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Abstract—This letter presents a new segmental nonlinear fea-
ture normalization algorithm to improve the robustness of speech
recognition systems against variations of the acoustic environment.
An experimental study of the best delay—performance tradeoff is
conducted within the AURORA-2 framework, and a comparison
with two commonly used normalization algorithms is presented.
Computationally efficient algorithms based on order statistics are
also presented. One of them is based on linear interpolation be-
tween sampling quantiles, and the other one is based on a point es-
timation of the probability distribution. The reduction in the com-
putational cost does not degrade the performance significantly.

Index Terms—Histogram equalization, order statistics, robust-
ness, speech recognition.

1. INTRODUCTION

HE ACOUSTIC mismatch between the training and

test data [1] degrades the performance of automatic
speech recognition (ASR) systems. In this letter, we focus
on the so-called robust feature extraction approach, i.e., the
extraction of speech features that are minimally affected by the
environment.

Most speech recognition systems use parameterizations
based on Mel frequency cepstral coefficients (MFCCs). Even
for simple models of the acoustic environment (i.e., additive
noise and linear channel distortion), the feature space is nonlin-
early distorted [2]. As a result, the probability distribution of the
features is different for different acoustic environments. This
undesired variability is the principal cause of the performance
degradation of ASR systems based on probabilistic models
(i.e., Gaussian mixture-based recognizers).

Linear methods like cepstral mean subtraction (CMS) [3] or
cepstral mean and variance normalization (CMVN) [4] yield
significant improvements under noisy conditions. Nevertheless,
these methods present important limitations, as they only pro-
vide compensation for the first two moments of the probability
distributions of speech features [5]. Several histogram equaliza-
tion (HEQ)-based approaches have been proposed [6]—[9]. The
main specificity of our approach [5] is that, instead of trying to
invert the nonlinear effects of the acoustic environment, HEQ
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is used to transform the features into a reference domain less
affected by changes in the acoustic environment. This is essen-
tially the same approach as that proposed in [10] and [11] for
robust speaker verification.

Cepstral domain HEQ was shown to provide substantial im-
provements in speech recognition under noisy conditions, ei-
ther as a standalone technique [5] or in combination with others
[12], [13]. However, the original algorithm has been designed to
perform the equalization on a sentence-by-sentence basis, and
therefore this approach is not suitable for online applications,
where a long variable delay is not acceptable. Furthermore, en-
vironment variations within a sentence cannot be properly han-
dled with this algorithm. In this letter, we present a segmental
implementation of HEQ, where a temporal window around the
frame to be equalized is used instead of the whole sentence. We
also present an experimental study of the delay—performance
tradeoff for the segmental algorithm.

Two computationally efficient algorithms are also proposed.
The first one, named quantile-based equalization (QBEQ), uses
sampling quantiles to build a piecewise-linear approximation
of the nonlinear transformation [8], [9]; the second one, named
order statistic equalization (OSEQ), uses order statistics to build
a point estimation of the cumulative distribution function (CDF)
[14]. These two algorithms are compared in terms of its compu-
tational efficiency and performance. Experimental results have
been obtained within the AURORA-2 framework [15].

II. HEQ-BASED SEGMENTAL FEATURE NORMALIZATION

The goal of HEQ is to transform the speech features in such a
way that the acoustic environment does not affect its probability
distribution. This can be achieved by transforming the distribu-
tion of each feature into a fixed reference one. When the target
distribution is selected as a Gaussian with zero mean and unity
variance, this approach can be seen as an extension of CMVN.
HEQ outperforms CMVN because it provides compensation for
not only the first two moments affecting the location (mean) and
scale (variance) of the distributions, but also for higher order
moments affecting the shape of the distributions [5].

For a given random variable y with probability density func-
tion p,(y), a function x = F(y) mapping p,(y) into a refer-
ence distribution p,,(x) can be obtained by equating the CDF of
z and y

Cy(y) = Cu() = Co(F(y)) 1
z=F(y) =C;'(Cy(y)) )
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where C! denotes the inverse of the reference CDF. The func-
tion F'(y) is monotonic nondecreasing and nonlinear in the gen-
eral case.

Under the assumption of statistical independence, HEQ is ap-
plied to each cepstral coefficient independently. For each input
sentence, the CDF of each coefficient C),(y) is approximated
by its cumulative histogram. Next, the bin centers of this his-
togram are transformed according to (2) and finally, the trans-
formed features are obtained by linear interpolation between
these values.

