fundamental theorem of

calculus, φ is a continuous function of I and φ′ = u′ ∈ L1
loc(I) by the definition of weak

derivative. Next, it is proved that∫
I

φ(x)v′(x) dx = −
∫
I

u′(x)v(x) dx ∀v ∈ C∞0 (I)

Assume that v = 0 on I\]a, b[, so

∫
I

φ(x)v′(x) dx =

∫ b

a

φ(x)v′(x) dx =

∫ x0

a

φ(x)v′(x) dx+

∫ b

x0

φ(x)v′(x) dx =

=

∫ x0

a

(∫ x

x0

u′(t) dt

)
v′(x) dx+

∫ b

x0

(∫ x

x0

u′(t) dt

)
v′(x) dx =

= −
∫ x0

a

(∫ x0

x

u′(t) dt

)
v′(x) dx︸ ︷︷ ︸

J1

+

∫ b

x0

(∫ x

x0

u′(t) dt

)
v′(x) dx︸ ︷︷ ︸

J2

Applying Fubini’s theorem,

J1 =

∫ x0

a

(∫ x0

x

u′(t)v′(x) dt

)
dx =

∫ x0

a

(∫ t

a

u′(t)v′(x) dx

)
dt =

=

∫ x0

a

u′(t)[v(t)− v(a)︸︷︷︸
0

] dt =

∫ x0

a

u′(t)v(t) dt

J2 =

∫ b

x0

(∫ x

x0

u′(t)v′(x) dt

)
dx =

∫ b

x0

(∫ b

t

u′(t)v′(x) dx

)
dt =

=

∫ b

x0

u′(t)[v(b)︸︷︷︸
0

−v(t)] dt = −
∫ b

x0

u′(t)v(t) dt
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Consequently,

∫
I

φ(x)v′(x) dx = −
∫ x0

a

u′(t)v(t) dt−
∫ b

x0

u′(t)v(t) dt = −
∫ b

a

u′(t)v(t) dt = −
∫
I

u′(x)v(x) dx

So, φ′ = u′, therefore (φ− u)′ = 0 and thus, by the proposition 14, there exists K ∈ R such
that u = φ+K a.e. on I. Set u(x) = φ(x) +K for all x ∈ I, then u is continuous on I and
of course u = u a.e. on I. Finally,

u(β)− u(α) = φ(β)− φ(α) =

∫ β

x0

u′(t) dt−
∫ α

x0

u′(t) dt =

∫ β

α

u′(t) dt

As for the uniqueness of u, assume that there are two continuous functions u1 and u2 on
I such that u = u1 and u = u2 a.e. on I, then u1 = u2 a.e. on I, but both functions are
continuous so the only possibility left is that u1(x) = u2(x) for all x ∈ I.

Remark 12. The previous definitions and results still hold when the open interval I is
replaced by an arbitrary open subset Ω of R which is nothing but a countable union of open
and disjoint intervals of R.

Definition 5 (Sobolev spaces). Given a non-empty and open subset Ω of R, m ∈ N and
1 ≤ p ≤ ∞, the Sobolev space Wm,p(Ω) is the following functional space

Wm,p(Ω) =
{
u ∈ Wm(Ω) : u(k) ∈ Lp(Ω), k = 1, ...,m

}
where u(k) denotes the k-th weak derivative of u from k = 1 to k = m.

Sobolev spaces newly introduced are richer spaces than Wm(Ω), meaning that Sobolev
spaces are more than vector spaces. For example, they are normed spaces with these norms
below for each u ∈ Wm,p(Ω)

‖u‖Wm,p(Ω) =

(
m∑
k=1

‖u(k)‖pLp

)1/p

=

(∫
Ω

|u(x)|p + · · ·+ |u(m)(x)|p dx
)1/p

(1 ≤ p <∞)

‖u‖Wm,∞(Ω) = max
k=1,...,m

{
‖u(k)‖L∞

}
Several important properties of Sobolev spaces are stated now and their proof can be

read in [8]. Soon it will become evident the significance of these properties that Sobolev
spaces enjoy.

Proposition 16 (Basic properties of Sobolev spaces). Let Ω ⊂ R be a non-empty and open
subset of R and m ∈ N, then

(a) Wm,p(Ω) is a Banach space for 1 ≤ p ≤ ∞.

(b) Wm,p(Ω) is a reflexive space for 1 < p <∞.

(c) Wm,p(Ω) is a separable space for 1 ≤ p <∞.

(d) Wm,2(Ω) := Hm(Ω) is a Hilbert space with the following scalar product

〈u, v〉Hm =
m∑
k=1

〈u(k), v(k)〉L2 =

∫
Ω

u(x)v(x) dx+· · ·+
∫

Ω

u(m)(x)v(m)(x) dx ∀u, v ∈ Hm(Ω)
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2.3.2 Sobolev spaces in several dimensions

Henceforth, N ∈ N will be an arbitrary natural number. Let us start considering functions of
several variables. The following proposition is the N -dimensional version of the proposition
12 but before proving it, it will help to remember the divergence theorem on which the proof
is based.

Divergence theorem. If Ω ⊂ RN is a non-empty and bounded domain of RN with smooth
boundary ∂Ω and F = (F1, ..., FN) : Ω→ RN a C1-vector field on Ω, then∫

Ω

divF (x) dx =

∫
∂Ω

〈F, η〉(x) dσ(x)

where η is the outward pointing unit normal field of the boundary. Recall that the divergence
of F is defined by

divF (x) =
N∑
k=1

∂Fk
∂xk

(x) ∀x ∈ Ω

Proposition 17. Let Ω ⊂ RN be a non-empty and bounded domain of RN with smooth
boundary ∂Ω and two real-valued functions u ∈ C1(Ω) and f ∈ C0(Ω) and an index k ∈
{1, ..., N}, then the following two statements are equivalent:

(i)
∂u

∂xk
= f

(ii)

∫
I

u(x)
∂v

∂xk
(x) dx = −

∫
I

f(x)v(x) dx ∀v ∈ C∞0 (Ω)

Proof.

i)⇒ ii) It is enough to apply the divergence theorem with F : Ω→ R given by

F (x) = (0, ..., 0, u(x)v(x)︸ ︷︷ ︸
k)−position

, 0, ..., 0) ∀x ∈ Ω

Since v = 0 on ∂Ω, it follows F = (0, ..., 0) on ∂Ω, so the divergence theorem gives the
following equality

0 =

∫
Ω

divF (x) dx =

∫
Ω

∂uv

∂xk
(x) dx =

∫
Ω

(
∂u(x)

∂xk
v(x) + u(x)

∂v(x)

∂xk

)
dx

and hence, ∫
Ω

u(x)
∂v(x)

∂xk
dx = −

∫
Ω

∂u(x)

∂xk
v(x) dx = −

∫
Ω

f(x)v(x) dx
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ii)⇒ i) Again, for every v ∈ C∞0 (Ω), by the divergence theorem∫
Ω

u(x)
∂v(x)

∂xk
dx = −

∫
Ω

∂u(x)

∂xk
v(x) dx

and, by hypothesis ∫
Ω

u(x)
∂v(x)

∂xk
dx = −

∫
Ω

f(x)v(x) dx

from these two equalities, one gets the following∫
Ω

(
∂u(x)

∂xk
− f(x)

)
v(x) dx = 0 ∀v ∈ C∞0 (Ω)

and, by the continuity of
∂u

∂xk
− f , this leads to f(x) =

∂u(x)

∂xk
∀x ∈ Ω.

Once we have introduced the weak derivative in several variables it is natural to wonder
if every weak derivable function is also continuous, as happens with the classical derivability.
The answer is no, except in one dimension (take a look at proposition 15). To see this, set
B = B(0, 1) the unit open ball in RN , α ∈ R and the function uα(x) = ‖x‖−α on B (note
that uα might have problems when it is evaluated at zero, but it does not matter because it
is just one point). We want to answer the question: for which values of α, the function uα
belongs to W 1(B)? Since uα(x) = (x2

1 + · · · + x2
N)−α/2, the natural candidate to the weak

derivative of uα would be

∂uα
∂xk

(x) = −α
2

(x2
1 + · · ·+ x2

N)−α/2−12xk = −αxk‖x‖−α−2 a.e. on B (k = 1, ..., N) (2.4)

In view of the proposition 13 and the fact that (uα)|B\B(0,ε) is classically derivable, then
its weak derivative must coincide with its classical one which is nothing but the above
computation; therefore either the weak derivative of uα is (2.4) for k = 1, ..., N or does
not exist. The first thing to check is uα and the possible candidate ∂uα/∂xk are L1

loc(B)-
functions. The only problematic point here is the origin and so, this is equivalent to check
that

I =

∫
B

1

‖x‖α
dx <∞ and J =

∫
B

α|xk|
‖x‖α+2

<∞

Note that

I =

∫
B

1

‖x‖α
dx =

∫ 1

0

(∫
|x|=r

1

‖x‖α
dσ

)
dr =

= ωN
∫ 1

0
rN−1−α dr =

ωN rN−α

N−α

]1

0

ωN log(r)]10
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where ωN is the measure of the (N − 1)-dimensional sphere, and so I < ∞ if, and only if,
α < N . In respect for J , obviously

J <∞⇔
∫
B

|xk|
‖x‖α+2

dx <∞

and ∫
B

|xk|
‖x‖α+2

dx ≤
∫
B

‖x‖
‖x‖α+2

dx =

∫
B

1

‖x‖α+1
dx

and again if α < N − 1 then J is finite, thus taking α < N − 1 both I and J are finite. At
this point, there is just one thing left to check to prove that 2.4 is the weak derivative of uα,
actually. We need to check that the following formula holds for all v ∈ C∞0 (B)∫

B

1

‖x‖α
∂v(x)

∂xk
dx = −

∫
B

− αxk
‖x‖α+2

v(x) dx

Equivalently, ∫
B

(
1

‖x‖α
∂v(x)

∂xk
− αxk
‖x‖α+2

v(x)

)
dx = 0 ∀v ∈ C∞0 (B)

In order to check that, we fix 0 < ε < 1 and write the previous integral as a sum of these
two∫

B\B(0,ε)

(
1

‖x‖α
∂v(x)

∂xk
− αxk
‖x‖α+2

v(x)

)
dx︸ ︷︷ ︸

A

and

∫
B(0,ε)

(
1

‖x‖α
∂v(x)

∂xk
− αxk
‖x‖α+2

v(x)

)
dx︸ ︷︷ ︸

B

Let us discussA firstly. By the divergence theorem with F (x) = (0, ..., 0, 1
‖x‖αv(x), 0, ..., 0),

which can be applied since 0 is not in B \B(0, ε), we have

A =

∫
B\B(0,ε)

∂

∂xk

(
1

‖x‖α
v(x)

)
dx =

∫
B\B(0,ε)

divF (x) dx =

∫
∂B\B(0,ε)

〈F, ηe〉(x) dx =

=

∫
‖x‖=1

〈F, ηe〉(x) dx+

∫
‖x‖=ε

〈F, ηe〉(x) dx

where ηe is the outward pointing unit normal field to the corresponding sphere, but v has
compact support on B, so v(x) = 0 when ‖x‖ = 1 and F (x) = 0 when ‖x‖ = 1, hence the
integral over the sphere of radius 1 turns out to be zero. What about the other one? Well,
using the definition of F and the fact that

|xk|
ε
≤ ‖x‖

ε
=
ε

ε
= 1 ∀x

on the sphere of radius ε and the fact that there exists M > 0 such that

|v(x)| ≤M
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on the sphere of radius ε by the compactness of the sphere, it is clear that∫
‖x‖=ε

〈F, ηe〉(x) dσ =

∫
‖x‖=ε

−xk
ε

v(x)

εα
dσ ≤

≤
∫
‖x‖=ε

|xk|
ε

|v(x)|
εα

dσ ≤

≤
∫
‖x‖=ε

|v(x)|
εα

dσ ≤

≤ M

∫
‖x‖=ε

1

εα
dx =

=
M

εα
µ(‖x‖ = ε) =

M

εα
ωNε

N−1 = MωNε
N−1−α → 0 (ε→ 0)

due to α < N − 1. Now, it is turn to discuss B: by the dominated convergence theorem one
may write∫

B(0,ε)

(
1

‖x‖α
∂v(x)

∂xk
− αxk
‖x‖α+2

v(x)

)
dx =

∫
B

(
1

‖x‖α
∂v(x)

∂xk
− αxk
‖x‖α+2

v(x)

)
χB(0,ε)(x) dx

where χB(0,ε) is such that χB(0,ε) = 1 on B(0, ε) and χB(0,ε) = 0 on RN \ B(0, ε), and then
use that χB(0,ε) → 0 as ε→ 0.

