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Abstract

The Discriminative Feature Extraction (DFE) method provides an appropriate formalism for the design of the front-
end feature extraction module in pattern classification systems. In the recent years, this formalism has been successfully
applied to different speech recognition problems, like classification of vowels, classification of phonemes or isolated
word recognition. The DFE formalism can be applied to weight the contribution of the components in the feature
vector. This variant of DFE, that we call Discriminative Feature Weighting (DFW), improves the pattern classification
systems by enhancing those components more relevant for the discrimination among the different classes. This paper is
dedicated to the application of the DFW formalism to Continuous Speech Recognizers (CSR) based on Hidden
Markov Models (HMMs). Two different types of HMM-based speech recognizers are considered: recognizers based on
Discrete-HMMs (DHMMs) (for which the acoustic evaluation is based on an Euclidean distance measure) and Semi-
Continuous-HMMs (SCHMMs) (for which the acoustic evaluation is performed making use of a mixture of multi-
variated Gaussians). We report how the components can be weighted and how the weights can be discriminatively
trained and applied to the speech recognizers. We present recognition results for several continuous speech recognition
tasks. The experimental results show the utility of DFW for HMM-based continuous speech recognizers.
© 2001 Elsevier Science B.V. All rights reserved.

Zusammenfassung

Die Methode der diskriminativen Merkmalextraktion (Discriminative Feature Extraction, DFE) stellt einen fiir den
Entwurf des Eingangsmerkmalextraktionsmoduls in Musterklassifizierungssystemen geeigneten Algorithmus zur
Verfiigung. In vergangenen Jahren wurde dieser Algorithmus erfolgreich auf verschiedene Spracherkennungsprobleme
wie die Klassifizierung von Selbstlauten, Phonembklassifizierung, oder die Erkennung isolierter Worter angewandt. Der
DFE Algorithmus kann zur Gewichtung des Beitrags der Komponenten des Merkmalvektors verwendet werden. Diese
Variante der DFE, die wir diskriminative Merkmalgewichtung (Discriminative Feature Weighting, DFW) nennen,
verbessert Musterklassifizierungssysteme, indem sie jene Komponenten verstarkt, die mehr Relevanz bei der Unter-
scheidung verschiedener Klassen haben. Diese Veroffentlichung widmet sich der Anwendung der diskriminativen
Merkmalgewichtung auf Systeme zur Erkennung kontinuierlicher Sprache, die auf “Hidden Markov Models” (HMM)
beruhen. Es werden zwei verschiedene Arten von HMM-basierten Spracherkennungssystemen betrachtet: solche, die
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auf diskreten HMMs basieren (fiir die die akustische Auswertung auf einem Euklidischen AbstandsmafBberuht) und
semikontinuierliche HMMs (fiir die zur akustischen Auswertung eine Mischung von multivarianten Gaul3-Verteilungen
verwendet wird). Wir berichten, wie die Komponenten gewichtet werden konnen und wie die Gewichte diskriminativ
trainiert und auf Spracherkennungssysteme angewendet werden konnen. Wir prasentieren Ergebnisse fiir einige Auf-
gaben der Erkennung kontinuierlicher Sprache. Die experimentellen Ergebnisse zeigen die Niitzlichkeit der diskrimi-
nativen Merkmalgewichtung in HMM-basierten Erkennungssystemen fiir kontinuierliche Sprache.

© 2001 Elsevier Science B.V. All rights reserved.

Résumé

La méthode DFE (Extraction Discriminante de Parametres) fournit un formalisme adéquat pour la conception d’un
module d’extraction de parametres pour un systeme de classification de formes. Au cours des dernieres années, cette
méthode a été appliquée avec succes a différents problemes en reconnaissance de la parole tels que la classification de
voyelles et de phonémes ou la reconnaissance de mots isolés. Le formalisme DFE peut étre utilis¢ pour pondérer les
contributions des différentes composantes d’un vecteur de parametres. Cette variante de DFE, que nous appelons DFW
(Pondération Discriminante de parametres), améliore un systéme de classification de formes en favorisant les com-
posantes assurant la meilleure discrimination interclasses. Cet article est consacré a I'application du formalisme DFW a
la reconnaissance de la parole continue par modeles de Markov cachés (HMM). Deux types différents de reconnaisseurs
sont étudiés: ceux fondés sur des HMM discrets (utilisant une distance euclidienne) et ceux fondés sur des HMM semi-
continus (utilisant des mélanges de gaussiennes). Nous montrons comment les composantes peuvent étre pondérées et
comment les poids peuvent étre appris de fagon discriminante. Des résultats expérimentaux sont fournis pour différentes
taches de parole continue. Ces résultats montent I'intérét du formalisme en reconnaissance de parole continue par
HMM.
© 2001 Elsevier Science B.V. All rights reserved.
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Minimum classification error; Hidden Markov model; Discriminative feature weighting; Discriminative weighting by transformation;
Partial probability weighting

1. Introduction extraction module is a relevant aspect for the
performance of the speech recognizer because this
module extracts the discriminative information

utilized by the classification module to perform the

Most practical speech recognition systems
consist of two modules: the front-end feature ex-

traction module and the back-end classification
module (Fig. 1). The classification module is usu-
ally statistically designed according to Bayes de-
cision theory and the design of the feature
extractor is conventionally based on scientific ex-
perience and heuristics. The design of the feature

| 1
! .
speech i feature ! recognized
waveform | 1 sentence
Feature | Set o
—_— Classifier H——=
Extractor

Fig. 1. General scheme of a speech recognition system.

recognition. It is evident that achieving accurate
recognition requires a careful design of the feature
extraction module (Duda and Hart, 1973).

In the early 1990s, design methods based on the
discriminative training approach were proposed to
adjust the classifier parameters. The Minimum
Classification Error/Generalized Probabilistic De-
scent (MCE/GPD) training method (Juang and
Katagiri, 1992) has been successfully applied to
speech recognition systems (Chou et al., 1992;
McDermott and Katagiri, 1994; Peinado et al.,
1995, 1996). More recently, the MCE/GPD
method has also been utilized to adjust the pa-
rameters of the feature extractor. This approach,
called Discriminative Feature Extraction (DFE)
(Biem and Katagiri, 1993, 1997), introduced a new
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concept in the field of speech recognition: the ex-
tension of MCE/GPD method to the feature ex-
tractor allows to design it taking into account the
main goal of pattern recognition, that is, the rec-
ognition accuracy.

