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Abstract

In this paper a new variant of HMM, named Multiple VQ HMM (MVQHMM), is presented. Its main
characteristic is the use of a separate codebook for each model. Procedures for training and probability evaluation of
these models are described. The evaluation procedure combines the gquantization distortions of the vector sequences
with the discrete HMM generation probabilities. Comparative results on an isolated word recognition system are
shown, between MVQHMM and discrete and semi-continuous HMM. These results show that using separate
codebooks and including the quantization distortion in the decision criterion improve the performance of the system.
Furthermore, the multiple VQ hidden Markov models seem to be more robust than the discrete and semi-continu-
ous ones in relation to the inter-speaker variability of the recognition system.

Zusammenfassung

In diesem Artikel wird eine neue Variante der HMM vorgestellt, Multiple VQ HMM (MVQHMM) genannt. Thr
Hauptmerkmal liegt in der Benutzung von separaten Codebooks fiir jedes Modell. Es werden Verfahren beschrieben,
die zum Training und zur Bewertung der Wahrscheinlichkeit bestimmt sind. Das Bewertungsverfahren verbindet die
infolge der Vektorquantisierung auftretenden Fehler mit den diskreten Emissionswahrscheinlichkeiten. Die Ergeb-
nisse der MVQHMM und der diskreten und semi-continious HMM, angewendet auf ein Erkennungssystem von
Einzelwortern, werden verglichen. Die Ergebnisse zeigen, dal3 die Benutzung von scparaten Codebooks und die
Beriicksichtigung der Quantisierungsfehler in dem Entscheidungskriterien die Leistung des Systems verbessern.
AuBerdem scheinen die Multiple VQ Hidden Markov Modelle in bezug auf die sprecherspezifischen Abweichungen
zuverlissiger zu sein.

Résumé

Cet article présente une nouvelle variante des Modéles de Markov cachés (HMM) “a Quantification Vectorielle
Multiple” (MVQHMM). Sa caractéristique principale est d’utiliser un dictionnaire différent pour chaque modéle.
On décrit les algorithmes d’apprentissage et de reconnaissance pour ces modeles. La procédure de reconnaissance
combine le calcul de Yerreur de quantification de la séquence de vecteurs avec celui de la probabilité de sa
génération par le HMM. On donne des résultats sur un systéme de reconnaissance de mots isolés, en comparant les
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MVQHMM et les HMM discrets et semi-continus: utiliser des dictionnaires différents et inclure I'erreur de
quantification dans le calcul améliore les performances du systéme. De plus, les MVQHMM apparaissent plus
robustes 2 la variabilité interlocuteur que les modeles discrets et semi-continus.
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1. Introduction

Discrete hidden Markov models have been
successfully applied to speech recognition, as
acoustics models for different types of decision
units (phones, words, etc). Their main advantages
are moderate computational requirements and
high versatility. Nevertheless, one of the main
disadvantages is the implicit discretization of the
observations which produces information loss that
in turn may deteriorate the models performance
(Rabiner et al., 1985).

At least two alternatives to the discrete mod-
elling have been proposed in the literature, The
first one corresponds to continuous models which
obviate the quantization problem by directly
modelling the observations as continuous proba-
bility density functions (pdf’s). The main prob-
lems of this modelling are their high computa-
tional cost and the large number of parameters to
be estimated (mainly covariance matrices). When
the training data are insufficient the performance
of the system is also deteriorated (Rabiner et al.,
1985).

The second alternative corresponds to the
semi-continuous Markov models, proposed in
(Huang and Jack, 1989). Under this approach,
the VQ codewords are modelled as multivariate
pdf’'s and the VQ process is modified in such a
way that multiple candidates are generated, one
per codeword. A probability value is associated to
cach candidate, according to the corresponding
codeword pdf. These probabilities are used to
obtain the observation probabilities (see Eq. (5)).
From the point of view of continuous mixtures
HMM, the semi-continuous HMM approach uses
a common set of pdf’s (from the VQ codebook)
to build all models state mixtures, which reduces
the number of parameters to be estimated. From
the discrete modelling point of view, the use of
multiple candidates reduces the information loss
in the VQ process.