Overall, we have just proved that∫
B(0,1)

(
1

‖x‖α
∂v(x)

∂xk
− αxk
‖x‖α+2

v(x)

)
dx = ∀v ∈ C∞0 (B)

which means that −αxk‖x‖−α−2 is de weak derivative with respect to xk of u provided that
α < N − 1. Finally, we are able to keep the promise of solving the question weak derivability
⇒ continuity? No, just take N ≥ 2 and 0 < α < N − 1, then the function uα is weakly
derivable but it is not continuous at zero.

High order weak partial derivatives. A multi-index α = (α1, ..., αN) is a N -tuple with
αk ∈ N ∪ {0} for all k = 1, ..., N . The order of a multi-index α = (α1, ..., αN) is often
denoted by |α| and defined as |α| = α1 + · · · + αN . Given a multi-index α = (α1, ..., αN),
Ω ⊆ RN a non-empty and open subset of RN and u ∈ C∞(Ω) is a smooth function on Ω, the
α-classical derivative of u is denoted by

Dαu =
∂|α|u

∂xα1
1 · · · ∂x

αN
N
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that is, u is derivated (classically) αk times with respect to the variable xk for each k =
1, ..., N . Similarly, the α-weak derivative of u is denoted by

∂αu =
∂|α|u

∂xα1
1 · · · ∂x

αN
N

that is, u is derivated (weakly) αk times with respect to the variable xk for each k = 1, ..., N .
Using the same notation as in one dimension, for every m ∈ N, Wm(Ω) will denote the set
of functions u : Ω→ R that are weakly derivable up to order m on Ω, meaning that the α-
weak derivative ∂αu of u exists for all multi-index α with |α| ≤ m. Basically, there are two
ways to introduce the high order weak partial derivatives of a function. Note that Wm(Ω)
is a vector space, that is, given a multi-idnex α of order lower or equal to m, the addition
of two functions u and v of Wm(Ω) belongs to Wm(Ω) with ∂α(u + v) = ∂αu + ∂αv on Ω
and the multiplication of a function u of Wm(Ω) by a scalar k ∈ R belongs to Wm(Ω) with
∂α(ku) = k∂αu on Ω.

The α-weak derivative of u

∂αu =
∂|α|u

∂xα1
1 · · · ∂x

αN
N

is nothing but the αN -times weak derivative with respect to xN of the function

∂|α|u

∂xα1
1 · · · ∂x

αN−1

N−1

and this last derivative is nothing but the αN−1-times weak derivative with respect to xN−1

of the function
∂|α|u

∂xα1
1 · · · ∂x

αN−2

N−2

and so on...

Another way to introduce the high order weak partial derivatives of a function is the
following: given a multi-index α and a non-empty and open subset Ω ⊆ RN , a function
f ∈ L1

loc(Ω) is the α-weak derivative of a function u ∈ L1
loc(Ω) (∂αu = f) when∫

Ω

u(x)∂αv(x) dx = (−1)|α|
∫

Ω

f(x)v(x) dx ∀v ∈ C∞0 (Ω)

Definition 6 (Sobolev spaces in N -dimensions). Given a non-empty and open subset Ω of
RN , m ∈ N and 1 ≤ p ≤ ∞, the Sobolev space Wm,p(Ω) is the following functional space

Wm,p(Ω) = {u ∈ Wm(Ω) : ∂αu ∈ Lp(Ω), |α| ≤ p}

where ∂αu denotes the α-weak derivative of u for a multi-index α = (α1, ..., αN) with |α| ≤ p.
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Sobolev spaces newly introduced are richer spaces than Wm(Ω), meaning that Sobolev
spaces are more than vector spaces. For example, they are normed spaces with these norms
below for each u ∈ Wm,p(Ω)

‖u‖Wm,p =

∑
|α|≤m

‖∂αu‖pLp

1/p

(1 ≤ p <∞)

‖u‖Wm,∞ = max
|α|≤m

{‖∂αu‖L∞}

All the results proved by the weak derivative in dimension one are still true translated
into an arbitary finite dimension, except proposition 15. Here is a really proving-difficult
theorem by G. Meyers and J. Serrin whose proof can be found in [9].

Theorem 11 (Meyers-Serrin). Let Ω ⊂ RN be a non-empty and open subset of RN , then
C∞(Ω) ∩Wm,p(Ω) is dense in Wm,p(Ω) for all m ∈ N and 1 ≤ p ≤ ∞.

Another classical result concerning Sobolev spaces is the following.

Theorem 12 (Sobolev, Gagliardo, Nirenberg). Let be 1 ≤ p < N and p∗ = Np/(N − p),
then W 1,p(RN) ⊂ Lp∗(RN) and there exists a constant C > 0 (depending on p and N) such
that

‖u‖Lp∗ (RN ) ≤ C‖∇u‖Lp(RN ) ∀u ∈ W 1,p(RN)

The proof of this theorem is in [8] and it is helpful to prove the known Sobolev embeddings.
Before stating this, let us suggest why the exponent p∗ = Np

N−p appears on the theorem... or

even better, let us show that if there exists a constant C > 0 and q ∈ [1,∞] with

‖u‖Lq(RN ) ≤ C‖∇u‖Lp(RN ) ∀u ∈ C∞c (RN)

then necessarily q = p∗. This is done by a simple scaling argument. Fix any funtion
u ∈ C∞c (RN) which does not vanish identically and plug uλ(x) = u(λx) defined on RN

(λ > 0) into the inequality from above to get

‖u‖Lq(RN ) ≤ Cλ1+N/q−N/p‖∇u‖Lp(RN ) ∀λ > 0

In order to make the quantity Cλ1+N/q−N/p lower than a constant for all λ > 0, we need to
force 1 +N/q −N/p to be zero, and so q = p∗.

Theorem 13 (Sobolev embeddings on RN). Set p ∈ [1,∞), then

1. if 1 ≤ p < N , W 1,p(RN) ⊂ Lq(RN) for all q ∈ [p, p∗], where p∗ = Np
N−p ,

2. if p = N , W 1,N(RN) ⊂ Lq(RN) for all q ∈ [N,∞),

3. if p > N , W 1,p(RN) ⊂ L∞(RN),
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and with continuous injection in the three cases, which basically means that there exists a
constant C = C(p, q,N) > 0 such that

‖u‖Lq(RN ) ≤ C‖u‖W 1,p(RN ) ∀u ∈ W 1,p(RN)

since the injection map is linear. Obviously, the constant C might be not the same in all the
three cases.

Exercise 21. Prove that Sobolev embeddings on RN are not compact.

The next theorem is the version of the previous one but now on bounded sets of RN with
smooth boundary.

Theorem 14 (Rellich-Kondrachov). Set p ∈ [1,∞) and Ω ⊂ RN a bounded set with smooth
boundary, then

1. if 1 ≤ p < N , W 1,p(Ω) ⊂ Lq(Ω) for all q ∈ [p, p∗], where p∗ = Np
N−p ,

2. if p = N , W 1,N(Ω) ⊂ Lq(Ω) for all q ∈ [N,∞),

3. if p > N , W 1,p(Ω) ⊂ C(Ω),

and with compact injection in the three cases (except the injection W 1,p(Ω) ⊂ Lp
∗
(Ω)), which

basically means that every bounded sequence in W 1,p(Ω) has a convergent subsequence in
Lq(Ω) (or in C(Ω) for the third case).

Exercise 22. Prove that the exponents q in Rellich-Kondrachov theorem are optimal.

It is easy now to extend the Sobolev embedding theorem to the case Wm,p(RN) where
m ∈ N.

Corollary 4. Set p ∈ [1,∞) and m ∈ N, then

1. if p < N/m, then Wm,p(RN) ⊂ Lq(RN) for all q ∈ [p, p∗],

2. if p = N/m, then Wm,p(RN) ⊂ Lq(RN) for all q ∈ [p,∞],

3. if p > N/m, then Wm,p(RN) ⊂ L∞(RN),

and all these injections are continuous.

2.3.3 The space Wm,p
0

Definition 7 (Space Wm,p
0 ). Given a natural number m ∈ N, a real number p ∈ [1,∞] and

a non-empty and open subset Ω of RN , the Sobolev space Wm,p
0 (Ω) is de closure in Wm,p(Ω)

of the test-functions C∞0 (Ω) over Ω, that is

Wm,p
0 (Ω) = C∞0 (Ω)

Wm,p(Ω)

Equivalently,

u ∈ Wm,p
0 (Ω)⇐⇒ u ∈ Wm,p(Ω) and ∃{un} ⊂ C∞0 (Ω) : un

Wm,p(Ω)−→ u
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It makes no sense to define the space Wm,p
0 (Ω) as set of the Wm,p(Ω)-functions that

vanish on the boundary of Ω, since ∂Ω has zero measure. When more regularity is assumed,
then this is true as shown the following proposition (see [8]).

Proposition 18. Let Ω ⊂ RN be a non-empty and bounded subset of RN and u ∈ C1(Ω),
then

u ∈ Wm,p
0 (Ω)⇐⇒ u(x) = 0 ∀x ∈ ∂Ω

The space W 1,p
0 enjoys a really useful inequality named Poincaré inequality.

Proposition 19 (Poincaré inequality). Let Ω ⊂ RN be a non-empty and bounded subset of
RN with smooth boundary and p ∈ [1,∞), then there exists a constant C > 0 (depending
only on p and Ω) such that∫

Ω

|∇u(x)|p dx ≥ C

∫
Ω

|u(x)|p dx ∀u ∈ W 1,p
0 (Ω)

Futhermore, the optimal constant C is known to be the first eigenvalue of the −∆-operator
on Ω.

The proof of this result is in [8] and it is essential the bounbdness assumption of Ω as it
is shown in the next exercise.

Exercise 23. Prove that if there is no Poincaré inqueality on R.

Example 7 (Which is the best constant for the Poincaré inquality when p = 2 and
Ω = I = (0, π)?). It is known that∫ π

0

|u′(x)|2 dx ≥ C

∫ π

0

|u(x)|2 dx ∀u ∈ H1
0 (I)

for some positive constant C. Of course, the inequality holds for positive constant lower than
C. The question is which is the biggest constant that we can fix in the inequality?
Take u ∈ C∞0 (I) and define

ϕ(x) =
u(x)

sin(x)
∀x ∈ I

Note that ϕ is well-defined at x = 0 and x = π because of the compact closure of u on I, so
ϕ(0) = ϕ(π) = 0. Note that

∫ π

0

|u′(x)|2 dx =

∫ π

0

|(ϕ(x) sin(x))′|2 dx =

=

∫ π

0

(ϕ′(x)2 sin(x)2 + 2ϕ(x)ϕ′(x) sin(x) cos(x) + ϕ(x)2 cos(x)2) dx

and compute the next integral by the integration by parts formula,
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∫ π

0

2ϕ(x)ϕ′(x) sin(x) cos(x) dx = sin(x) cos(x)ϕ(x)2
]π

0︸ ︷︷ ︸
0

−
∫ π

0

ϕ(x)2[cos2(x)− sin2(x)] dx

so, plugging this into the first computation arises the following

∫ π

0

|u′(x)|2 dx =

∫ π

0

(ϕ′(x)2 sin(x)2 + 2ϕ(x)ϕ′(x) sin(x) cos(x) + ϕ(x)2 cos(x)2) dx =

=

∫ π

0

ϕ′(x)2 sin(x)2 dx+

∫ π

0

ϕ(x)2 sin(x)2 dx =

=

∫ π

0

ϕ′(x)2 sin(x)2 dx+

∫ π

0

|u(x)|2 dx ≥
∫ π

0

|u(x)|2 dx

From this it follows that C = 1 is valid, but is 1 the best option?. Yes, it is because there
is a function u∗ ∈ H1

0 (I) where∫ π

0

|u′∗(x)|2 dx =

∫ π

0

|u∗(x)|2 dx

and this would be true if ∫ π

0

ϕ′(x)2 sin(x)2 dx = 0

so one can take ϕ to be constant to achive it. Let say ϕ ≡ 1, so u∗ = sin.