DFE has been applied to train several elements
in the feature extraction module. For example,
Biem and Katagiri have utilized DFE to compute
cepstral liftering windows (Biem and Katagiri,
1993, 1997), and to design filter banks (Biem and
Katagiri, 1994, 1995, 1997). Bacchiani and Aikawa
(1994) have optimized the parameters of a dy-
namic cepstrum lifter array. In several approaches,
the element trained by DFE is a linear transfor-
mation of the original feature space (Paliwal et al.,
1995; de la Torre et al., 1996a,b, 1997), and
Watanabe et al. (1995, 1997) have extended the
concept of DFE to a class-dependent feature ex-
tractor. The utility of DFE is demonstrated by the
results of several speech recognition experiments
reported in the bibliography. The application of
DFE has improved the accuracy in recognition
problems such as classification of vowels, classifi-
cation of stop consonants, classification of pho-
neme units or isolated word recognition.

The DFE formalism has been applied to weight
the contribution of the different components in the
feature vector to the acoustic evaluation. That is
the case of the implementations of DFE in which
the element discriminatively trained is a diagonal
transformation of the feature space (Biem and
Katagiri, 1993, 1997; de la Torre et al., 1996a,b).
This variant of the DFE method, that will be
called Discriminative Feature Weighting (DFW),
improves the performance of the speech recogniz-
ers by enhancing those components more impor-
tant for the classification, i.e., the components
containing more discriminative information.

In this paper, we investigate the application of
DFW to Continuous Speech Recognition (CSR)
systems. Since the use of continuous speech rec-
ognizers based on Hidden Markov Models
(HMM) is widely extended (Rabiner and Juang,
1993; Young, 1996), in this paper our interest is
focused on the application of DFW formalism to
HMM-based CSR systems. Two different types of
HMM-based speech recognizers are considered in
this paper: Discrete-HMM (DHMM) and Semi-

Continuous-HMM (SCHMM) recognizers (Ra-
biner and Juang, 1993; Huang et al., 1990).

In the case of DHMM-based speech recog-
nizers, the acoustic evaluation is based on an
Euclidean distance measure. For this type of rec-
ognizer, the components are weighted by applying
a diagonal transformation of the feature space
that is discriminatively trained according to the
DFE formalism. The effect of this transformation
is a new representation space where those com-
ponents more relevant for the discrimination are
enhanced (the directions associated to those com-
ponents are expanded). This transformation can
improve the accuracy of the recognizer since the
contribution of each component to the distance
measure is adjusted by the discriminative training
procedure taking into account its discriminative
capability.

Nowadays, those speech recognizers making
use of a mixture of multivariated Gaussians for the
acoustic evaluation (like Continuous-HMM or
SCHMM recognizers (Rabiner and Juang, 1993;
Young, 1996, 1997)) are utilized more frequently
than DHMM-based speech recognizers. For those
recognizers, the recognition performance remains
invariant to the application of feature space
transformations. This behavior (commented in
(Young et al., 1997)) takes place because when a
transformation is applied, the modification of the
partial distance associated to each component is
compensated by the modification of the elements
of the covariance matrices in the Gaussian prob-
ability density functions (see Section 3.2.1). For
this kind of recognizers, the contribution of the
different components to the acoustic evaluation
can be weighted by applying exponents to the
partial probabilities corresponding to each com-
ponent. Under this approach, which will be re-
ferred as Partial Probability Weighting (PPW), we
propose the application of the DFW formalism to
the estimation of these exponents.

In this paper, we investigate the application of
DFW method to both categories of HMM-based
continuous speech recognizers. The element ad-
justed by DFW is a diagonal transformation of
the representation space (for those recognizers for
which the acoustic evaluation is based on an
Euclidean distance measure) or a set of PPW
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exponents (for those recognizers making use of a
mixture of multivariate Gaussians). ' We report
how the DFW method can be applied to both
types of recognizers and the improvements that
can be achieved by applying this formalism.

The paper is organized into five sections. In
Section 2, the DFE formalism is reviewed, and we
also discuss which strategy for DFE (or DFW) is
appropriate in the context of CSR. In Section 3,
we show how the DFW method can be applied to
those recognizers based on an Euclidean distance
measure (Section 3.1) and those based on a mix-
ture of multivariated Gaussians (Section 3.2). In
Section 4, we present experiments to report the
effect of applying the DFW formalism to DHMM-
based and SCHMM-based continuous speech
recognizers, and finally, in Section 5, we conclude
with a summary of this work.

2. Discriminative feature extraction for continuous
speech recognition

2.1. DFE formalism

The main concept of the DFE method is the
discriminative training of the front-end feature
extraction module, or a part of it. Even though
several criteria could be applied for the discrimi-
native training (like maximum mutual information
(Bahl et al., 1986)), DFE is usually based on the
MCE/GPD approach (Juang and Katagiri, 1992,
1997), as it is reviewed in this section.

Let @ = {¢,, d,,..., ¢} be the set of parame-
ters of the feature extractor to be adjusted by the

"' In the first case, the transformation is an element in the
feature extraction module and the discriminative training of
the transformation could be considered as a particular case of
DFE. However, the PPW exponents are applied during the
evaluation of the probabilities of the HMM states generating
the feature vectors (the weights are not applied in the feature
extraction module), and therefore, the discriminative training
of the PPW exponents cannot be formally considered as a
particular case of DFE. In spite of it, the underlying idea in
both cases is the discriminative training of some parameters to
be applied during the recognition process in order to weight the
contribution of the components in the feature vector to the
acoustic evaluation.