In this work, a new variant of HMM is intro-
duced. This new approach uses a VQ process in
which every model has its own codebook. For
every input vector sequence, the VQ process gen-
erates a symbol sequence corresponding to each
one of the codebooks. A more precise VQ is
obtained by using a specific codebook for each
model, which can characterize more precisely its
acoustic productions. Furthermore, as we will
show later, this modified VQ process gives useful
information that can be used in the classification
procedure of unknown vector sequences. This
information is essentially contained in quantiza-
tion distortions of the unknown vector sequence
with the different model codebooks.

The remaining of the paper is organized as
follows. In Section 2, we describe the formalism
of multiple VQ hidden Markov models
(MVQHMM). Evaluation formulas are derived
from a general formulation of hidden Markov
modelling and compared with discrete, continu-
ous and semi-continuous hidden Markov models.

In Section 3, we describe the particular imple-
mentation of MVQHMM modelling used in the
isolated word recognition system presented later
in this paper, as well as the algorithm used for
models training.

In Section 4, we present the experimental en-
vironment used for testing the proposed recogni-
tion system. In this section we also present com-
parative results between three recognition sys-
tems based on discrete, semi-continuous and
MVQHMM models.

Finally in Section 5, we summarize the conclu-
sions of the present work.

2. Multiple VQ HMM

An MVQHMM is composed of a VQ code-
book, modelling the different acoustic produc-
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tions of the modelled unit, and a standard dis-
crete HMM modeiling the temporal behavior of
the process observations (VQ codewords). Each
decision unit (phone, word, etc) has its own set of
acoustic prototypes and therefore it can be ex-
pected that the quantization process with the
appropriate codebook will be more accurate than
the traditional VQ with a shared codebook. Un-
like that in the traditional VQ-based HMM ap-
proach, there is no a priori selection of the opti-
mal quantization and it is carried out along with
the final decision about the correct model.

As shown in (Shore and Burton, 1983; Furui,
1988; Bergh et al., 1985), the quantization distor-
tions of an input sequence with the different
model codebooks can be used to classify un-
known vector sequences. When evaluating
MVQHMM generation probabilities, quantiza-
tion distortions are combined with the generation
probabilities of the discrete HMM to obtain a
final probability, which is used as the classifying
criterion.

In Fig. 1 the block diagram of an MVQHMM-
based isolated word recognition system is de-
picted. Given a model A, P(X ' | A) is the genera-
tion probability of the vector sequence X[ =
XXy X, ... Xy, P(X]' | OT,A) is the quantization
probability of the vector sequence X[ in the
symbol sequence O] =0,0,...0,...05, and
P(OT | A) is the generation probability of the sym-
bol sequence O7.

Given an observation sequence X, =
XiX5...X,...xp, where x, is a vector of acoustic
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Fig. 1. MVQHMM-based isolated word recognition system.

characteristics, the generation probability
P(X/" | A) for an HMM A can be expressed in the
following way:

P(X[IA)= ZP(XTISl, A)P(ST1A), (1)

51

P(X|"Is{,A)= ]:[lP(x,ls,, A), (2)
T
P(S;FI)\)=P(s1|)\)l:[2P(s,|s,_1,A), (3)

where ST =s;5,...5,...5; is a state sequence,
and s, is the model state at time ¢. The summa-
tion in ST represents the sum over all possible
states sequences of the model. Assuming that
P(x,|s,,A) can be expressed as a probability den-
sity function mixture, we can write

P(x,1s,, A)

-

o, €V(s,,A)

P(x,lo,, s, A\)P(o,]s,,A), (4)

where V(s,, A) is a set of acoustic prototypes
belonging to the state s, of the model A. P(x, | o,,
S;, A) are the mixtures pdf's and P(o, |s,, A) are
the mixture coefficients. This formulation is es-
sentially the same used in continuous mixture
HMM (Rabiner et al., 1985).