In general, it is hard to find the optimal constant in Poincaré inequality and only in
few cases it is known explicitly. One of this cases is for the N -dimensional cube, Ω =
(a1, b1)× · · · × (aN , bN) ⊂ RN whose optimal constant turns out to be

C = π2

(
1

(b1 − a1)2
+ · · ·+ 1

(bN − aN)2

)
and the equality in the Poincaré inequlity with this constant holds for the function

u(x) = sin

(
π(x1 − a1)

b1 − a1

)
· · · sin

(
π(xN − aN)

bN − aN

)
The best constant to fix in the Poincaré-inequality concerns the first eigenvalue of the linear
Dirichlet problem (see next section).

2.4 Eigenvalues of linear Dirichlet boundary value prob-

lem

Let Ω ⊂ RN be a non-empty domain (open and connected subset) of RN and consider the
following problem related to λ ∈ R and Ω
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(Pλ)

{
−∆u = λu on Ω

u = 0 on ∂Ω

This problem is called linear Dirichlet boundary value problem on Ω and it is clear that
u = 0 is a trivial solution to (Pλ) for any λ ∈ R. The interesting question to set out is if
there exist values λ ∈ R such that (Pλ) admits non-trivial solutions.

The eigenvalues of (Pλ) on Ω are the values λ ∈ R (if exist) for which the problem
(Pλ) admits non-trivial solutions and the eigenfunctions of (Pλ) on Ω are precisely the
non-trivial solutions of (Pλ) associated to a eigenvalue λ ∈ R.

The usual functional space to consider the solutions of these problems is C2(Ω) ∩ C(Ω),
but there is another wider concept of solutions that need not to be C2(Ω) ∩ C(Ω). Set
u ∈ C2(Ω) ∩ C(Ω) and let us multiply the equation −∆u = λu by a function v ∈ C∞0 (Ω),

−∆u(x)v(x) = λu(x)v(x) ∀x ∈ Ω

Define F (x) = v(x)∇u(x) for all x ∈ Ω and note that

divF (x) = ∇v(x)∇u(x) + v(x)∆u(x) ∀x ∈ Ω

and
F (x) = 0 ∀x ∈ ∂Ω

By the divergence theorem,∫
Ω

divF (x) dx =

∫
∂Ω

〈F (x), η(x)〉 dx

where η is the outward pointing unit normal field of the boundary. This tells us that∫
Ω

(∇v(x)∇u(x) + v(x)∆u(x)) dx = 0

or equivalently, ∫
Ω

∇v(x)∇u(x) dx = −
∫

Ω

v(x)∆u(x) dx

Integrating over Ω the equation −∆uv = λuv and using the previous equality,∫
Ω

∇v(x)∇u(x) dx = λ

∫
Ω

u(x)v(x) dx ∀v ∈ C∞0 (Ω)

and by density, ∫
Ω

∇v(x)∇u(x) dx = λ

∫
Ω

u(x)v(x) dx ∀v ∈ H1
0 (Ω)

This computation leads to meake the following definition.
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Definition 8 (Weak solution to (Pλ)). A weak solution to (Pλ) is a function u ∈ H1
0 (Ω)

such that ∫
Ω

∇v(x)∇u(x) dx = λ

∫
Ω

u(x)v(x) dx ∀v ∈ H1
0 (Ω)

Obviously, every classical solution to (Pλ) is a weak solution to (Pλ). Although it is not
proved here, also every weak solution to (Pλ) is a classical solution to (Pλ). The following
theorem is a classical result concerning the eigenvalues of (Pλ).

Theorem 15. If Ω ⊂ RN is a non-empty domain with smooth boundary, then there are
infinite eigenvalues associated to the problem (Pλ) which form a increasing sequence {λn}n∈N
of positive real numbers with the property limλn = ∞. Moreover, Xλ = {u ∈ H1

0 (Ω) :
u is solution to (Pλ)} is a finite-dimensional vector space with dimXλ1 = 1, Xλ1 ⊕ · · · ⊕
Xλn ⊕ · · · = H1

0 (Ω) and if λ, µ ∈ R are two different eigenvalues associated to (Pλ) then
〈uλ, uµ〉H1

0 (Ω) = 0, where uλ and uµ are eigenfunctions related to the eigenvalues λ and µ,
respectively.

We will omit the proof of this theorem. Instead, we just focus on the proof of the fact that
all eigenvalues are positive and 〈uλ, uµ〉H1

0 (Ω) = 0 when λ 6= µ are two eigenvalues associated
to (Pλ):

If λ ∈ R is an eigenvalue associated to (Pλ) and uλ an eigenfunction related to λ, then∫
Ω

∇uλ(x)∇v(x) dx = λ

∫
Ω

uλ(x)v(x) dx ∀v ∈ H1
0 (Ω)

so if we take v = uλ, ∫
Ω

|∇uλ(x)|2 dx = λ

∫
Ω

|uλ(x)|2 dx

and from this it follows that λ > 0.

If λ, µ ∈ R are two different eigenvalues associated to (Pλ) and uλ and uµ are eigenfunc-
tions related to the eigenvalues λ and µ, respectively, then∫

Ω

∇uλ(x)∇v(x) dx = λ

∫
Ω

uλ(x)v(x) dx ∀v ∈ H1
0 (Ω)

∫
Ω

∇uµ(x)∇v(x) dx = µ

∫
Ω

uµ(x)v(x) dx ∀v ∈ H1
0 (Ω)

Replacing v = uµ if the first equation and v = uλ in the second equation and subtracting,

0 = (λ− µ)

∫
Ω

uλ(x)uµ(x) dx
λ 6=µ
=⇒

∫
Ω

uλ(x)uµ(x) dx = 0

but this also implies that ∫
Ω

∇uλ(x)∇uµ(x) dx = 0
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so one concludes

〈uλ, uµ〉H1
0 (Ω) = 〈uλ, uµ〉L2(Ω) + 〈∇uλ,∇uµ〉L2(Ω) = 0

It can be proved that there is no other eigenvalues than the found on this theorem.
Besides, denoting ϕk ∈ H1

0 (Ω) a eigenfunction associated to the eigenvalue λk, there exist a
variational characterization of the eigenvalues which is stated below:

λ1 = min

{∫
Ω

|∇u|2 dx : u ∈ H1
0 (Ω), ‖u‖L2(Ω) = 1

}

λn = min

{∫
Ω

|∇u|2 dx : u ∈ Wn(Ω), ‖u‖L2(Ω) = 1

}
where

Wn(Ω) =

{
u ∈ H1

0 (Ω) :

∫
Ω

∇u∇ϕk dx = 0, k = 1, ..., n− 1

}
In addition, the eigenfunction ϕ1 associated to the first eigenvalue λ1 satisfies that ϕ1 > 0

(and is the unique eigenvalue with this property) and the space Xλ1 verifies that dimXλ1 = 1,
therefore Xλ1 = 〈ϕ1〉 (the vector space generated by ϕ1).

For example, take N = 1 and I = (0, π), hence the considered problem turns to study
the eigenvalues and its corresponding eigenfunctions of

(Q)

{
−u′′(x) = λu(x) si x ∈ I
u(0) = u(π) = 0

The equation u′′(x) + λu(x) = 0 is a constant-coefficient linear differential equation of
second order and its characteristic polynomial is p(t) = t2 +λ whose roots are ±

√
−λ, so we

have to distinguish three cases λ < 0, λ = 0 and λ > 0. It is not hard to see that if λ ≤ 0,
the only solution to (Q) is u = 0. However, if λ > 0 the solutions to −u′′ = λu of the form

u(x) = A cos(
√
λx) +B sin(

√
λx) ∀x ∈ I,∀A,B ∈ R

Since u(0) must be zero, we end up with u(x) = B sin(
√
λx) for all x ∈ I (A = 0). Imposing

B 6= 0, on has
u(π) = B sin(

√
λπ) = 0⇔ λ = n2 ∀n ∈ N

Note that λ = 0 is excluded!. This means that for λn = n2 with n ∈ N there is non-trivial
solution to (Q), that is λn = n2 are the sequence of eigenvalues and from the previous
computation is follows that uλn = sin(nx) is the eigenfunction associated to the eigenvalue
λn. Here, when N = 1 and Ω = I = (0, π), all the spaces Xλn has dimension one and they
are all generated by the function sin(nx), respectively. More in general, for an arbitrary
interval (a, b), the eigenvalues are

λn =
π2n2

(b− a)2
∀n ∈ N
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and the corresponding eigenfunctions

uλn(x) = sin

(
nπ(x− a)

b− a

)
∀x ∈ (a, b)

The property that the eigenfunction λ1 associated to the first eigenvalue is the only
one positive on Ω is more significant than it seems. For instance, take N = 2 and Ω =
(0, π) × (0, π), then the function u∗(x, y) = sin(x) sin(y) defined on Ω is positive for all
(x, y) ∈ Ω and also

−∆u∗(x) = 2u∗(x) ∀x ∈ Ω

which yields that λ1 = 2 is the first eigenvalue of the Dirichlet problem on Ω and Xλ1 =
〈sin(x) sin(y)〉. Returning back to the Poincaré inequality, the best constant to fix is nothing
but the first eigenvalue! so, for the last sample we know that∫

(0,π)2
|∇u|2 dx ≥ 2

∫
(0,π)2

|u|2 dx ∀u ∈ H1
0 ((0, π)2)

and 2 is the best constant one can fix in that inequality which precisely holds only for func-
tions of Xλ1 = X2 = 〈sin(x) sin(y)〉.

What happend if one study the same problem replacing λu in the differential equation
with a certain function f = f(x)? That is,

(Pf )

{
−∆u = f on Ω

u = 0 on ∂Ω

where Ω is a bounded domain of RN . Suppose that f satisfies the following assumptions (H)

1. f ∈ L
2N
N+2 (Ω), if N ≥ 3.

2. f ∈ Lp(Ω) for every p > 1, if N = 2.

3. f ∈ L1(Ω), if N = 1.

By a classical solution to (Pf ) we understand a function u ∈ C2(Ω)∩C(Ω) which obeys
the equation −∆u = f pointwise on Ω and u|∂Ω = 0. By a weak solution to (Pf ) with f
verifying (H), we understand a function u ∈ H1

0 (Ω) such that∫
Ω

∇u∇v dx =

∫
Ω

fv dx ∀v ∈ H1
0 (Ω)

Note that the first integral is well-defined owing to the fact that u and v belong to H1
0 (Ω)

and the second integral is well-defined if f fulfils (H) by virtue of the dominated convergence
theorem and Hölder inequality. If the reader is interested, it is recommended to take a look
at chapter nine of [8] where it is proved the existance and uniqueness of weak solution to
(Pf ) using the Lax-Milgram theorem and, even more, the fact that every classical solution is
a weak solution and the recovery of a classical solution from a weak one. The hardest issue
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here is the analysis of the regularity of the weak solution: it is proved that if f ∈ L2(Ω),
then the weak solution to (Pf ) is u ∈ H2(Ω) and

‖u‖H2(Ω) ≤ c‖f‖L2(Ω)

for some constant c > 0 depending only on Ω. All this can be found in [8].
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Chapter 3

The variational method

The variational method is just an astonishing analytical tool that permits to obtain theo-
rically the existence of solutions to partial differential equations in a general background,
arised from the existence of critical points of suitable functionals. The references [3] and [8]
are recommended for the reader in this chapter.