DFE method. According to MCE/GPD approach,
each parameter ¢, is iteratively re-estimated in
order to minimize a cost function L representing
the classification error. At iteration k, each pa-
rameter ¢, is updated by gradient descent of the
cost function,

oL
¢x,k =41 — '76753 l o s (1)

where 7 is a learning factor. Let us suppose that we
have a set of training events {Xi,...,Xy}, and
there is a set of classes {4;,...,4}. The cost
function can be constructed as

=7 Do) @

m=1

where /,,(X,,) is the cost function for the event X,.
This function should verify that if X,, is correctly
classified then /,, — 0, and if it is incorrectly clas-
sified, /,, — 1. Usually, the cost function /,, is de-
fined as a sigmoid function of an error measure
dm(Xm)s

1
1 + exp[—od, (X,)]’

lm(Xm) = (3)

where o is the transition parameter from correct to
incorrect classification. The error measure d,,(X,,)
can be defined as

dm(Xm) = —&k(m) lOg [ 1 Z eXp ﬁg] ‘|
J#k(m
(4)
where g; = g;(X,,, 4;) are the discriminant functions

(the recognized class is the one whose discriminant
function is the greatest) and /i, is the correct
class for the event X,,. This definition of the error
measure makes d,, negative if the classification of
the input utterance is clearly correct and positive if
clearly incorrect. The parameter  determines the
contribution of the incorrect classes to d,,.

Making use of these definitions, the re-estima-
tion of the set of parameters @ is possible by using
Eq. (1), where the partials 0L/0¢, can be written as
follows:
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and the partials 0g;/0¢, can be obtained from the
definition of the classifier utilized for the discrim-
inative training of the feature extractor.

2.2. Selection of a strategy for DFE

In order to perform the adjustment of the pa-
rameters @ in the context of DFE, it is necessary to
define the discriminant functions g;(X,,4;). The
most natural criterion for selecting the discrimi-
nant functions is to define them from the classifier
utilized for the recognition process. This way of
selecting the discriminant functions allows to per-
form jointly the discriminative training of the pa-
rameters of both, the feature extractor and the
classifier, as proposed in (Biem and Katagiri, 1993,
1997).

When the parameters of the feature extractor
and the classifier are simultaneously adjusted, the
DFE method can be considered as a simple ex-
tension of the MCE/GPD method to the feature
extraction module. However, some differences be-
tween the discriminative training of the classifier
and the feature extractor must be considered.
Most of the parameters of the classification mod-
ule are class-dependent, and their adjustment only
affects locally to the recognition process. During
the discriminative training of them, some recog-
nition errors can be corrected by the adjustment of
some parameters while the rest of the classifier is
not modified. In contrast to it, the parameters of
the feature extraction module are shared by all
classes and a modification of them can affect to the
whole recognition system. Some authors have il-
lustrated the importance of this conceptual differ-

ence. For example, in (Biem et al., 1997) a neural
network implements both, the classifier and the
feature extractor, and the MCE/GPD method is
applied to train it. In this case, the parameters of
the classifier can be randomly initialized, but the
performance is very sensible to the initialization of
the parameters associated to the feature extraction
module.

Different strategies for the discriminative train-
ing of the feature extractor have been compared
in (Paliwal et al., 1995; de la Torre et al., 1996b).
These comparative experiments suggest that, for a
simple classification problem (involving a small
number of classes) and when the discriminant
functions are simple, the best recognition results
could be achieved in the case of simultaneous
discriminative training of both, the classifier and
the feature extractor. However, when the discri-
minant functions or the recognition problem are
complex, the different nature of both modules
makes this strategy less effective. In this case, when
both modules are simultaneously trained the evo-
lution of the feature extractor parameters is small
compared to the classifier parameters. This occurs
because a modification of the feature extractor
affects the whole recognizer, while a modification
of the classifier parameters can resolve local
training errors (and reduce the cost function)
without a modification of the rest of the classifier.
As a result, the reduction of the cost function is
easier by modifying the classifier parameters than
modifying the feature extractor parameters, and
the feature extractor is not properly trained. In
addition, in some situations, the simultaneous
discriminative training makes also the classifier be
improperly trained, providing a greater training
cost function and worse recognition performance
than in the case of performing only the discrimi-
native training of the classifier (de la Torre et al.,
1996b). Therefore, for complex recognition prob-
lems, the comparative experiments show that the
independent training of the feature extractor and
the classifier provides better results than the si-
multaneous discriminative training.

Since the MCE/GPD method only guarantees
to find a local minimum, for a complex cost
function (because of the high number of classes or
the complexity of the discriminant functions) the
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parameters of the feature extractor only support a
small adjustment, and obtaining a globally opti-
mal set of parameters for the feature extractor
becomes difficult. In order to achieve a proper
adjustment of the feature extractor parameters, in
a previous work (de la Torre et al., 1996b) we
suggest (in addition to the independent training of
the feature extraction module and the classifica-
tion module) the use of a simplified classifier (and
hence simplified discriminant functions) for the
DFE process. This strategy simplifies the cost
function to be minimized, and the feature extrac-
tor obtained in this case approaches the globally
optimal solution better than in the case of using a
complex cost function for the DFE method. After
the discriminative training of the feature extractor,
the classifier can be independently trained by
means of a training procedure based on either
maximum likelihood criterion or a discriminative
criterion.

2.3. DFE for continuous speech recognition

Usually, current CSR systems are designed to
deal with large vocabularies and the recognition is
performed using acoustic units smaller than words,
such as phoneme-like units (PLUs), diphonemes,
context-dependent phonemes, etc. (Lee, 1990; Lee
et al., 1990). In order to deal with a small number
of classes (and hence, simplify the cost function)
for the discriminative training of the feature ex-
tractor each class roughly corresponds to a con-
text-independent phoneme. This does not limit the
application of the feature extractor to a recogni-
tion system based on context-independent PLUs:
since the feature extractor is globally optimized
in order to improve the discrimination among the
different PLUSs, its application could increase the
accuracy of the recognizers even in the case of one
based on context-dependent PLUs.