For stationary noise processes, as more observations are con-
sidered, a better estimation of the cumulative histograms is ob-
tained, and therefore, more accurate environment compensation
is achieved. However, in the case of nonstationary noises, re-
sults can be improved by an adaptive estimation procedure. In
the segmental version of HEQ, a temporal window around the
frame to be normalized is considered for the estimation of the
CDF of the features.

A straightforward extension of HEQ can be considered for a
segmental implementation of the nonlinear transformation. At a
given time ¢, a buffer containing 27" + 1 values of a particular
cepstral coefficient is considered

Yt = {yt—T7"'7yt7"'7yt+T}' (3)

The cumulative histogram of these values is used as an estima-
tion of the CDF. Then, a piecewise linear approximation of the
transformation function is built, and the transformed value of ¥,
is obtained from it.

At the beginning of each utterance, once T" 4 1 frames have
been shifted into the buffer, the upper half of the buffer is repli-
cated into the lower half, and the central frame (i.e., the first
frame of the utterance) is equalized. The process then continues
by shifting new frames into the buffer and equalizing the central
one. When all frames of the utterance have been consumed the
buffer remains fixed, and the last T" frames of the utterance are
equalized using this fixed buffer. Sentences with less than 7'+ 1
frames are normalized using all their frames.

In this letter, the selected reference distribution C, was a
Gaussian with zero mean and unity variance. The number of
bins used in the estimation of the cumulative histograms must
be selected taking into account the tradeoff between smooth-
ness and resolution of the cumulative histograms. Several pre-
vious experiments have shown that the best performance is ob-
tained with high-resolution cumulative histograms, and there-
fore, a relative high number of bins are used. In this letter, 100
regularly spaced bins are considered in the interval [—4c, +40],
where o is the estimated standard deviation of the samples in (3).

The smoothed cumulative histogram C’y is obtained by linear
interpolation between the raw one C_’y and that corresponding to
a uniform distribution U with an equal number of bins

C, = A\Cy + (1 = M. (4)

The interpolation factor A = N/(N + 10) is selected as a func-
tion of the number of observations N = 27" + 1, and therefore,
less smoothing is applied when more observations are available.
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III. ORDER-STATISTIC-BASED TRANSFORMATIONS

This direct implementation of a segmental version of HEQ
is not computationally efficient. For the estimation of the CDF,
a whole cumulative histogram is computed every new frame;
but according to (2), we only need an estimation of C\(y;) to
perform the equalization. More efficient algorithms can be for-
mulated by exploiting the relation between order statistics and
values of the CDF.

Let us denote the order statistics of (3) by

Y1)y SY@) S S Ye) S S Yer+)- (%)
These are the same values in (3) but sorted in ascending order.

A. Quantile-Based Transformation

As a first approach, a reduced number of sampling quantiles
can be used to build an interpolated approximation of the non-
linear transformation. With this approach, a more efficient so-
lution is obtained at the cost of reducing the resolution of the
estimated transformation.

The algorithm used in this letter is similar to the one used
in [8] and [9]. From a Gaussian reference with zero mean and
unity variance, N quantiles Q. (p,) = C;7!(p,) are computed
for probability values

r—0.5
T': b v
P ( Nq ) '

The corresponding sampling quantiles Q,(p,) are estimated
from the order statistics (5) as

Il
—

..., No. (©6)

1<k<2T

1- + .
Qy(pr) = { ( f)y(k) JY+1), o or a1 %)

N Y@r+1),

where k and f are the integer and fractional parts of 1 + 27'p,.,
respectively.

As each pair of quantiles (Q,(p.), Q. (p,)) represents a point
of the nonlinear transformation, the transformed value of the
central frame v, is obtained by linear interpolation between the
tabulated points. Linear extrapolation is used whenever y; is less
than the first sampling quantile or greater than the last one. This
way, the nonlinear transformation is approximated with Ng — 1
linear segments. In the following, we will refer to this algorithm
as QBEQ (quantile-based equalization).

Obtaining the sorted dataset (5) requires (27" + 1) log, (27T +
1) comparisons on average. The computation of N quantiles
requires 2Ng products and Ng additions (unless probability
values are selected to match the corresponding quantiles to order
statistics), and the interpolation process requires two products
and two additions. For a reduced number of quantiles, this com-
putational cost is lower than the corresponding segmental ver-
sion of HEQ.