3.1 Introduction to Calculus of variations

Calculus of variations is a field in mathematical analysis that study the maxima and minima
of functionals defined on certain functional spaces which is very related to solving differential
equations, as it will be shown. A really complete summary of the historic evolution of
Calculus of variations can be read in:

(·) Erwin Kreyszig: On the Calculus of Variations ant Its Major influences on the Mathe-
matics of the First Half of Our Century. Part I, American Mathematical Monthly, vol.
101, no. 7, 674-678, 1994.

(·) Erwin Kreyszig: On the Calculus of Variations ant Its Major influences on the Math-
ematics of the First Half of Our Century. Part II, American Mathematical Monthly,
vol. 101, no. 9, 902-908, 1994.

According to the American historian of Mathmatics M. Kline, the first significant prob-
lem in Calculus of variations was proposed and solved by I. Newton in his second book of his
work Principia. Newton studied the shape a surface of revolution, immersed in some fluid,
must have in order to offer a minimal resistance to the movement.

Today, it is considered that Calculus of variations was born with the Brachistochrone
problem, proposed by Johann Bernoulli. The problem is to find the shape of the curve
down which a bead sliding from rest and accelerated by gravity will slip (without friction)
from one point A ∈ R2 to another B ∈ R2 in the least time. Newton was challenged to
solve the problem in 1696 and did so the very next day. In fact, the solution was found by
Leibniz, L’Hospital, Newton, and the two Bernoullis. Johann Bernoulli solved the problem
using the analogous one of considering the path of light refracted by transparent layers of

51
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varying density. Actually, Johann Bernoulli had originally found an incorrect proof that the
curve is a cycloid, and challenged his brother Jakob to find the required curve. When Jakob
correctly did so, Johann tried to substitute the proof for his own!.

So let be h0 > 0 and two points A = (0, h0) and B = (0, 1). We want to find a regular
curve f : [0, 1] → R connecting A with B, that is f(0) = h0 and f(1) = 0, such that
solves the Brachistochrone problem. For a fixed point x ∈ [0, 1], we know by the energy
conservation that the energy of the mass sliding down the curve f at the point x must be
the same at the beginning (where there is no kinetic energy, just potential energy):

1

2
mv(x)2 +mgf(x) = mgh0

So, one has the speed expression

v(x) =
√

2g(h0 − f(x))

Since the speed is nothing but the time-derivative of the position,

v =
ds

dt
⇒ dt =

ds

v
=

√
1 + f ′(x)2dx

v
=

√
1 + f ′(x)2√

2g(h0 − f(x))
dx

so the time that the mass employs to arrive to the point B leaving from A and following the
curve f is

t∗ =

∫ 1

0

√
1 + f ′(x)2√

2g(h0 − f(x))
dx

Define the space Θ = {f ∈ C1[0, 1] : f(0) = h0, f(1) = 0} and the funtional φ given by

φ(f, g) =

∫ 1

0

√
1 + g2√

2g(h0 − f)
dx

where g = f ′ and f ∈ Θ. Now, the Brachistochrone problem has been translated to finding
the minimum (if exists and is unique) of φ on Θ, although it is not analysed here the solution
is a segment of a cycloid.

Exercise 24. Solve the problem of the Brachistochrone.

Another classical problem of Calculus of variations is the Catenary problem. The
catenary is the curve a hanging flexible wire or chain assumes when supported at its ends
and acted upon by a uniform gravitational force. In 1669, Jungius disproved Galileo’s claim
that the curve of a chain hanging under gravity would be a parabola. The equation was
obtained by Leibniz, Huygens, and Johann Bernoulli in 1691 in response to a challenge by
Jakob Bernoulli.
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This problem is more difficult than the previous one just because it contains a ligadure
or constraints. The problem in terms of mathematics is to find a curve with the end-points
fiexd at height one and with a fixed length L > 1. Consider the space

Θ =

{
f ∈ C1[0, 1] : f(0) = 1, f(1) = 1,

∫ 1

0

√
1 + f ′(x)2 dx = L

}
There is only one curve in Θ that adopts its natural shape, that is, that minimize the

potential energy (note there is no kinetic energy in this case because the curve lies in repose),
and the potential energy is nothing but

Ep = mgf(x)

where the mass m is the density (which is considered constant) multiplied by the length or
the arc, so m = ρ

√
1 + f ′(x)2dx and, therefore,

Ep = ρg

∫ 1

0

f(x)
√

1 + f ′(x)2 dx

In this case the functional we would like to minimize is

φ(f, g) =

∫ 1

0

f(x)
√

1 + f ′(x)2 dx

where g = f ′ and f ∈ Θ, but remember that now the problem has a ligadure so in order to
solve it one must introduce a Lagrange multiplier.

Exercise 25. Solve the problem of the Catenary.

Finally, let us present another more example: the Hamilton principle. Let I ⊂ R be a
non-trivial interval, F : R3 → R3 a vector field and x : I → R3 the position vector of a body
under the action of the field F . By the second law of Newton,

mx′′(t) = F (x(t)) ∀t ∈ I
Watch out! this is a system of three differential equations. Assume that m = 1 and just
write

x′′ = F (x)

We are going to study the bundary value problem of that equation together with x(0) = P
and x(1) = Q, for some P,Q ∈ R3, namely

(?)

{
x′′ = F (x)

x(0) = P, x(1) = Q

Suppose that F is a conservative vector field, meaning there exist a potential U : R3 → R
with F = −∇U . Consider the functional space A = {x ∈ C2([0, 1],R3) : x(0) = P, x(1) = Q}
and the lagrangian L : A → R which is defined as

L(x) =
1

2
‖ẋ‖2 − U(x) ∀x ∈ A

and finally set the functional Φ∗ : A → R given by

Φ∗(x) =

∫ 1

0

L(x) dt =

∫ 1

0

(
1

2
‖ẋ‖2 − U(x)

)
dt
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Hamilton’s Principle: the solutions to (?) are the stationary points of Φ∗ (with the as-
sumption that F is a conservative vector field).

Before proving this, let us define what we understand by a stationary point of a general
functional Φ. Consider the space B = {h ∈ C2([0, 1],R3) : h(0) = 0, h(1) = 0} (this is some-
times called the variations space). Given x ∈ A and h ∈ B, the directional derivative of Φ
at x along h is

Φ′(x)(h) =
d

ds

]
s=0

Φ(x+ sh)

We say that x ∈ A is a stationary (or critical) point of Φ when Φ′(x)(h) = 0 for all h ∈ B.

It is worth noting that every minimum of Φ is a stationary point. This is a analogous
result to the well-known for functions from R to R: if f : I ⊂ R→ R is derivable at x0 ∈ I
and x0 is a minimum of f on I, then f ′(x0) = 0. Obviously, the reciprocal is false. To prove
that every minimum of Φ is a stationary point just define the function ψ : R→ R by

ψ(s) = Φ(x+ sh) ∀s ∈ R

So, if Φ has a minimum at x then

ψ(s) = Φ(x+ sh) ≥ Φ(x) = ψ(0) ∀s ∈ R

that is, ψ has a minimum at zero (independently of h ∈ B) and consequently,

ψ′(0) =
d

ds

]
s=0

Φ(x+ sh) = 0 ∀h ∈ B

which means that x is a stationary point of Φ. The proof of Hamilton’s Principle is done
next.

proof (Hamilton’s Principle). In Hamilton’s Principle, the functional Φ is

Φ(x) =

∫ 1

0

(
1

2
‖ẋ‖2 − U(x)

)
dt

then one has
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Φ′∗(x)(h) =

∫ 1

0

∂

∂s

[
1

2
‖ẋ+ sḣ‖2 − U(x+ sh)

]
dt =

=

∫ 1

0

{
(ẋ(t) + sḣ(t)) · ḣ(t)−∇U(x(t) + sh(t)) · h(t)

}
|s=0 dt =

=

∫ 1

0

{
ẋ(t) · ḣ(t)−∇U(x(t)) · h(t)

}
dt =

= ẋ(t)h(t)|10 −
∫ 1

0

ẍ(t)h(t) dt−
∫ 1

0

∇U(x(t)) · h(t) dt =

= −
∫ 1

0

(ẍ(t) +∇U(x(t)))h(t) dt

If x is a solution to (?), then x ∈ A and x′′ = F (x) = −∇U(x) and so ẍ +∇U(x) = 0,
which implies that Φ′∗(x)(h) = 0 (for every h ∈ B) and so, x is a stationary point of Φ∗.

If x is a statonary point of Φ, then Φ′∗(x)(h) = 0 for all h ∈ B, which implies∫ 1

0

(ẍ(t) +∇U(x(t)))h(t) dt = 0 ∀h ∈ B

and by the fundamental lemma of Calculus of variations, it follows that ẍ = −∇U(x) = F (x),
as wanted.

The Principle of Hamilton asserts that the solutions of (?), are the stationary points of the
functional φ∗ and vice versa. This fact can be extended to a more general background and to
do it, we need to introduce the so-called Euler-Lagrange equations. Given two real numbers
a and b with a < b, the real interval I = [a, b] and N ∈ N, the function L : I×RN×RN → R
is named lagrangian and one can define in general the functional Φ : A → R given by

Φ(x) =

∫ b

a

L(t, x, x′) dt ∀x ∈ A

where A = {x ∈ C2([a, b],RN) : x(a) = P, x(b) = Q}. The equations of Euler-Lagrange are
the following system of N E.D.O.’s

∂L
∂x
− d

dt

∂L
∂x′

= 0

In a more general situation, the Hamilton’s Principle claims that stationary points of Φ
are corresponded with solutions to Euler-Lagrange equations.

Exercise 26. Prove the previous assertion (Hamilton’s Principle).



56 CHAPTER 3. THE VARIATIONAL METHOD

Remark 13. In the case that L(t, x, x′) = 1
2
‖x′‖2−U(x) with F = −∇U , the Euler-Lagrange

equations are nothing but x′′ = F (x).

The Euler-Lagrange equations have a confortable equivalent expression when the la-
grangian does not depend explicitly on t. If L = L(x, x′), then we write the following

dL
dt

=
∂L
∂x

x′ +
∂L
∂x′

x′′ ⇒ ∂L
∂x

x′ =
dL
dt
− ∂L
∂x′

x′′

and mutliplying the Euler-Lagrange equations by x′ and replacing ∂L
∂x
x′ by dL

dt
− ∂L

∂x′
x′′

x′
∂L
∂x
− x′ d

dt

(
∂L
∂x′

)
= 0⇒ −∂L

∂t
+
d

dt

[
L − x′ ∂L

∂x′

]
= 0

Since L = L(x, x′), the time-partial derivative is zero and thus the Euler-Lagrange equa-
tions are equivalent to

d

dt

[
L − x′ ∂L

∂x′

]
= 0

that is

L − x′ ∂L
∂x′

is constant in time. This is often known as the Beltrami Principle.

Remark 14. In the case L(t, x, x′) = L(x, x′) = 1
2
‖x′‖2−U(x) with F = −∇U , the quantity

(=total energy)

L − x′ ∂L
∂x′

= −1

2
‖x′‖2 − U(x)

is a time-invariant.

The aim of this introduction is to show the importance of finding stationary points of
certain functionals and its relationship with differential equations. Our big goal is now min-
imize functionals defined on Banach spaces of arbitrary dimension, because every minimum
of a functional turns out to be a stationary point (but not conversely: a statinary point can
also be a maximum point or a saddle point!). We are going to focus on the particular case
of Hilbert spaces.