In order to perform the discriminative training
of the feature extractor, the sentences in the
training data-base must be segmented into pho-
nemes. Thus, for the DFE procedure, every speech
event X, corresponds to a sequence of feature
vectors associated by segmentation to a certain
phonetic class A

The optimal conditions for the DFE procedure
are achieved for an accurate segmentation of the
training data-base. But commonly, an a priori
accurate segmentation is not available for the
training procedures of CSR systems, and algo-
rithms for an automatic segmentation and label-
ling are necessary. In this work, the segmentation
is performed by the Viterbi Beam Search (VBS)
algorithm (Rabiner and Juang, 1993), which
guarantees the optimal segmentation of the sen-
tence, given a recognition system and the phonetic
transcription of the sentence.

The objective of the DFE method is to improve
the accuracy of the recognizer. By using the im-
proved recognizer, a better segmentation could be
obtained. And this better segmentation could lead
to a better solution for the feature extractor, which
could lead again to a better segmentation, etc. This
suggest a segmental procedure to perform the
DFE method (like that depicted in Fig. 2) similar
to the segmental GPD training procedures de-
scribed in (Chou et al., 1992; Juang et al., 1997).
This way, at every segmental iteration, a new
segmentation of the training data-base is obtained
(via the VBS algorithm), the feature extractor is
updated to this segmentation and the recognizer is
updated to the obtained feature extractor. Several
comments must be considered with respect to the
proposed segmental procedure:

e The probabilistic descent theorem guarantees
the monotonic minimization of the cost function
L for a small enough value of the learning factor
n (see Eq. (1)) during the DFE iterations. But the
convergence of the segmental procedure is not
guaranteed since a new segmentation could in-
crease the value of the cost function. This fact
could make difficult the selection of a conver-
gence criterion for this segmental procedure. In
the experiments, we have observed that the cost
function is roughly minimized with the segmental
iterations. This point is discussed in Section 4.2.1.
e Because of the use of the phonetic transcription
to perform the segmentation, in the case of an
accurate enough recognizer, the obtained seg-
mentation tends to be very accurate. In this case,
the differences among segmentations obtained at
different segmental iterations tends to be irrele-
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Fig. 2. Segmental DFE algorithm for CSR.

vant, and hence the initial segmentation could
be considered accurate enough and all the
DFE training procedure be performed using
the first segmentation.

e Due to the coarticulation phenomenon, the se-
quences of vectors X, associated to each class
A; present an important variability, specially
for the frames at the beginning and at the end
of each sequence. This suggests that operations
such as applying a temporal window to each se-
quence of vectors or the substitution of the se-
quence of vectors by the average vector (or
using a temporal window to obtain the average
vector) could be interesting in order to make
easier the discriminative training of the feature
extractor. Some experiments have been per-
formed to clarify this point (see Section 4.2.2).

3. Discriminative feature weighting in HMM-based
speech recognizers

All the considerations about the DFE formal-
ism discussed in Section 2 can be directly applied
to DFW. This is evident when the components are
weighted by means of a diagonal transformation,
since in this case DFW is a particular case of DFE.
If the components are weighted by means of the

PPW exponents, there are also class-independent
parameters that are discriminatively trained in
order to weight the contribution of the compo-
nents and therefore the considerations in the last
section can also be applied.

3.1. DFW for recognizers based on an Euclidean
distance measure

Some of the speech recognition systems are
based on an Euclidean distance measure. That is
the case of DHMM systems (Rabiner and Juang,
1993) or Multiple Vector Quantization HMM
(MVQHMM) systems (Segura et al., 1994). For
those recognizers, the acoustic evaluation is per-
formed by Vector Quantization (VQ): each feature
vector is substituted by the discrete symbol veri-
fying that the prototype vector associated to this
symbol is the nearest one to the feature vector
using the Euclidean distance measure.

The application of transformations to the fea-
ture space takes a special importance for the rec-
ognizers based on an Euclidean distance measure.
For those recognizers, the effect of a linear trans-
formation (described by a matrix) is an expansion
or contraction of certain directions in the feature
space (if the matrix is not diagonal, a rotation
is also applied) which modifies the Euclidean
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distance measure defined for the original repre-
sentation space. As a consequence of it, the effect
of the transformation is to weight the contribution
of the different components of the feature vector to
the acoustic evaluation.

In order to optimize the acoustic evaluation
(and hence to achieve an accurate recognition) the
transformation should enhance those components
carrying more discriminative information. The
relevance of transformations for recognizers based
on an Euclidean distance measure is well known.
For example, for those speech recognizers using
feature vectors based on the cepstral coeflicients,
the performance is very sensible to the applied
liftering window (Juang et al., 1987; Tohkura,
1987; Junqua and Wakita, 1989; de la Torre et al.,
1996b).

The DFE method can be applied to the esti-
mation of a linear transformation of the feature
space, as proposed in (Paliwal et al., 1995; de la
Torre et al., 1996a,b). For a N-dimensional feature
space, the transformation is described by an N x N
squared matrix. If the correlation among the dif-
ferent components in the feature vector is small,
the transformation can be restricted to be diagonal
(de la Torre et al., 1996b), and then, the effect of
the transformation is a simple weighting of the
contribution of each component to the Euclidean
distance measure (and this approach derives to a
DFW). Usually, the correlation among the com-
ponents in the feature vectors is small (for exam-
ple, for those representations based on cepstral
coefficients) and the use of a diagonal transfor-
mation can be considered.

3.1.1. Single Gaussian DFW for the estimation of
transformations

For those recognizers based on an Euclidean
distance measure, we apply the discriminative
training formalism to the estimation of a linear
diagonal transformation of the representation
space. This transformation is described by an
N x N diagonal matrix V, where N is the size of
the feature vectors. The parameters to be dis-
criminatively trained are the elements in the main
diagonal, v,, (1 <p<N).

In order to simplify the discriminant functions
(according to the discussion in Section 2.2) each

phoneme class 4; is modeled by a single spherical
Gaussian probability density function (pdf),

. 1 L||%— 5
p(x|ll):(2no.2)N/zeXp<_20'2 s (63)

1Ji Ji

iyl (6b)
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where ¥ = Vx is a transformed vector, || &, — 7,|°
is the squared Euclidean distance measure between
X;; and y;, X;; (j=1,...,J;) are the transformed
training vectors belonging to the class 4;, and y,
and o? are, respectively, the mean and the average
variance of the vectors belonging to the class /;.
During all the discriminative training procedure,
an averaged variance is utilized instead of a co-
variance matrix in order to force the Gaussians
to be spherical and to perform the discriminative
training based on an Euclidean distance measure
(instead of a Mahalanobis one).