Assuming that the set of prototypes V is inde-
pendent of both the state and model considered,
it can be written

P(x,Is,,A)= Y P(x,10,)P(o,ls,, 7). (5)

o, eV

This expression is equivalent to the one used in
(Huang and Jack, 1989) in the formulation of
semi-continuous HMM.

Furthermore, assuming that the classes repre-
sented by the prototypes are disjoint or little
overlapped, the former expression can be approx-
imated as

P(x,|s,, A)=P(x,10)P(0}|s,, A), (6)
of = argma)li{P(xtlot)}. (N

Eq. (7) represents the quantization condition of
input vector x,, where o} is the corresponding
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codeword and V is the codebook. Using Egs. (1),
(2) and (6) the following relation can be obtained:

P(X[|A)=P(X{ |OT*)P(OT*| 1), (8)
where
T
P(X[107*) = l:[lP(x,lo:"), (9)
P(OT* 1) = L P(OT*|ST)P(SF12). (10)
st

In Eq. (9) OT* =0%...0% is the best symbol
sequence (in the sense of Eq. (7). Note that due
to the fact that the quantization probability
P(X[ | OT*) is independent of the current model,
we only have to compute the generation probabil-
ity of the symbol sequence, P(OT*|A). This is
essentially the discrete HMM formulation.

Finally, the evaluation formulas for the
MVQHMM can be obtained under the assump-
tion that the classes set V' is disjoint and it only
depends on the considered model. Thus, we can
write

P(x,|st, )\)=P(x,|0;k, A)P(O;klst,A), (11)

oF =arg max {P(x,lo,, A)}. (12)
o, €V(A)

The only difference between (6)—(7) and (11)-(12)

is that the codebook ¥ now depends on model A

and therefore the VQ process must be model

specific. From Egs. (1), (2) and (11) it is easy to

obtain the following relation:

P(X{"1A)=P(X|OT*, M)P(O7*|r),  (13)

where
T

P(XITIOf*,A)= ]_[P(x,loi",)\), (14)
=1

P(OT*2) = LP(OT* ST, N)P(STIA).  (15)
st
In this expression P(X[ | OT*, A) represents the
quantization probability of the observation se-
quence X[ into the symbol sequence OT* of A
model and P(OT* | A) is the generation probabil-
ity of the symbols sequence O]*. Now the quanti-
zation probability depends on the model, and it
must be incorporated into the classifying criterion
which must be based on MVQHMM gencration

probabilities P(X' | A) instead of on symbol gen-
eration probability P(OT* | A).

3. Implementation of the MVQHMM modelling

In this section, we are going to describe the
implementation used in this work for the
MVQHMM modelling presented in the previous
section.

The first subsection describes the parametric
model used for the codewords of the different
models codebook and, therefore, a method for
estimating the quantization probabilities pre-
sented in the previous section.

The last subsection describes an algorithm for
training MVQHMM models. This algorithm is
based on a maximum likelihood approach to the
estimation of both the codebook and the HMM
of an MVQHMM model.

3.1. Quantization probabilities

In order to evaluate quantization probabilities,
it is necessary to choose a parametric model for
the codewords. In this work each one of them is
modelled as a Gaussian with an identity covari-
ance matrix, and therefore the following equa-
tions can be written:

3, =0, (16)

p(x,lo,A)= (2ﬂrr)_p/2(o-)‘2)_‘p/2

H X ™ Ho,a ” :
xexp| —— oA} (17
xp{ . (17)
oF = arg max {P(x,|o
; gofem){ (x.10,)}
. 2
_ _ 18
argO[Iélll/I(lA){ || X, Mo, a ” }’ ( )
1
?log P(XIT |OT*, )‘)
p p DA(X,T)
= —Elog Zw—Elog GZ*T._AZ, (19)
1 T 5
DA(X]:r) = ? Z th_iu'o;k,)\ H P (20)
t=1
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where [ is an identity matrix, D,(X,") represents
the average quantization distortion of the vector
sequence X[ with the A model codebook and
Ko*, is the mean vector corresponding to the
codeword with least Euclidean distance to the x,
vector. The value p is the number of vector
components, and therefore pa,\z is the expected
value of the mean VQ distortion of a vector
sequence belonging to the model A. The value cr,\z
can be estimated from the training set in the

following manner:

: (21)

where D, is the mean VQ distortion of A model
training set. Eq. (18) is the quantization criterion,
therefore the distortion measure is simply a Eu-
clidean distance.