B. Direct Estimation

An even more efficient algorithm is formulated from a direct
estimation of C (). An asymptotically unbiased point estima-
tion of the CDF can be defined [14] as

A r—0.5

Vr=1,...,2T + 1. ®)
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Using (8) and (2), an estimation of the transformed value of y;
can be obtained as

R - 0.5
R C—l C _ C—l T(yt) 9
n=ctGuy=o (MBI o
where r(y;) denotes the rank of y; (i.e., the index r of the order
statistics that corresponds to the value y;) that is obtained by
counting the number of values less or equal than y, in the tem-
poral buffer Y;. Note that as C, and T are fixed, if the values

GVL:C;1<T_05> Vr =

2T+ 1

’

2T +1 (19)
are tabulated in advance, the transformed value (9) can be ob-
tained by simply indexing the table G. As for HEQ and QBEQ,
the selected reference distribution is a Gaussian with zero mean
and unity variance.

The computational cost of this algorithm is much less than
the corresponding one for QBEQ as only 27" comparisons are
needed to obtain the transformed value of a given feature. In
the following, we will refer to this algorithm as OSEQ (order
statistics-based equalization).

IV. EXPERIMENTAL RESULTS

The segmental version of HEQ has been evaluated within the
AURORA-2 experimental framework [15]. A re-endpointed!
version of the database is used as suggested for the last AU-
RORA special session at ICSLP 2002. The working database is
a subset of TI-DIGITS, and contains connected digits recorded
in a clean environment. Utterances have been contaminated by
the addition of several noise types at different SNR levels. Three
test sets are defined. Two of them contain only additive noise,
and the last one includes also a simulated channel mismatch.
The task consists of two kinds of recognition experiments: one
using a recognizer trained with clean speech [clean condition
(CO)] and the other one using a recognizer trained with sen-
tences contaminated by different kinds and levels of noise [mul-
ticondition (MC)].

Continuous density left-to-right HMMs are used for the
acoustic models. Digits are modeled with 16 emitting states
and a three Gaussian mixture per state. Additionally, two pause
models are defined. The first one consists of three states with
a six Gaussian mixture per state, and models beginning and
end pauses. The second one models interdigit pauses and has
only one state tied with the central one of the previous model.
The recognizer is based on HTK and uses a 39-component
feature vector: 12 MFCC plus the logarithmic energy and the
corresponding delta and acceleration coefficients (see [15] for
details). Features are extracted at a frame-rate of 100 Hz.

For comparison purposes, segmental versions of CMVN and
CMS have also been evaluated within the same framework. A
common buffer of 27" + 1 frames is used for CDF, mean, and
variance estimations. In the CMS experiments, the mean is sub-
tracted from the static features before regression coefficients
(delta and acceleration coefficients) are computed. In HEQ and
CMVN experiments, the regression coefficients are computed

IThe database has been accurately endpointed leaving a 200-ms silence pe-
riod at the beginning and at the end of each utterance.
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Fig. 1. CCresults (averaged for SNR levels between 0-20 dB) as a function of

the delay for the segmental versions of HEQ, CMS, and CMVN. AURORA-2
baseline results are also shown for reference.
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Fig. 2. MC results (averaged for SNR levels between 0-20 dB) as a function
of the delay for the segmental versions of HEQ, CMS, and CMVN. AURORA-2
baseline results are also shown for reference.

first, and then all the 39 components of the feature vector are
normalized independently.

A first set of experiments has been conducted using the CC
recognizer. To evaluate the performance of the algorithms as
a function of the delay, the front-end of the system has been
modified to perform feature normalization based on a temporal
buffer of 27"+ 1 frames. Features have been normalized for both
training and test data; and for each normalization algorithm
(CMS, CMVN, and HEQ), the recognizer has been trained and
evaluated for delay values from 100-1400 ms. A delay greater
than half the maximum duration of the sentences (2500 ms)
has been used to obtain the asymptotic performance values
corresponding to the nonsegmental versions. Fig. 1 shows the
word error rates obtained for the segmental versions of HEQ,
CMVN, and CMS as a function of the delay. These results
are averaged values for all the noise types and for SNR levels
between 0-20 dB.

First of all, the asymptotic values of the word error rate show
how the progressive compensation of higher order moments
of the feature distributions results in better recognition perfor-
mance; CMVN (21.74%) performs better than CMS (30.11%),
and HEQ (17.23%) has the best performance.