According to this model, for a given input se-
quence of vectors X,, = xy, ..., xr belonging to the
class Axm, the discriminant functlons can be de-
fined as
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where x,(p) and y;(p) are, respectively, the pth
component of the vectors x, and y,. From the
definition of the discriminant functions the partials
0g;/0v,, can be obtained,

o _L_ Z vpole(p) = %(P))- (8)

Finally, from the last equation and using Egs.
(5a)—(5d) the partials 0L/0v,, are derived, and the
re-estimation formula (Eq. (1)) can be applied,
where the parameters ¢, to be re-estimated are the
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elements v,, of the transformation matrix V. This
way, using a single spherical Gaussian pdf to
represent each class /;, the discriminative training
formalism provides a new representation of the
speech frames, for which the Euclidean distance
between vectors belonging to different classes is
maximized, and this makes the recognition process
easier. This discriminative procedure will be re-
ferred as Single Gaussian Discriminative Weight-
ing by Transformation (SGDWT).

3.1.2. Applying temporal windows to the single
Gaussian DWT

The sequences of vectors X, associated by the
automatic segmentation algorithm to a certain
class 4; present an important variability at the
beginning and at the end due to the coarticulation
phenomenon. Also, the determination of the exact
limit between two consecutive phonemes becomes
difficult to the segmentation procedure due to the
continuity of the speech. In order to minimize the
effect of the continuity and the coarticulation,
during the discriminative training of the transfor-
mation V' a temporal window can be applied to
the sequence of vectors in the discriminant func-
tions,
gi(Xmali) == 7%[

J 5
— 575 ) W(TH)lx: =yl )
2Tq? ; /

log(2na?)

where W (T,t) is a temporal window with length T
that reduces the weight for those vectors near the
limits of the sequence and enhances those vectors
near the center of the sequence.

3.2. DFW for recognizers based on a mixture of
Gaussians

During the last years, the use of recognizers
based on mixtures of Gaussians has been widely
extended, since these recognizers provide signifi-
cantly better performance than those based on
a discrete VQ (Young et al., 1997; Rabiner and
Juang, 1993; Rubio et al., 1997). In a discrete VQ-
based recognizer (like a DHMM one) each input
vector is substituted by the discrete symbol veri-

fying that the associated prototype vector is the
nearest one to the input vector, using an Euclidean
distance measure. In contrast to it, for a mixture-
of-Gaussians based recognizer (like a SCHMM
or a Continuous-HMM recognizer (Huang and
Jack, 1989, 1990; Rabiner and Juang, 1993)), the
acoustic evaluation is performed making use of a
set of Gaussian pdfs. In this case, the probability
of the vector x being generated by each Gaussian
pdf, p(x|Gy), is evaluated, and this set of proba-
bilities is utilized to perform the recognition pro-
cess.

3.2.1. Invariance of the mixture-of-Gaussians based
recognizers to transformations of the feature space

As discussed previously, a recognizer for which
the acoustic evaluation is based on an Euclidean
distance measure can be optimized by the appli-
cation of a transformation of the feature space. If
the transformation enhances those components in
the feature vector carrying more discriminative
information, the performance of the recognizer
can be improved.

However, the situation is very different for those
recognizers based on a mixture of Gaussians. Let
Gy be a Gaussian pdf and y, and X, respectively,
the mean vector and the covariance matrix de-
scribing Gy. The probability of an input vector x
being generated by the Gaussian pdf G, is

1
(2m)" /%]
X exp ( — % (x — yk)T2/;1 (x — yk)>,

(10)

p(x|Gy) =

where N is the size of the feature vectors, |X;] is the
determinant of the covariance matrix and X' is
the inverse matrix of X;. If a linear transformation
V' is applied to the feature space, the input vector,
the mean vector and the covariance matrix are
transformed as follows:

%= Vx, (11a)
Vi = Vi, (11b)

=Vt (11c)
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and therefore, the probability p(x|Gy) is trans-
formed as follows:

1
(2m)"2\/|Z4]
X exp < - % (x—y) 2 (% —j’k)>
1
)"V EVT

cexp (= l(r 3"V

p(E|G) =

< (VDY ' E ] v v (x —yk)]>
1
71(2m)"2 /12
X exp < —%(x _yk)TZI:I(x —.Vk)>

~ Pl Go) (12)

As can be observed, the effect of applying a
transformation V to the feature space is simply the
introduction of a scale factor 1/|V| which does not
depend on the Gaussian (only on the transforma-
tion V). So, as the scale factor is the same for all
the Gaussian pdfs, the probabilities P(Gy|x) of
each Gaussian generating the input vector (and
therefore the performance of the speech recog-
nizer) remain invariant to the application of
transformations of the feature space.

3.2.2. Partial probability weighting (PPW)

Due to the invariance of the acoustic evaluation
to the application of feature space transforma-
tions, the SGDWT formalism is not applicable to
improve those recognizers based on mixtures of
Gaussians.

The mechanism involved in the optimization of
an Euclidean-distance-measure based recognizer is
the enhancement, by the application of a SGDWT
transformation, of those components most rele-
vant for the acoustic discrimination. Similarly, for
those mixture-of-Gaussians based recognizers
using diagonal covariance matrices (widely ex-
tended in the literature and practical implementa-

tions (Young et al., 1997, Moreno and Eberman,
1997; Rubio et al., 1997)) the probability of a
vector being generated by each Gaussian of the
mixture p(x|G;) can be expressed as a product of
partial probabilities, each one corresponding to
each component, and, in this case, some compo-
nents of the feature vector can be enhanced by the
application of exponential weights w, to the partial
probabilities,

X exp (—7()(("2;%{;)(")) )] . (13)

where x(n) are the components of the input vector,
¥ (n) are the components of the mean vector of the
Gaussian pdf G; and 7 (n) are the elements in the
main diagonal of the diagonal covariance matrix
2,

_Jo if p#4q,
Zk(p7q)_{0',%(p) if p=gq. (14)

This way of weighting the contribution of the
different components to the acoustic evaluation,
that we have named Partial Probability Weighting
(PPW), have a precedent in the codebook expo-
nents considered in (Young et al., 1997).