3.2 Minimization of functionals on Hilbert spaces

As it was said, the main goal now is to minimize or maximize real-valued functionals defined
on a Hilbert space X of arbitrary dimension. Obviously, a function f has a minimum at
a point x∗ if, and only if, −f has a maximum at x∗, hence one can restrint to the case of
finding minimum points.

Let us start with a finite-dimensional Banach space X. Without loss of generality, we
can suppose that X = RN for some N ∈ N. Set F : RN → R a function, what conditions
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can we required of F to have a minimum? Just two assumptions: continuity and coercivity.
Recall that F : RN → R is

coercive⇔ lim
‖x‖→∞

F (x) = +∞

and

continuous at x ∈ RN ⇔ [V ∈ URN (F (x))⇒ F−1(V ) ∈ UR(x)]

⇔
[
∀ε > 0 ∃δ > 0 : y ∈ RN , ‖y − x‖ < δ ⇒ |F (y)− F (x)| < ε

]
⇔

[
∀ {xn} ⊂ RN , xn → x⇒ F (xn)→ F (x)

]
where URN (F (x)) denotes the set of neighbourhoods of the point F (x) in RN and similarly,
UR(x) denotes the set of neighbourhoods of the point x in R.

Our first result claims that continuity and coercivity are enough for F to attain its
minimum. Intuitively, these are two good conditions in order to find (global) minimums
of real-valued functions defined on RN : continuity of F provides that F attains a global
minimum on B(0, ρ) for some ρ > 0 and coercivity implies that F is bounded from below
outside the ball B(0, ρ).

Lemma 1. If F : RN → R is continuous and coercive, then F attains its minimum.

Proof. Set α = inf F ∈ [−∞,∞). By characterization of infimum, there is a sequence
{xn} ⊂ RN such that F (xn) → α. By coercivity, if ‖xn‖ → ∞, then F (xn) → +∞ and so
α = ∞. This shows that {xn} cannot diverge and therefore {xn} is bounded. By Bolzano-
Weierstrass theorem, there exists a subsequence {xσ(n)} of {xn} that is convergent to a point
x0 ∈ RN . By continuity of F , on has F (xσ(n))→ F (x0), but since F (xn)→ α and {xσ(n)} is
a subsequence of {xn}, it forces that F (x0) = α. Finally, since F takes real values, it follows
that α ∈ R (or in other words α > −∞, which basically means that F is bounded from
below) and the infimum α is attained at the point x0, so it is in fact the global minimun of
F .

This first result is nice, but it can be improved a lot! To see how, we must look further
into the proof just done:

Firstly, it is not needed the continuity of F at all. We can still make the same proof with
a weaker assumption concerning the continuity of F . Note that in one step of the proof, we

wrote xσ(n) → x0
F continuous

=⇒ F (xσ(n))→ F (x0)
F (xσ(n))→α

=⇒ α = F (x0) and this can be replaced
by

xσ(n) → x0 =⇒ F (x0) ≤ lim inf F (xσ(n))
F (xσ(n))→α

= α =⇒ F (x0) ≤ α

Since α = inf F there is nothing left to say that F (x0) = α and this would complete the proof.
In other words, it is enough to replace the continuity by the condiction that if xσ(n) → x0,
then F (x0) ≤ lim inf F (xσ(n)) and this is named the lower semicontinuity.
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Definition 9 (Lower semicontinuity). Given a metric space X, a function f : X → R is
lower semicontinuous at x ∈ X if for every sequence {xn} ⊂ X with xn → x, then
f(x) ≤ lim inf f(xn). If f is lower semicontinuous at every point x ∈ X, then f is said to
be lower semicontinuous.

Secondly, as we are looking for minimum points of F it does not matter that F takes
the value +∞, provided that F is not constantly +∞. Overall, we can state a new and
improved version of lemma 1.

Corollary 5. If F : RN → R∪{+∞} is lower semicontinuous, coercive and F 6≡ +∞, then
F attains its minimum.

This new version is better than the first one, but we still can enhance it by introducing
the concept of weakly lower semicontinuity. Before that, let us recall what do we understand
by weak convergence. In general, given a Hilbert space H with scalar product 〈·, ·〉, we say
that a sequence {xn} ⊂ H is convergent to a limit x ∈ H when ‖xn − x‖ → 0 as n → ∞,
where ‖ · ‖ is nothing but

√
〈·, ·〉. There is another wider concept of convergence here that

is introduced next.

Definition 10 (Weak convergence). Given a Hilbert space H, a sequence {xn} ⊂ H con-
verges weakly to x ∈ H if 〈xn, y〉 → 〈x, y〉 for all y ∈ H and this is denoted by xn ⇀ x.

Definition 11 (Weak continuity). Given a Hilbert space H, a function f is weakly con-
tinuous if

H ⊃ xn ⇀ x⇒ f(xn)→ f(x)

Definition 12 (Weak lower semicontinuity). Given a Hilbert space H, a function f is
weakly lower semicontinuous if

H ⊃ xn ⇀ x⇒ f(x) ≤ lim inf
n→∞

f(xn)

Remark 15. Obviously, every convergent sequence of a Hilbert space is also weakly conver-
gent (to the same limit) because the scalar product is a continuous map from H ×H to R.
The converse is false as it is shown in the following example.

Example 8. Take H = L2(0, π) with the usual scalar product 〈f, g〉 = 〈f, g〉L2(0,π) for each
f, g ∈ H. Basic Fourier analysis asserts that

f =
∞∑
n=1

an sin(n·) ∀f ∈ H (3.1)

where the coefficient an are given by the formula

an =
2

π

∫ π

0

f(x) sin(nx) dx ∀n ∈ N

and the equality in 3.1 means L2(0, π)-convergence, that is

‖
m∑
n=1

an sin(n·)− f‖L2(0,π) −→ 0 (m→ +∞)
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Actually, by Parseval identity, for each f ∈ H

‖f‖L2(0,π) =
∞∑
n=1

a2
n‖ sin(n·)‖L2(0,π) =

π

2

∞∑
n=1

a2
n

which, among other things, implies that an → 0.

Consider the sequence in H defined by yn(x) = sin(nx) for all x ∈ (0, π) and for all
n ∈ N. On the one hand, this sequence is weakly convergent to zero! Since an → 0 and
an = 2/π〈f, yn〉 for all f ∈ H, it follows that 〈f, yn〉 → 0 = 〈f, 0〉, which is precisely the
definition of weak convergence. On the other hand, this sequence is not convergent, otherwise
one would have that yn → 0 (by remark 15) and, also ‖yn‖ → 0 but

‖yn‖2 =

∫ π

0

sin(nx)2 dx =
π

2
∀n ∈ N

This example also shows that the norm map ‖ · ‖, which is continuous on H ×H, is not
weakly continuous, i.e.

xn ⇀ x 6⇒ ‖xn‖ → ‖x‖

Although, it can be proved that the norm ‖ · ‖ on every Hilbert space is one the esasiest
examples of weakly lower semicontinuous function. In other words, what weak convergence
needs to be strong convergence is the convergence of the norm.

Proposition 20. Let H be a Hilbert space, then ‖ · ‖ : H × H → R is weakly lower semi-
continuous.

Proof. Let {xn} ⊂ H be a weakly convergent sequence to x ∈ H. In case that x = 0, there
is nothing left to prove, in other case it is clear that

〈xn,
x

‖x‖
〉 → 〈x, x

‖x‖
〉 = ‖x‖

By Cauchy-Schwarz inequality

|〈xn,
x

‖x‖
〉| ≤ ‖xn‖

so taking lim inf in both sides of the inequality, one has

‖x‖ = lim inf |〈xn,
x

‖x‖
〉| ≤ lim inf ‖xn‖

and this complete the proof.

Let us see now two useful properties of the weak convergence.

Proposition 21. Every weakly convergent sequence of a Hilbert space is bounded.

Proof. It is a consequence of Uniform boundedness principle.
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Proposition 22. Let H be a Hilbert space and {yn} ⊂ H a sequence, then

yn → y ⇔

{
yn ⇀ y

‖yn‖ → ‖y‖

Proof.
⇒) Trivial.
⇐)

‖yn − y‖2 = 〈yn − y, yn − y〉 = ‖y‖2 + ‖yn‖2 − 2〈yn, y〉 → ‖y‖2 + ‖y‖2 − 2〈y, y〉 = 0

The next result allows us to generalize lemma 1. It could be sawn as a Bolzano-Weiertrass
theorem for Hilbert spaces (of arbitrary dimension) taking into account the weak convergence
instead.

Proposition 23. Every bounded sequence of a Hilbert space has a weakly convergent subse-
quence.

Proof. Let {xn} be a bounded sequence in a Hilbert spaceH and defineH0 = span(xn : n ∈ N),
then H0 is separable as the set of all finite linear combinations of points in {xn} with rational
coefficients is a countable and dense subset of H0. For each n ∈ N, consider fn(x) = 〈xn, x〉
for all x ∈ H0, then fn is clearly linear and also bounded (with the norm of H∗0 ) by virtue
of Cauchy-Schwarz inequality and the boundness of {xn}. Helley’s theorem1 ensures that
there is a subsequence {fσ(n)} that converges weakly in H∗0 to a function f0 ∈ H∗0 , that is
fσ(n)(x)→ f0(x) for all x ∈ H0. On the other hand, by Riesz-Representation theorem there
is a unique element x∗ ∈ H0 such that f0(x) = 〈x, x∗〉 for each x ∈ H0, and

lim〈x, xσ(n)〉 = lim fσ(n)(x) = f0(x) = 〈x, x∗〉 ∀x ∈ H0 (?)

Finally, if x ∈ H and PH0 is the orthogonal projection of H onto H0, then

〈x, xσ(n)〉
xσ(n)∈H0

= 〈x, PH0(xσ(n))〉
(**)
=

= 〈PH0(x)︸ ︷︷ ︸
∈H0

, xσ(n)〉
?→ 〈PH0(x), x∗〉

(**)
=

= 〈x, PH0(x∗)〉
x∗∈H0= 〈x, x∗〉

and this exactly means that xσ(n) ⇀ x∗, where (∗∗) we are making the next reasoning

〈PH0(x), y〉 = 〈PH0(x), PH0(y) + (y − PH0(y))〉 =

= 〈PH0(x), PH0(y)〉+ 〈PH0(x)︸ ︷︷ ︸
∈H0

, y − PH0(y)︸ ︷︷ ︸
∈H⊥0

〉 = 〈PH0(x), PH0(y)〉

1Helley’s theorem: if X is a normed linear space and separable, then every bounded sequence of continuous
linear functionals in X∗ has a subsequence that weakly converges in X∗.
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Similarly,
〈x, PH0(y)〉 = 〈PH0(x), PH0(y)〉

so, 〈PH0(x), y〉 = 〈x, PH0(y)〉.

It is also worthy to mention that in RN for every N ∈ N, the notion of weak convergence
is equivalent to strong convergence, i.e. if {xn} ⊂ RN satisfies xn ⇀ x for some x ∈ RN then
it also verifies xn → x. This easily follows from the definition of weak convergence applied
to the elements of the basis B = {e1, ..., eN} where ek is the vector with all the components
zero but a one in the k-th position.

At this point, we can state a new more version of lemma 1.

Corollary 6. If H is a Hilbert space and F : H → R∪{+∞} is weakly lower semicontinuous,
coercive and F 6≡ +∞, then F attains its minimum.

Remark 16. It remains to say that coercivity is only needed to get the boundedness of the
minimizing sequence, so the coercivity is not needed if one knows that there is a bounded
minimizing sequence in advance.

Corollary 6 has many applicactions in Differential Equations. Here, we present two
examples of it.