3.2. MVQHMM training

Construction of an MVQHMM requires the
specification of the model codebook and the
HMM transition and production probabilities. In
a maximum likelithood estimation approach, this
is done by maximizing the a posteriori observa-
tion probabilities (13). This can be done in a two
step procedure.

In the first step, the model VQ codebooks are
built with a K-means clustering algorithm with
binary splitting initialization and Euclidean dis-
tance like the one described in (Peinado et al.,
1991). Due to the definitions (16)—(18), this pro-
cess maximizes the quantization probabilities (14)
by means of a minimization of the Euclidean
distance between training vectors and codebook
centroids.

In the second step, the previously built VQ
codebooks are used to quantize the training vec-
tor sequences, each one with the corresponding
codebook. With the obtained symbol sequences
the discrete HMM are trained using a standard
Baum-Welch re-estimation procedure, which
maximizes the symbol generation probabilities
(15). Initial HMM models are built from a linear
segmentation of the training sequences.

4. Experimental results

Comparative experiments have been carried
out between MYQHMM and discrete and semi-
continuous HMM on an isolated word recogni-
tion system with a 16-words vocabulary. The vo-
cabulary is formed by the 10 Spanish digits and
six key words (CUERPO, HOMBRO, CODO,
MUNECA, MANO, DEDOS). There are 3 repe-
titions of every word uttered by 40 speakers (20
male and 20 female).

Words have been sampled at 8 kHz with 12
bits. An order 10 LPC analysis has been carried
out on 32 ms frames every 8 ms. Each frame has
been characterized by a 25 component vector
formed by 12 liftered cepstrum coefficients (Juang
et al.,, 1987), 12 liftered delta cepstrum coeffi-
cients and delta energy (Furui, 1986). Delta cep-
strum and delta energy have been weighed with
0.925 and 0.728, respectively, in order to optimize
the performance of the Euclidean distance used
in the codebook construction. Note that this is
equivalent, but formally simpler, to the use of a
weighed Euclidean distance measure. In addition,
vectors sequences are decimated to a period of 16
ms, after the parameter extraction procedure.

In all cases 10 states left-to-right HMM have
been used. A postprocessor that takes into ac-
count the duration of the model states is always
added to the system. Details on preprocessing,
parameter extraction and post-processing along
with a complete description of the recognition
system based on discrete Markov models can be
found in (Peinado et al., 1991).

Due to the limited number of speakers in the
speech database, the testing of the system is
carried out by means of a procedure similar to
the so-called leaving-one-out (Duda and Hart,
1973).

In the semi-continuous HMM implementation
used in this work, only L = 8 most likely values of
the pdf’s are seclected because the other ones
have significantly lower probability values and
can be therefore neglected. This approach signifi-
cantly reduces the computational cost, and some-
times improves the recognition performance of
the system (Huang and Jack, 1989).

With the previous modifications, the conver-
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sion process from a discrete HMM based recogni-

tion system to an SCHMM based one is as fol-

lows:

1. Estimation of codewords covariance matrices.

2. Quantization of the training sequences gener-
ating the L =8 most likely codewords and
their corresponding probability values.

3. Using the discrete models obtained for the
DHMM based recognition system as initial
models, train the semi-continuous models.

Multi-speaker error rates

When testing the system in a multi-speaker
environment, two repetitions of each word ut-
tered by all the 40 speakers have been used to
train the system and the remaining repetition to
test it. This procedure is repeated for three dis-
joint partitions of the database and the obtained
results are averaged.