The discriminative training of the PPW expo-
nents that we propose is based on discriminant
functions derived from Eq. (13). In a mixture-
of-Gaussians HMM based recognizer, each state s
of a certain HMM is modeled as a mixture of
Gaussians,

p(xls) = p(x| Gi)P(Gyls)
= Zp(x| Gy )bi(s). (15)

In order to reduce the complexity of the cost
function, during the discriminative training we are
using a HMM-based classifier that models every
phoneme class 4; as a single state HMM and then
the modified probability of an input vector x given
the class 4; can be written as

Plx|4) =D plx| GO)P(Ge| ), (16)
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and if the covariance matrices 2, of the Gaussian
pdfs are diagonal, the functions p(x|G;) can be
written as in the equation (13) and a discriminant
function can be derived,

&i(Xn, i) = logp(Xa|2:)

= %ZIOgﬁ(xtMi)
— _Zlog [Zp x| Gr)P(Gy| 4)
= %Zlog ZP(GI{M’)

@m) —p(m)*\ ]
e (-] |
(17)

The formulation of the PPW procedure can be
easily extended to a classifier (for the discrimina-
tive training) representing each phoneme class as
an HMM with more than one state. However, it
would increase the complexity of the cost function
to be minimized and also the coarticulation effects
should be considered and could make it not
recommendable. Moreover, in order to avoid
problems derived from the coarticulation and
continuity effects, some solutions could be ex-
plored, like applying temporal windows to the
input sequence of vectors (similarly as proposed
in Section 3.1.2).

4. Recognition experiments

We have performed recognition experiments in
order to evaluate the effect of the application of
DFW formalism to CSR systems based on both,
an Euclidean distance measure and mixture of
Gaussian pdfs. The analysis for both categories of
recognizers is based on the recognition experi-
ments using DHMM and SCHMM recognizers,
respectively.

4.1. Experimental conditions
For these experiments we have used the Spanish

databases EUROMI1 (Llisterri et al., 1993) for
training and MINIGEO (Casacuberta et al., 1991;

Diaz-Verdejo et al., 1998) for recognition. A ver-
sion of these databases decimated to 8 kHz has
been utilized. The front-end module includes
pre-emphasis and segmentation into frames. Each
frame is then represented by a vector that contains
an energy coefficient, a cepstral vector containing
14 Mel Frequency Cepstral Coefficients (MFCC)
(Davis and Mermelstein, 1980; Young et al., 1997),
and the delta parameters (or first-order regres-
sion coefficients) and delta—delta parameters (or
second-order regression coefficients) associated to
these coefficients (Furui, 1986), which amounts to
45 components. The MFCC coefficients are ob-
tained using a filter bank with 24 Mel scaled tri-
angular filters. 24 context-independent PLUs are
considered in order to represent the Spanish pho-
nemes. Each PLU is modeled as a three states
HMM with left-to-right topology and the silence is
modeled as a one state HMM. Three DHMM-
based recognition systems have been implemented
using VQ codebooks with 128, 256 and 512 cent-
roids. The SCHMM-based recognizers were im-
plemented using mixtures of 128, 256 and 512
Gaussian pdfs. Both categories of recognizers have
been trained with the maximum likelihood crite-
rion (Rabiner and Juang, 1993).

Two different speaker independent recognition
tasks have been prepared. The first one, labelled as
MGEQO, consists in the recognition of continuous
speech with 203 words in the vocabulary. The
perplexity estimated for this task is 5.9 (using a
bigrammar). The second task, labelled MGEO-
PHON, consists in the recognition of the phoneme-
like units. For this task, a phoneme bigrammar
was estimated from the training database. In
this case, the number of elements in the vocabu-
lary is 25 (24 PLUs plus silence) and a perplexity
of 9.6 was estimated using the phoneme bigram-
mar.

4.2. DFW for DHM M-based recognition systems

According to previous discussions, in order to
estimate the DWT transformation to be applied to
DHMM-based recognizers, the cost function is
based on a single Gaussian classifier, which models
every class as a single spherical Gaussian pdf. In
order to prepare the DFE classifier, the training
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Fig. 3. Evolution of the training error-rate and the cost function during the estimation of the SGDWT transformation for the 256
centroids DHMM recognizer: (a) evolution of the cost function for the first segmental iteration; (b) evolution of the training error rate

and the cost function with the segmental iterations.

database is automatically segmented into pho-
nemes and labelled via the Viterbi algorithm using
the recognizer and the phonetic transcription of
each training sentence. Using the segments cor-
responding to each phoneme class, the single
Gaussian pdf representing this class in the DFE
classifier can be estimated. From the DFE classi-
fier and the segments, the cost function can be
obtained and the transformation of the feature
space can be iteratively re-estimated.

4.2.1. Estimation of the DWT transformation

The estimation of the transformation is per-
formed by a segmental algorithm like that repre-
sented in Fig. 2. At every segmental iteration, the
recognizer is updated to the new transformation
and a new segmentation of the training database is
obtained. At every DFE iteration the transfor-
mation is iteratively re-estimated according to the
DFE formalism. Usually, in order to homogenize
the relative weight of the different components
in the MFCC-based representations, a Statistically
Weighted (SW) transformation is applied (Tohk-
ura, 1987; Young et al., 1997). The SW transfor-
mation normalizes each component by multiplying
it by the inverse of its standard deviation. This
transformation has been utilized as reference
transformation for the experiments and as initial-
ization for the discriminative training procedure.

Fig. 3 shows the evolution of the cost function
and the training error rate during the discrimina-
tive training of the DWT transformation. These
plots correspond to the estimation of the trans-
formation for the 256 centroids DHMM recog-
nizer. Similar plots are obtained for the 128 and
the 512 centroids recognizers. For a small enough
value of the learning factor #, a monotonic mini-
mization of the cost function is observed during
the DFE iterations. Since the segmentation is not a
continuous process, the monotonic minimization
of the cost function is not guaranteed for the
segmental iterations, and sometimes a small in-
crement of the cost function is observed when a
new segmentation is performed. However, in Fig.
3(b), a fast minimization of the cost function is
obtained for the first segmental iterations, and
beyond the iteration number 10 only small modi-
fications on both, the training error rate and the
cost function, are observed.