3.2.1 Abstract example

Let us consider the problem

(P )

{
−∆u+ |u|p−1u = f(x) on Ω

u = 0 on ∂Ω

where Ω ⊂ RN is a smooth and bounded domain and

(H1) 2 < p+ 1 < 2∗ = 2N
N−2

if N > 2

(H2) f ∈ L2(Ω)

A function u ∈ H1
0 (Ω) is a weak solution to (P ) if∫

Ω

∇u∇v dx+

∫
Ω

|u|p−1uv dx−
∫

Ω

fv dx = 0 ∀v ∈ H1
0 (Ω)

If one defines the functional I on H1
0 (Ω) by

I(u) =
1

2

∫
Ω

|∇u|2 dx+
1

p+ 1

∫
Ω

|u|p+1 dx−
∫

Ω

fu dx

then the critial points of I turn out to be weak solutions of (P ) since

I ′(u)(v) =

∫
Ω

∇u∇v dx+

∫
Ω

|u|p−1uv dx−
∫

Ω

fv dx
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Obviously, our functional I is well defined. The first integral makes sense as u ∈ H1
0 (Ω)

and so ∇u ∈ L2(Ω), the second integral makes sense in view of (H1) and Sobolev embedding
theorem and the third integral makes sense just because u ∈ L2(Ω) and (H2). As it was
said in the Introduction of this chapter, every minimum points of I is in fact a critical point.
Can we find minimizers of I? Well, yes! We have already stated a result that can help us to
do it, namely corollary 6.

Clearly, H = H1
0 (Ω) is a Hilbert space and I is not constantly +∞. In order to show

that I admits a minimizer (which leads to a weak solution of (P )), all we have to do is check
the weak lower semicontinuity and the coercivity of I.

Weakly lower semicontinuity: given a sequence {un} with un ⇀ u, we write the
following

un ⇀ u in H1
0 (Ω) implies un ⇀ u and ∇un ⇀ ∇u in L2(Ω), and the weak lower

semicontinuity of the norm ‖∇u‖L2(Ω) gives,

lim inf

∫
Ω

|∇un|2 dx = lim inf ‖∇un‖2
L2(Ω) ≥ ‖∇u‖2

L2(Ω) =

∫
Ω

|∇u|2 dx

by the Rellich-Kondrachov theorem,∫
Ω

|un|p+1 dx→
∫

Ω

|u|p+1 dx⇒ lim inf

∫
Ω

|un|p+1 dx =

∫
Ω

|u|p+1 dx

by the definition of weak convergence of {un} in L2(Ω),∫
Ω

fun dx = 〈f, un〉 → 〈f, u〉 =

∫
Ω

fu dx⇒ lim inf

∫
Ω

fun dx =

∫
Ω

fu dx

These arguments are OK, but we can get rid of the hypothesis (H1) using a slightly subtle
reasoning. Note that hypothesis (H1) is needed to apply Rellich-Kondrachov theorem and
with the next new argument that theorem is not needed at all. This new argument uses
two results that we now state without a proof. If the reader is interested, the proofs can be
found in [8].

Lemma 2 (Fatou). If fn : Ω → [0,∞] is a sequence of positive and measurable functions
on Ω ⊂ RN such that {fn} converges pointwise to a function f for almost every point in Ω,
then

lim inf

∫
Ω

fn(x) dx ≥
∫

Ω

f(x) dx

Lemma 3. If p ∈ [1,∞] and fn : Ω→ R is a sequence of measurable functions on Ω ⊂ RN

such that {fn} converges in Lp(Ω) to a function f , then there exists a subsequence {fσ(n)}
of {fn} that converges pointwise to f for almost every point in Ω and there exists a function
g ∈ Lp(Ω) with |fσ(n)(x)| ≤ g(x) a.e. on Ω.
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Clearly, un → u in L2(Ω) by Rellich-Kondrachov theorem, hence lemma 3 guarantees
the existence of a subsequence {uσ(n)} converging pointwise to u a.e. on Ω. Also, |uσ(n)|p+1

converges pointwise to |u|p+1, thus lemma 2 yields that

lim inf

∫
Ω

|uσ(n)(x)|p+1 dx ≥
∫

Ω

|u(x)|p+1 dx

This is almost what we want. In order to get the above inequality for the complete sequence
{un} and not up to a subsequence, set L = lim inf

∫
Ω
|un(x)|p+1 dx and τ = τ(n) such that∫

Ω
|uτ(n)|p+1 dx→ L and repeat the previous argument to {uτ(n)}.

Coercivity: this follows from the Poincaré’s inequality and Hölder’s inequality. Again,
it is also appropiate now to use the equivalent norm ‖u‖ = ‖∇u‖L2(Ω) in H1

0 (Ω),

I(u) =
1

2

∫
Ω

|∇u(x)|2 dx+
1

p+ 1

∫
Ω

|u(x)|p+1 dx−
∫

Ω

f(x)u(x) dx ≥

≥ 1

2

∫
Ω

|∇u(x)|2 dx−
∫

Ω

f(x)u(x) dx ≥

≥ 1

2

∫
Ω

|∇u(x)|2 dx−
(∫

Ω

f(x)2 dx

)1/2(∫
Ω

u(x)2 dx

)1/2

≥

=
1

2

∫
Ω

|∇u(x)|2 dx−
(∫

Ω

f(x)2 dx

)1/2(∫
Ω

u(x)2 dx

)1/2

≥

≥ 1

2

∫
Ω

|∇u(x)|2 dx−
(∫

Ω

f(x)2 dx

)1/2(
C

∫
Ω

|∇u(x)|2 dx
)1/2

=

= 1
2
‖u‖2 − C ′‖u‖ → ∞ (as ‖u‖ → ∞)

Application of corollary 6 provides a minimizer of I and, consequently, a weak solution to
(P ). This completes the existence of the problem (P ). What about the unicity of solution?
this is left as an exercise for the reader.

Exercise 27. Show that problem (P ) has a unique solution.

3.2.2 Nonlinear simple pendulum

Let us discuss another example: the nonlinear pendulum equation with a external force
together with periodic boundary conditions. If u = u(t) represents the time-variant angle
that form the rope where the mass is held with respect to the a fixed body, just like the
image below
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Figure 3.1: Simple pendulum

then the problem to solve, when there is a external T -periodic force h ∈ C1(R) acting on
the mass, is

(Q)

{
u′′ + sinu = h on R
u(t+ T ) = u(t) for all t ∈ R

Recall that when the oscillations are small enough, one can approximate the problem
with another lineal one since sinu ≈ u. An easy and interesting result is that if the mean
value of h (see definition below) does not belong to [−1, 1], then there are no T -periodic
solutions to (Q).

Definition 13 (Mean of a function). Given an non-trivial interval I = [a, b], the mean
value of a function h ∈ L1(I) is the average value of the function over its domain, that is

h =
1

b− a

∫ b

a

h(t) dt

Proposition 24. If the problem (Q) admits solution, then |h| ≤ 1.

Proof. Suppose that u is a solution of (Q) so, in particular is T -periodic as well as its
derivative u′ 2. Integrating the equation u′′ + sinu = h on [0, T ], one gets the desired result∫ T

0

u′′(t) dt︸ ︷︷ ︸
u′(T )−u′(0)=0

+

∫ T

0

sinu(t) dt =

∫ T

0

h(t) dt;

∣∣∣∣∫ T

0

h(t) dt

∣∣∣∣ =

∣∣∣∣∫ T

0

sinu(t) dt

∣∣∣∣ ≤ ∫ T

0

| sinu(t)| dt ≤ T ⇒ |h| ≤ 1

2Be careful! If u is T -periodic then u′ is also T -periodic, but the converse is false: in general the T -
periodicity of u′ does not imply the T -periodicity of u and it is not difficult to find counterexamples.
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Let us start introducing the variational formulation of (Q). Firstly, consider the func-
tional space where our problem is well-posed,

H1
T (R) = {u ∈ H1

loc : u(x) = u(x+ T ), x ∈ R}

Secondly, consider the C1-functional I : H1
T (R)→ R given by

J(u) =
1

2

∫ T

0

|u′(t)|2 dt+

∫ T

0

cos(u(t)) dt−
∫ T

0

h(t)u(t) dt ∀u ∈ H1
T (R)

Clearly, critical points of J are T -periodic weak solutions to (Q). All we have to do is prove
the existence of critical points of J , for examples, minimizers of J . Unfourtunately, corollary
6 cannot be applied in this case because J is not coercive in general! This is easy to check,
since constant functions (which of course belong to H1

T (R)) makes I tends to −∞,

J(κ) =

∫ T

0

cos(κ) dt−
∫ T

0

h(t)κ dt = T cos(κ)− Tκh

so,

1. if h > 0, un(t) ≡ κn → +∞⇒ I(un)→ −∞

2. if h < 0, un(t) ≡ κn → −∞⇒ I(un)→ −∞

The question is: what happens when h = 0?

Theorem 16. If h = 0, then J attains its minimum.

Remark 17. If the reader remembers the proof of corollary 6, then it must be clear that
coercivity is only required to get the boundness of a minimizing sequence for the functional,
so it seems that now, we will have to manage to get it from other arguments.

Before doing the proof of 16, is better to recall a really useful inequality called Poincaré-
Wirtinger inequality.

Lemma 4 (Poincaré-Wirtinger inequality). If f ∈ H1(R) is (b−a)− periodic (f(a) = f(b))
and f = 0, then ∫ b

a

f ′(t)2 dt ≥ 4π2

(b− a)2

∫ b

a

f(t)2 dt

Exercise 28. Prove the Poincaré-Wirtinger inequality.

Proof of theorem 16. Consider β := infH1
T (R) J ∈ [−∞,∞) and {un} ⊂ H1

T (R) such that
J(un)→ β and set

un =
1

T

∫ T

0

un(t) dt ∀n ∈ N

and ũn = un − un for all n ∈ N. Note that∫ T

0

ũn(t) dt =

∫ T

0

un(t)− un dt = Tun − Tun = 0
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this means that we have wroten {un} as the sum of two terms (ũn and un) where the mean
of ũn is zero. Rename ṽn := ũn and define vn = ṽn + vn for each n ∈ N. Without loss of
generality, one can assume that vn ∈ [0, 2π) and un − vn = un − vn for every n ∈ N. Note
that

I(vn) =
1

2

∫ T

0

v′n(t)2 dt+

∫ T

0

cos(vn(t)) dt−
∫ T

0

h(t)vn(t) dt =

=
1

2

∫ T

0

ṽn
′(t)2 dt+

∫ T

0

cos(un(t)) dt−
∫ T

0

h(t)ṽn(t) dt =

=
1

2

∫ T

0

u′n(t)2 dt+

∫ T

0

cos(un(t)) dt−
∫ T

0

h(t)un(t) dt = I(un)

Since J(un)→ β, the previous computation implies J(vn)→ β, i.e. {vn} is also a minimizing
sequence. One would like to say that {vn} is bounded (and “copy” the proof of corollary 6),
but vn = ṽn + vn and vn ∈ [0, 2π), so in order to {vn} be bounded one needs the boundness
of {ṽn}. Is {ṽn} bounded? Yes, in view of Poincaré-Wirtinger inequality. We make the
following computation where we use the fact that | cos | ≤ 1, Hölder inequality and finally
Poincaré-Wirtinger inequality.