Table 1 shows the error rates obtained for the
multi-speaker environment test. In this environ-
ment, the results are similar to those on the
speaker-independent environment. For 4 code-
words per model, the error rate for MVOQHMM
models is significantly greater than the corre-
sponding to DHMM and SCHMM. This is due to
the fact that 4 codewords are not enough to
properly model the acoustic productions of most
of the words in the vocabulary. Nevertheless, for
8 codewords per model the error rate is similar to
the obtained for DHMM, and for 16 and 32
codewords, the error rate is.similar or lower than
the corresponding to both DHMM and SCHMM.

Speaker-independent error rates
When testing the system in a speaker-indepen-
dent environment, thirty two speakers (16 male

Table 1

Multi-speaker error rates

CDWDS DHMM SCHMM MVQHMM
4- 64 3.07% 1.77% 4.64%
8-128 1.93% 1.15% 2.19%

16-256 1.35% 0.73% 0.73%

32-512 0.99% 0.52% 0.36%

Table 2

Speaker-independent error rates

CDWDS DHMM SCHMM MVQHMM
4- 64 4.38% 3.02% 4.27%
8-128 3.59% 2.14% 2.45%

16-256 2.81% 1.56% 0.94%

32-512 2.03% 1.41% 0.89%

and 16 female) have been used to train the sys-
tem and the remaining eight (4 male and 4 fe-
male) to test it. This procedure is repeated for
five disjoint partitions of the database and the
obtained results are averaged. This is equivalent
to use a database with a training set of 32 speak-
ers and a testing set of 40 different ones.

Table 2 shows the error rates for the system
with discrete HMM (DHMM), semi-continuous
HMM (SCHMM) and MVQHMM. The first col-
umn (CDWDS) indicates both the number of
codewords of every model codebook for
MVQHMM and the number of codewords in the
codebook for DHMM and SCHMM. In the case
of 4 codewords per MVQHMM codebook, the
error rate is similar to the DHMM’s but higher
than SCHMM'’s. As in the multi-speaker test, this
is due to the fact that four codewords are insuffi-
cient to properly model the acoustic productions
of the model. Nevertheless, for 8 codewords the
MVQHMM error is lower than for DHMM and
similar to SCHMM, and for 16 or 32 codewords is
even lower than for SCHMM.

Inter-speaker robustness

Figs. 2, 3 and 4 show the multi-speaker and
speaker-independent error rates for the DHMM,
SCHMM and MVQHMM models, respectively.

For both the DHMM and MVQHMM models,
there is a significant increment in the error rate
between multi-speaker and speaker-independent
tests, about a 1.5% for the DHMM models and
about a 1% for the SCHMM models. This incre-
ment in the error rate is due to the additional
inter-speaker variability of the speaker-indepen-
dent test.

Nevertheless, for the MVQHMM models only
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a little increment of the error rate (about a 0.25%)
between multi-speaker and speaker-independent
test is obtained. This result seems to indicate that
MVQHMM models are more robust than the
DHMM and SCHMM models with respect to
inter-speaker variability.

5. Conclusion

In this work we have presented a new variant
of discrete hidden Markov modelling, whose main
characteristic is the use of specific codebooks for
each model.

We have obtained the evaluation formulas for
these new models from a general hidden Markov
model approach, and we have also presented an
algorithm for model training based on a maxi-
mum likelihood approach. The evaluation and
re-estimation procedures do not require the use
of algorithms different from the ones used in
discrete hidden Markov modelling.

The experimental results show that, in the
speaker-independent situation, the MVQHMM
based system performance is always better than
the discrete HMM based one for an equivalent
number of codewords. The computational cost is
essentially the same except for a little overhead
due to the probability composition.

In comparison with the results obtained with
the semi-continuous HMM based recognition sys-
tem, these ones yield a lower error rate for a
small size codebook (i.e., 64 and 128). However,
for a sufficient number of codewords (i.e., 256
and 512), the MVQHMM models have a mean-
ingfully lower error rate.

MVQHMM models seem to be more robust
than DHMM and SCHMM ones with respect to
inter-locutor variability.
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