Second, the plots show how HEQ performance is improved
as the delay is increased, obtaining the best result (16.35%) for a
delay value of 600 ms. From this point, no further improvement
is obtained by increasing the delay. This behavior shows the suc-
cessfulness of the segmental version of HEQ. A similar behavior
(consistent with Viikki results [4]) is observed for CM VN, with
the lower error rate (19.70%) obtained for a delay 500 ms; and
for CMS (28.87%) for a delay of 700 ms.

The previously described set of experiments has been carried
out using the MC recognizer. In Fig. 2, it can be observed
that the behavior of the segmental algorithms is now different.
The word error rate decreases almost monotonically with
the delay, although small reduction is obtained for delays
greater than 600 ms.
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TABLE 1
AVERAGED WORD ERROR RATES AND RELATIVE IMPROVEMENTS (AS DEFINED
FOR THE AURORA SPECIAL SESSIONS) FOR A DELAY OF 600 ms

Word error rate Relative
MC CC Average | improvement

BASELINE 12.97% | 41.94% | 27.46% —
HEQ 8.83% | 16.35% | 12.59% 44.51%
OSEQ 8.92% | 16.12% | 12.52% 44.59%
QBEQ N@=30 || 8.89% | 16.71% | 12.80% 44.11%
QBEQ Ng=15 || 897% | 16.93% | 12.95% 43.21%
QBEQ Ng=5 8.99% | 16.92% | 12.96% 40.56%
QBEQ Ng=3 9.23% | 17.39% | 13.31% 36.94%
QBEQ Ng=2 9.79% | 21.86% | 15.82% 24.87%

Asymptotic word error rates are consistent with those ob-
tained for the CC recognizer: HEQ (8.74%) has the lowest error
rate, and CMVN (9.23%) outperforms CMS (11.06%). How-
ever, the differences between algorithms are now smaller be-
cause the mismatch between training and test data is greatly re-
duced by the multistyle training used for this recognizer. Notice
that the word error rate for HEQ with a delay of 600 ms (8.83%)
is not significantly higher than the asymptotic value (8.74%).

Both QBEQ and OSEQ algorithms have been evaluated
using the same experimental setup described above. The
resulting delay behavior of OSEQ was essentially the same
observed for HEQ, with the maximum performance obtained
for a delay of 600 ms. QBEQ has been evaluated for this same
delay with different number of quantiles N¢. Table I shows the
averaged word error rates and relative improvements for the
baseline and the different algorithms.

From these results, it can be concluded that the performance
of OSEQ is almost the same as that obtained for HEQ. Con-
sidering the averaged relative improvements, the performances
of OSEQ and HEQ are virtually equal. Although HEQ per-
forms slightly better in MC and OSEQ performs slightly better
in CC, the difference between relative improvements is less than
0.75%.

For QBEQ, a consistent improvement is obtained by in-
creasing the number of quantiles. Results with two and three
quantiles are of special interest. The first situation is similar to
CMVN, and the second one is similar to the modification of
CMVN proposed in [16]. Although the results for 30 quantiles
are close to those for OSEQ, the lower complexity and com-
putational cost of this last method makes it the best selection.
Note that the quantiles have been uniformly selected, and an
open question is if an optimized selection can result in a better
performance. This subject is under investigation.

V. CONCLUSION

In this letter, we have studied several feature normalization
algorithms working in the cepstral domain. We have found that
a temporal context of about 1.2 s is enough for the proper es-
timation of the nonlinear transformation for a connected digit
recognition task. This result is consistent with those previously
reported for CMVN.

For the clean-condition recognizer, the segmental version of
HEQ can perform better than the nonsegmental one. This can be
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explained by the ability of the segmental algorithm to adapt the
normalizing transformation to changes in the acoustic environ-
ment within a sentence. This result is not obtained in the case of
the multicondition recognizer because of the multistyle training
used in this case.

The segmental version of HEQ has been compared with seg-
mental implementations of two other feature normalization al-
gorithms: CMS and CMVN. Experimental results have shown
that the compensation of higher order moments provided by
HEQ gives the best recognition performance.

We have also presented a computationally efficient imple-
mentation of the HEQ technique based on order statistics. Two
alternative algorithms have been considered; one of them based
on the estimation of a reduced number of quantiles and the
other based on a direct estimation of the CDF. Experimental re-
sults have shown that OSEQ performance is comparable to that
achieved with the segmental version of HEQ. Although QBEQ
can reach almost the same performance, OSEQ is simpler and
its computational cost is lower.
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