I(vn) ≥ 1

2

∫ T

0

ṽn
′(t)2 dt− T −

(∫ T

0

h(t)2 dt

)1/2(∫ T

0

ṽn(t)2 dt

)1/2

≥ 1

2

∫ T

0

ṽn
′(t)2 dt− T −

(∫ T

0

h(t)2 dt

)1/2
T

4π2

(∫ T

0

ṽn
′(t)2 dt

)1/2

=

=
1

2

∫ T

0

ṽn
′(t)2 dt− T − C

(∫ T

0

ṽn
′(t)2 dt

)1/2

→ β

This implies that ∫ T

0

ṽn
′(t)2 dt and

∫ T

0

ṽn(t)2 dt

are bounded or, in other words, {ṽn} is bounded in H1
T (R), therefore {vn} is bounded in

H1
T (R). By proposition 23, there exists v ∈ H1

T (R) and a subsequence {vσ(n)} of {vn} such
that vσ(n) ⇀ v in H1

T (R). At this point, if we establish the weakly lower semicontinuity of
J , we are done!.

vσ(n) ⇀ v in H1[0, T ] implies vσ(n) ⇀ v and v′σ(n) ⇀ ∇v′ in L2[0, T ], and the weak lower

semicontinuity of the norm ‖v′‖L2[0,T ] gives,

lim inf

∫
Ω

|v′σ(n)|2 dt = lim inf ‖v′σ(n)‖2
L2(0,T ) ≥ ‖v′‖2

L2(0,T ) =

∫
Ω

|v′|2 dt
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by the Rellich-Kondrachov theorem, the space H1[0, T ] is compactly embedded in the
space of continuous functions C[0, T ]. Consequently, vσ(n) → v in C[0, T ], that is {vσ(n)}
uniformly converges to v in [0, T ] and, as a consequence, also {vσ(n)} pointwise converges to
v in [0, T ]. By an obvious application of the dominated convergence theorem,∫ T

0

cos(vσ(n)) dt→
∫ T

0

cos(v) dt

by the definition of weak convergence of {vσ(n)} in L2[0, T ],∫ T

0

hvσ(n) dt = 〈h, vσ(n)〉 → 〈h, v〉 =

∫ T

0

hv dt

This complete the weak lower semicontinuity of J . The only thing left to do is

lim inf J(vσ(n)) ≥ J(v)

Again this argument was done previously: since J(vn)→ β and {vσ(n)} is a subsequence of
{vn}, also J(vσ(n))→ β, then

β = lim inf J(vσ(n)) ≥ J(v)⇒ J(v) = β

Namely, J attains its minimum at v.

Some remarks are now worth mentioning.

• Under the assumption h = 0, we have proved that J attains its minium or, equivalently,
the problem (Q) admits a weak solution.

• Unlike the problem (P ), problem (Q) has no uniqueness of (weak) solution. One can
get the existence of another different weak solution by another variaional approach,
meaning, a mountain-pass argument (see theorem 18).

• We know from proposition 24 that if |h| > 1, then there is no solution to (Q).

• To sum up, if h = 0 there is weak solution to (Q) (not unique) and if |h| > 1 there is
no solution to (Q). What about the case when |h| is close to zero, i.e. |h| < ε for some
ε > 0 small enough? Well, the answer is not completely clear. Nowadays, this is still
an open problem!.

Exercise 29. In section 3.1, devoted to make a brief introduction to Calculus of variations,
we presented the problem

(?)

{
x′′ = F (x), x = (x1, x2, x3)

x(0) = P, x(1) = Q

for some P,Q ∈ R3, where F = −∇U for some potential U : R3 → R. The exercise consists
in showing that if U is upper bounded, then there is (weak) solution to (?).

I Hint: try to minimize the functional φ(x) =
∫ 1

0
1
2
‖x′‖2 − U(x) dx on the set {x ∈

H1(0, 1)3 : x(0) = P, x(1) = Q}.
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3.3 Ekeland variational Principle and min-max theo-

rems

We finish this chapter, and with that this notes, with the statement and proof of the Eke-
land variational Principle. This principle is known today as a classical theorem that
established the basis of the critical points theory, more specifically, the min-max methods
of recent development. Actually, we will underline the connection between the Ekeland
variational Principle and the previous section. The principle was discovered by the French
mathemtician of Norwegian descent, Ivar Ekeland (1944-), in 1974 when he was associated
with the Paris Dauphine University, at the age of 30. The statement and proof that we
present here are the same Ekeland did.

Ekeland variational Principle established the basis of the min-max theory. This modern
theory is full of results that infer the existence of critical values of a functional from simple
geometric conditions of the functional. We will basically just focus on two of this results
that have become classical within this theory: mountain-pass theorem (due to Ambrosetti
and Rabinowitz) and saddle-point theorem (due to Rabinowitz). Anyway, if the reader is
interested, we suggest to take a look at [3] and [10].

Before presenting these two theorems, it is required some more mathematical knowledge.
Particulary, the concept of Fréchet differentiability, named after Maurice Fréchet (1878-1973)
and Palais-Smale condition, named after Richard Palais (1931-) and Stephen Smale (1930-).

Definition 14 (Fréchet differentiability). Given (X, ‖·‖X) and (Y, ‖·‖Y ) two normed spaces,
Ω ⊂ X an open and not-empty subset of X and x0 ∈ Ω a point in Ω, a map Φ : Ω → Y is
Fréchet-differentiable at x0 if, and only if, there exists a continuous linear map l : X → Y
such that

lim
h→0

‖Φ(x0 + h)− Φ(x0)− l(h)‖Y
‖h‖X

= 0

We say that Φ is Fréchet differentiable if it is Fréchet differentiable at every point of
Ω. The set of functions Φ : Ω → Y which are Fréchet differentiable verifying that the map
x 7→ Φ′(x), from Ω to L(X, Y ), is continuos are denoted by C1(Ω, Y ). Note that the only
novelty with respect with the differentiability in finite-dimensional spaces is that now we
have to demand the continuity to l. A linear map defined on a infinite-dimensional space
need not to be continuous! and hence, the Fréchet differentiability in finite dimension coin-
cides with the usual concept of differentiability in RN .

Recall that x∗ ∈ X is a critical point of Ψ ∈ C1(X,R) when Ψ′(x∗) = 0 and σ = Ψ(x∗)
is a critical level of Ψ. It can be proved the following properties:

• The Fréchet differentiability does not depend on the norms of the two normed spaces,
i.e. the concept does not change when norms are replaced by equivalent ones.

• If such l of the definition exists, then is unique and denoted by l = Φ′(x0).
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• Just like happens with the concept of differentiabilty in RN , if Φ′(x0) exists, then Φ is
continuous at x0.

• Just like happens with the concept of differentiabilty in RN , if Φ is actually a linear and
coninuous map, then is Fréchet differentiable with Φ′(x0) = Φ for every point x0 ∈ Ω.

Definition 15 (Palais-Smale sequence). Given (X, ‖ · ‖) a normed space and a functional
Ψ ∈ C1(X,R), a sequence {xn} ⊂ X is a Palais-Smale sequence (P − S in short) if
{Ψ(xn)} is bounded and Ψ′(xn)→ 0 in X−1 (Ψ′(xn)(y)→ 0, ∀y ∈ X).

Definition 16 (Palais-Smale sequence at level κ). Given (X, ‖ · ‖) a normed space and a
functional Ψ ∈ C1(X,R), a sequence {xn} ⊂ X is a Palais-Smale sequence at level
κ ∈ R (P − Sκ in short) if Ψ(xn)→ κ and Ψ′(xn)→ 0 in X−1 (Ψ′(xn)(y)→ 0, ∀y ∈ X).

Obviously, the fact that Ψ(xn) → κ does not imply Ψ′(xn) → 0. Even in dimension
N = 1, one can construct a C1-function F : R→ R and a sequence {xn} such that F (xn)→ κ
for some κ ∈ R although F ′(xn) = 1 for all n ∈ N.

Definition 17 (Palais-Smale condition). Given (X, ‖ · ‖) a normed space, a functional Ψ ∈
C1(X,R) has the Palais-Smale condition ((P −S) in short) if, and only if, every Palais-
Smale sequence {xn} has a converging subsequence.

Definition 18 (Palais-Smale condition at level κ). Given (X, ‖ · ‖) a normed space, a func-
tional Ψ ∈ C1(X,R) has the Palais-Smale condition at level κ ∈ R ((P − S)κ in short)
if, and only if, every Palais-Smale sequence {xn} at level κ has a converging subsequence.

It can be easily check the following remarks,

• If Ψ ∈ C1(X,R) has the (P −S)κ condition, then every P −Sκ sequence converges (up
to a subsequence) to some x∗ ∈ X and, by continuity of Ψ, Ψ(x∗) = κ and Ψ′(x∗) = 0.
In other words, x∗ is a critical point of Ψ and κ is a critical level of Ψ. In particular,
{x ∈ X : Ψ(x) = κ,Ψ′(x) = 0} is relatively compact.

• If F ∈ C1(RN ,R), for some N ∈ N, is bounded from below and coercive, then F has
the (P −S) condition. This is peculiar of the finite dimension: if Ψ ∈ C1(X,R) and X
is infinite-dimensional, Ψ might be bounded from below and coercive without having
the (P − S) condition. Can you think in an example of this?

Exercise 30. Find a functional defined on an infinite-dimensional Banach space that is
bounded from below and coercive, but (P − S)κ does not hold for some κ ∈ R.

Theorem 17 (Ekeland variational Principle). Let (X, d) be a complete metric space, u ∈ X
an arbitrary fixed point of X, ε > 0 an arbitrary fixed positive number and ψ : X → R∪{+∞}
a functional on X that is bounded below and not identically equal to +∞, then for each λ > 0,
there exists v ∈ X such that

(i) ψ(v) ≤ ψ(u)
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(ii) d(u, v) ≤ 1

λ

(iii) ψ(v) < ψ(w) + ελd(v, w) ∀w ∈ X,w 6= u

Remark 18. The Ekeland variational Principle asserts that there exists nearly optimal so-
lutions to some optimization problems, meaning, v is not a minimizer of ψ on X, instead is
the minimizer of a perturbed problem concerning ψ.

Proof. Without loss of generality, one can restrinct to the case λ = 1, otherwise consider the
new distance d̃(x, y) = λd(x, y) for all x, y ∈ X. Firstly, we define a partial order in X as
follows:

x ≤ y
def⇐⇒ ψ(x) + εd(x, y) ≤ ψ(y) ∀x, y ∈ X

It is straightforward that this relation in X is an order relation, that is, is reflexive (x ≤ x),
antisymmetric (x ≤ y, y ≤ x ⇒ x = y) and transitive (x ≤ y, y ≤ z ⇒ x ≤ z). It can
be easily checked by using the properties of the distance map d. Secondly, we define by
induction a sequence of sets {Sn}n∈N as follows: take u1 = u and set S1 = {w ∈ X : w ≤ u1

then, given un ∈ Sn, take un+1 ∈ Sn with ψ(un+1) ≤ infSn ψ + 1
n

(this is always possible by
the characterization of infimum points).

This sequence os sets {Sn} enjoys the following properties for all integer n,

• Sn 6= ∅ because un ∈ Sn.

• Sn+1 ⊂ Sn owing to the definition itself.

• Sn is closed due to the lower semicontinuity of ψ and the continuity of d:
if {xn} ⊂ Sn and xk → x, then xk ≤ un for all k ∈ N and thus

ψ(xk) ≤ ψ(un)− εd(xk, un)

taking lower limit,

lim inf
k→∞

ψ(xk) ≤ lim inf
k→∞

ψ(un)− εd(xk, un)

using the lower semicontinuity of ψ and the continuity of d,

ψ(x) ≤ ψ(un)− εd(x, un)

which is nothing but x ∈ Sn.

• diam(Sn) → 0 as n → ∞: take w ∈ Sn+1, then ψ(w) + εd(w, un+1) ≤ ψ(un+1), but
also w ∈ Sn so ψ(w) ≥ infSn ψ and

d(w, un+1) ≤ 1

ε
[ψ(un+1 − ψ(w)] ≤ 1

ε

[
inf
Sn
ψ +

1

n
− ψ(w)

]
≤

≤ 1

ε

[
inf
Sn
ψ +

1

n
− inf

Sn
ψ

]
=

1

εn

From this computation follows diam(Sn)→ 0 as n→∞.
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Finally, the completeness of X and this four previous assertions ensure that the intersection
of all the sets {Sn} is formed by only one point (this is often referred as Cantor’s intersection
theorem), say v ∈ X, ⋂

n∈N

Sn = {v}

This point v satisfies the three conditions (i)− (ii)− (iii) of the theorem. Indeed,

(i): ψ(v) ≤ ψ(u)⋂
n∈N

Sn = {v} ⇒ v ∈ S1 ⇒ v ≤ u1 := u⇒ ψ(v) + εd(v, u)︸ ︷︷ ︸
≥0

≤ ψ(v)⇒ ψ(v) ≤ ψ(u)

(ii): d(u, v) ≤ 1 (remember that λ = 1)

ψ(v) + εd(u, v) ≤ ψ(u)⇔ εd(u, v) ≤ ψ(u)− ψ(v);

εd(u, v) ≤ inf ψ + ε− ψ(v) ≤ inf ψ + ε− inf ψ = ε⇒ d(u, v) ≤ 1

(iii): ψ(v) < ψ(w) + εd(v, w), w ∈ X,w 6= u (again λ = 1)
It is imposible that w ≤ v, otherwise w would belong to the intersection of all the sets {Sn},
so w 6≤ v which means ψ(v) < ψ(w) + εd(v, w).