The evolution of the transformations with the
segmental iterations is shown in Fig. 4. The figure
represents the standard deviation of the trans-
formed components, which represents the relative
contribution of each component to the Euclidean
distance measure after the transformation is ap-
plied. The reference transformation used as ini-
tialization (the SW transformation) consists in a
normalization of all the components in the feature
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Fig. 4. Evolution of the transformation with the segmental it-
erations for the 256 centroids DHMM recognizer. We have
plotted the standard deviation of the transformed components.

vector that makes all the standard deviations equal
to 1. The first coefficient is the energy parameter.
The next 14 are the MFCC coefficients. The next
15 are the corresponding delta parameters and the
last 15 are the delta—delta parameters. In this fig-
ure, the fast evolution of the transformation in the
first segmental iterations can be observed. The
evolution of the transformation beyond the seg-
mental iteration number 10 is insignificant.

4.2.2. Recognition experiments with DHMM rec-
ognizers

Recognition experiments have been performed
applying the transformation obtained at every
segmental iteration. Fig. 5 shows the recognition
performance as a function of the segmental itera-
tion, using the 256 centroids DHMM recognizer.
The recognition results corresponds to the MGEO
task. In this figure, a significant reduction of the
recognition word error rate is observed. From an
error of 8.2% (using the initial SW transformation)
the error rate is reduced to 6.0%. A fast reduction
is observed during the first segmental iterations
and from the iteration number 7 onwards, only
small variations are observed in the error rate.

The effect of applying the SGDWT transfor-
mation is not only the reduction of the error rate.
The average number of active nodes in the recog-
nition tree is also reduced for a given pruning
threshold, because of the increment of the accu-

racy in the recognizer. This reduces the requested
memory and the recognition time. In Fig. 5, the
evolution of the average number of active nodes
and the recognition time with the segmental iter-
ation are also shown. The recognition time is re-
lated to the duration of the sentence. Again, the
reduction of the average number of active nodes
and the recognition time is obtained for the first
segmental iterations and only a small reduction is
observed from the iteration number 10 onwards.

In order to reduce the influence of the conti-
nuity of the speech and the coarticulation effects
over the discriminative estimation of the trans-
formation, according to the discussion in Section
3.1.2, we have applied a temporal window to the
sequence of vectors associated to each phoneme
during the DFE training of the transformation.
For a sequence with T frames, we have applied a
temporal window W(T,t) with 1<¢< T, with a
half sine wave shape, described by

W(T,1) = wsin (nTil)’ (18)

where w is a normalization constant,
T

7ZT sin (=%
=1 T+1 )"

This temporal window enhances the contribution
of the central part of the phonemes and reduces
the contribution of the frames near the limits and,
therefore, focuses the discriminative training of the
transformation on the stationary part of the pho-
nemes.

The transformations obtained when the tem-
poral window is applied has been labeled
SGDWT-W. These transformations were obtained
by a segmental procedure similar to that utilized
for the SGDWT transformations. In this case, the
evolution of the cost function and the training
error rate, and the evolution of the transformation
are similar to those depicted in Figs. 3 and 4. Fig. 6
compares the transformations obtained with the
DFE formalism with and without applying the
temporal window during the discriminative train-
ing of the transformation. In this figure, the stan-
dard deviations of the transformed components
are represented for the SW (reference), the

w

(19)



280

A. de la Torre et al. | Speech Communication 38 (2002) 267-286

1550

< 85
Q
N
L 75
s
5 7 X
S 65 N
5 6 \. ma =
8 e Ny v w
® 55
0 5 10 15 20 25
(a) segmental iteration
0.8
0.75

recognition time

07 \\-\'
0.65 N
06
0 5
(c)

10

(%]
B 1500
c 14 \'
o 50 -\-
N
< 1350
g 1300
g 1250 -y e
< 1200
0 5 10 15 20 25
(b) segmental iteration
o
-~ I = e B
15 20 25

segmental iteration
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Fig. 6. Standard deviation of the transformed components for
the transformations SW, SGDWT and SGDWT-W (256 cent-
roids DHMM recognition system, segmental iteration number
25).

SGDWT and the SGDWT-W transformations.
These transformations corresponds to the 256
centroids DHMM recognizer and the segmental
iteration number 25.

The recognition performance for the 128, 256
and 512 centroids DHMM recognizers for both
tasks (MGEO and MGEO-PHON) is represented
in Figs. 7 and 8. In these figures, the effect of ap-
plying the different transformations of the repre-
sentation space (SW, SGDWT and SGDWT-W)
can be evaluated. The results presented in these

plots are the average for the last 10 segmental it-
erations. The application of the discriminatively
trained transformations reduces significantly the
error rate for both tasks (Fig. 7). The application
of temporal windows for the estimation of the
SGDWT-W transformation improves the perfor-
mance of the recognizer with respect to the
SGDWT transformation. For the MGEO task, the
application of the SGDWT transformation re-
duces the error rate by 22% and the SGDWT-W
transformation by 26%. The improvement of
the recognition performance is also important for
the phoneme recognition task. Fig. 8 represents the
average number of active nodes in the recognition
tree and the average recognition time (related to the
duration of the sentence) for the MGEO task when
the different transformations are applied. In these
plots, an important reduction of the computational
requirements can also be observed. The application
of the discriminatively trained transformations re-
duces the recognition time by 15% and the average
number of active nodes by 20%. Since no pruning
threshold is applied for the MGEO-PHON task the
number of active nodes and the recognition time
are not affected by the application of transforma-
tions in this case.

The experimental results show how the recog-
nition performance is affected by the application of
transformations of the feature space in those rec-
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Fig. 8. Average number of active nodes and recognition time
SGDWT and SGDWT-W transformations are applied.

ognizers for which the acoustic evaluation is based
on the Euclidean distance measure, like the
DHMM ones. For this kind of recognizers, the
performance can be substantially improved by
the application of transformations trained with a
discriminative criterion, like those based on the
DFW formalism.