Remark 19. Ekeland’s principle has been shown by F. Sullivan to be equivalent to the
completeness of metric spaces.

The next result is a consequence of Ekeland variational Principle and, under a geometric
assumption, guarantees the existence of a minimizing sequence that is close to another
minimizing one (fixed at the beginning) and with a new property more, which can give us
useful information.

Corollary 7. If (X, d) be a complete metric space and ϕ : X → R a C1-function that is
bounded from below and {xn} ⊂ X is a minimizing sequence for ϕ on X, then there exists a
sequence {yn} ⊂ X with

1. ϕ(yn)→ infX ϕ (as n→∞)

2. ‖yn − xn‖ → 0 (as n→∞)

3. ‖ϕ′(yn)‖ → 0 (as n→∞)

Proof. If ϕ(xn) ≡ infX ϕ the proof is done. Otherwise, set εn = ϕ(xn) − infX ϕ > 0 and
λn = 1/

√
εn for all n ∈ N. After applying Ekeland variational Principle, and yields yn ∈ X

for each λn such that

1.

inf
X
ϕ ≤ ϕ(yn) ≤ ϕ(xn)→ inf

X
ϕ⇒ ϕ(yn)→ inf

X
ϕ
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2.

‖yn − xn‖ = d(xn, yn) ≤ 1√
λn

=
√
εn → 0

3. Take h ∈ X with ‖h‖X = 1. Since ϕ ∈ C1(X), it must be

ϕ′(yn)(h) = lim
t→0+

ϕ(yn + th)− ϕ(yn)

t
≥

≥ lim
t→0+

ϕ(yn)−√εnt− ϕ(yn)

t
= −
√
εn

ϕ′(yn)(h) = lim
t→0−

ϕ(yn + th)− ϕ(yn)

t
≤

≤ lim
t→0−

ϕ(yn) +
√
εnt− ϕ(yn)

t
= +
√
εn

and hence
0 ≤ ‖ϕ′(yn)(h)| ≤

√
εn ∀h ∈ X, ‖h‖X = 1;

‖ϕ′(yn)‖ = sup
‖h‖X=1

|ϕ′(yn)(h)| ≤ sup
‖h‖X=1

√
εn =

√
εn → 0

Exercise 31. Prove that if (X, d) is a complete metric space and ϕ : X → R a C2-function
that is bounded from below and ‖D2ϕ‖ ≤ C for some C > 0, then every minimizing sequence
of ϕ on X is a Palais-Smale sequence (at level infX ϕ).

Ekeland variational Principle was one of the first theorem of a large list of results that have
the same purpose: establish the existence of critical values or level of functionals knowing
in advance some geometrical conditions. This field in Nonlinear Analysis is called nowadays
min-max theory. As it was said at the beginning of this section, here it is only presented two
more result, one by Ambrosetti and Rabinowitz and another one by Rabinowitz.

Theorem 18 (Mountain-pass, Ambrosetti & Rabinowitz, 1973). Let (X, ‖ · ‖) be a Banach
space and Φ ∈ C1(X,R) having the Palais-Smale condition at any level κ ∈ R and

(MP1) Φ(0) = 0

(MP2) ∃ ε, δ > 0 : ‖x‖ = ε⇒ Φ(x) ≥ δ

(MP3) ∃ y ∈ X, ‖y‖ > ε : Φ(y) ≤ 0

then
c = inf

γ∈Γ
max
t∈[0,1]

Φ(γ(t)) ≥ δ

is a critical level of Φ, meaning there exists z ∈ X with Φ′(z) = 0 and Φ(z) = c, where Γ is
the family of continuous curves on X joining 0 and y, that is

Γ = {γ : [0, 1]→ X : γ continuous , γ(0) = 0, γ(1) = y}
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The name of mountain-pass theorem is justified by its geometric interpretation: imagine
that the Earth is modeled by R2 and Φ : R2 → R expresses the height of the point x ∈ R2

over the sea level, then (MP1) − (MP2) − (MP3) are fulfilled if, and only if, the origin is
located in a valley surrounded by mountains and, far away from the mountains, there is a
point with negative height, that is, the sea!.

Theorem 19 (Saddle-point, Rabinowitz, 1984). Let (X, ‖ · ‖) be a Banach space and Φ ∈
C1(X,R) having the Palais-Smale condition at any level κ ∈ R and

(SP1) X = V ⊕ V ⊥ with 0 < dimV <∞

(SP2) ρ := infX Φ(x) ∈ R

(SP3) there exists U ⊂ V an open and bounded neighbour of 0 in V with sup∂U Φ(x) < ρ

then
c = inf

λ∈Λ
max
x∈U

Φ(λ(x)) ≥ ρ

is a critical level of Φ, meaning there exists z ∈ X with Φ′(z) = 0 and Φ(z) = c, where Λ is
the family of continuous functions from U to X that fix the boundary ∂U , that is

Λ = {λ : U → X : λ continuous , λ(x) = x, ∀x ∈ ∂U}

Once again the name of saddle-point comes from a geometric argument. In general, the
type of funtionals which Saddle-point theorem can be applied to, respond to the following
geometry: Φ is concave in V , convex in X and obey a coercivity condition at infinity.

Although these theorems can be derived from the Ekeland variational Principle, it is pre-
ferred to prove them using the deformation lemma whose proof will be omitted here. Before
stating the deformation lemma, let us make two definitions or, better said, notation.

Given (X, ‖ · ‖) be a Banach space, Φ : X → R a functional and c ∈ R, denote

Zc = {x ∈ X : Φ(x) ≤ c}

Kc = {x ∈ X : Φ(x) = c,Φ′(x) = 0}

When Kc 6= ∅, we say that c is a critical level of Φ.

Lemma 5 (Deformation). Let (X, ‖ · ‖) be a Banach space, Φ ∈ C1(X,R) having the Palais-
Smale condition at some level c ∈ R, then for all ε0 > 0, there is δ0 ∈ (0, ε0) and η ∈
C([0, 1]×X,X) such that

(a) η(0, x) = x for all x ∈ X

(b) η(1, x) = x for all x ∈ X with Φ(x) /∈ [c− ε0, c+ ε0]

(c) η(1, Zc+δ0) ⊂ Zc−δ0
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Remark 20. For each fixed t ∈ [0, 1], the map η(t, ·) : X → X is an homeomorphism from
X onto itself. Moving the variable t in [0, 1], this can be seen as a family of continuous maps
that are the identity on X when t = 0 and continuously deform the space X while t goes
through the interval [0, 1]. Part (a) claims that η(0, ·) is the identity map on X. Part (b)
asserts that also η(1, ·) is the identity map but only when x is not near of c in the sense that
|x− c| ≥ δ. Part (c) assures that η(1, ·) transforms Zc+ε into another subset (of lower level)
contents in Zc−ε. This last property turns fundamental in the proofs of several min-max
theorems.

Let us write the proofs of both theorems, which can be found in [10].

Proof of mountain-pass theorem. If Υ = {γ[0, 1] : γ ∈ Γ} , then c = infW∈Υ maxx∈W Φ(x).
Clearly, Γ 6= ∅ (γ : [0, 1] → X, t 7→ γ(t) = ty belongs to Γ) which implies that Υ 6= ∅.
Since elements of Υ are compact subsets of X, for each W ∈ Υ there exists supx∈W Φ(x).
In addition, for each W ∈ Υ, there is (at least) one element x ∈ W with ‖x‖ = ε. Indeed,
this follows from the continuity of γ and ‖γ(0)‖ = 0 and ‖γ(1)‖ > ε by (MP3) and so c ≥ δ
by (MP2). Finally, if Kc = ∅, take ε0 = δ/2 in the deformation lemma and set δ0 > 0 and
η ∈ C([0, 1] × X,X) provided by the lemma. By the fact that c = infW∈Υ maxx∈W Φ(x),
there must be W ∈ Υ such that

sup
x∈W

Φ(x) ≤ c+ δ0 ⇒ W ⊂ Zc+δ0 ⇒ η(1,W ) ⊂ Zc−δ0

However, it can be checked that η(1,W ) ∈ Υ, and

sup
x∈η(1,W )

Φ(x) ≤ sup
x∈Zc−δ0

Φ(x) ≤ c− δ0

and this contradicts the definition c = infW∈Υ supx∈W Φ(x), therefore there exists z∗ ∈ X
with Φ(z∗) = c ≥ δ and Φ′(z∗) = 0. This completes the proof.

Proof of saddle-point theorem. If Υ = {λ(U) : λ ∈ Λ} , then c = infW∈Υ maxx∈W Φ(x).
Clearly, Λ 6= ∅ (the identity restrincted to U belongs to Υ) which implies that Υ 6= ∅. Since
elements of Υ are compact subsets of X, for each K ∈ Υ there exists supx∈K Φ(x). In
addition, for each W ∈ Υ, there is (at least) one element x ∈ W with λ(x) ∈ X. Indeed, if
λ ∈ Λ and π : X → V is the correponding projection map ofX onto V , the map π◦λ : U → V
is continuous by the chain rule and it does not vanish on the boundary of U owing to
(π ◦ λ)(x) = x for every x ∈ ∂U and thus, by the Brouwer degree, deg(π ◦ λ, U, 0) = 1 6= 0,
so there exists x ∈ U with (π ◦λ)(x) = 0, i.e. λ(x) ∈ X, and hence c ≥ ρ. Finally, if Kc = ∅,
take ε0 = ρ/2 in the deformation lemma and set δ0 > 0 and η ∈ C([0, 1] × X,X) provided
by the lemma. By the fact that c = infW∈Υ supx∈W Φ(x), there must be W ∈ Υ such that

sup
x∈W

Φ(x) ≤ c+ δ0 ⇒ W ⊂ Zc+δ0 ⇒ η(1,W ) ⊂ Zc−δ0

However, it can be checked that η(1,W ) ∈ Υ, and

sup
x∈η(1,W )

Φ(x) ≤ sup
x∈Zc−δ0

Φ(x) ≤ c− δ0

and this contradicts the definition c = infW∈Υ supx∈W Φ(x), therefore there exists z∗ ∈ X
with Φ(z∗) = c ≥ ρ and Φ′(z∗) = 0. This completes the proof.
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Exercise 32. Study the existence of weak solution of the toy-problem{
−∆u = |u|p−1u on Ω

u = 0 on ∂Ω

where Ω is an open and bounded subset of RN and 1 < p < N+2
N−2

if N > 2 or p = +∞ if
N = 2, using the mountain-pass theorem. Is the obtained solution trivial?

If one takes a look carefully at both proofs, it can be easily observed the enormous analogy
among them. This turns out to be a genereal philosophy of the min-max theorems. Actually,
more abstract theorems on this line are already proved (see [3] or [11]). It is convenient to
underline that the method of the proofs is the same in the majority of cases. The essential
idea in both proofes is definition of the family Υ of subsets of X. This family Υ must be
(positively) η-invariant, namely η(t,W ) ∈ Υ for all W ∈ Υ and for all t ∈ [0, 1].
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