4.3. DFW for SCHMM based recognition systems
Those recognizers for which the acoustic eval-

uation is based on a mixture of multivariated
Gaussian pdfs, like the Continuous-HMM or the

Task: MGEO
0.9 T T

SW—El—I

0.85 |

0.8 |

0.7

0.65 |

recognition time

0.6 |

0.55 - _

128 256 512
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for the task MGEO using the DHMM recognizers when the SW,

SCHMM recognizers, are not affected by the ap-
plication of a transformation of the feature space.
For this reason, for this kind of recognizers, the
element estimated by the DFW method is a set of
exponential weights that are applied to the partial
probabilities associated to each component of the
feature vector. This method for tuning the relative
contribution of the different components to the
acoustic evaluation is named PPW.

4.3.1. Estimation of the PPW weights
The PPW procedure allows the enhancement of
some components in the feature vector for the
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acoustic evaluation. However, the directions to be
enhanced depend on the basis vectors utilized to
represent the feature vectors, and a non-diagonal
transformation of the feature space (including
a rotation) could modify the effect of the PPW
procedure. For this reason, an adequate transfor-
mation (including a rotation of the feature space)
applied before the estimation and the application
of the PPW weights could increase the improve-
ment derived from the discriminative weighting of
components. The transformation can be estimated
with the Linear Discriminant Analysis (LDA)
formalism (Fukunaga, 1990; Milner, 1997; Kumar
and Andreou, 1998; Jin and Waibel, 2000), which
selects the basis vectors with a discriminative cri-
terion and allows the arrangement of the new
components according to their discriminative ca-
pability.

In the recognition experiments for SCHMM
recognizers, we have obtained the PPW weights
without and with applying a LDA transformation
to the feature space before the estimation of the
exponential weights. The classifier utilized for the
discriminative training of the PPW weights repre-
sented each class as a single state HMM according
to Eq. (18). The single state model was defined
from the center state of the corresponding model
in the SCHMM recognition system (Milner, 1997)
in order to reduce the complexity of the cost
function, and a temporal window W (T, ¢) has been
applied for the definition of the discriminant

PPW weight
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obtained for the 256 Gaussians SCHMM recognizer.

functions in order to reduce the coarticula-
tion effect. All the weights were set to 1 as initial-
ization.

Fig. 9 shows the set of PPW weights obtained
by applying the DFW formalism. The reference
weights, used as initialization, are also represented.
When the LDA transformation is applied, the new
components are rearranged according to their
discriminative capability (taking into account the
eigenvalues associated to the discrimination ma-
trix) (Jin and Waibel, 2000). The transformed
components more relevant for the discrimination
are those with lower indexes in the new feature
vector. For this reason, when LDA is applied, the
PPW weights associated to higher index compo-
nents tends to be smaller than those for lower
indexes, as can be observed in Fig. 9.

4.3.2. Recognition experiments with SCHMM rec-
ognizers

The recognition results using the SCHMM
recognizers for both tasks (MGEO and MGEO-
PHON) are presented in Figs. 10 and 11. The plots
in Fig. 10 represent the error rate. As can be ob-
served, the application of the PPW weights im-
proves the accuracy of the recognizers with respect
to the reference, specially when LDA and DFW
are combined. The combination of LDA and
DFW has reduced the error rate by 13% with re-
spect to the baseline results for the MGEO task. In
contrast to the DHMM recognizers, the SCHMM
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and PPW weights are applied without and with LDA.

recognition systems are less sensible to the appli-
cation of the weights. This can be justified taking
into account that in the DHMM systems the fea-
ture vector is substituted by the symbol associated
to the nearest centroid, and a modification of
the Euclidean distance measure could drastically
modify the acoustic observation, since a different
centroid could be the nearest one when the new
distance measure is utilized. In the case of the
SCHMM recognizers, the acoustic evaluation is
based on the probabilities of the different Gaussian
pdfs given the input vector, and a modification of

the PPW weights produces a smooth modification
of the acoustic observation, since the effect is a
modification of the relative probability of each
Gaussian.

The application of LDA itself does not provide
significant improvements in the recognition per-
formance. However, when LDA and DFW are
combined, significant improvements are obtained
in the recognition performance for both tasks. The
improvements of LDA-PPW with respect to PPW
are obtained because the LDA transformation
provides a set of basis vectors more adequate
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than the original one for the application of the
DFW.

The increment of computational load derived
from the application of the PPW weights is irrel-
evant compared to the recognition time and is
compensated by the reduction in the recognition
time derived from the improvement in the dis-
criminative capability. Fig. 11 represents the av-
erage number of active nodes and the average
recognition time (related to the duration of the
sentence) for the task MGEO when the different
PPW weights are applied. Only a small reduction
in the number of nodes is appreciated for both sets
of PPW weights and a small reduction in the rec-
ognition time is observed in the case of LDA-PPW
weights.

The above recognition results show that the
DFW formalism can be successfully applied to
improve the performance of continuous speech
recognizers in which the acoustic evaluation is
based on a mixture of Gaussian pdfs. In this case,
an improvement of the discriminative capability of
the recognition system is achieved, which leads to
an improvement in the recognition performance
and a reduction in the computational requirements
(number of active nodes and recognition time)
more significant when DFW is combined with
LDA.

5. Conclusions

The importance of the feature extraction block
for all the pattern classification problems and, in
particular, for automatic speech recognition is well
known. An important effort has been dedicated to
the improvement of the feature extraction block
for speech recognizers (Junqua and Wakita, 1989;
Tohkura, 1987; Juang et al., 1987; Peinado et al.,
1990; Furui, 1986). The DFE method provides a
formalism for the discriminative optimization of
the feature extractor (Biem and Katagiri, 1994,
1997; Paliwal et al., 1995). One of the applications
derived from the DFE method is the DFW (Biem
and Katagiri, 1993, 1997; de la Torre et al.,
1996a,b).

This work has been devoted to the application
of the DFW formalism to improve the perfor-

mance of CSR systems based on hidden Markov
modeling. In this work we try to optimize the
recognizers by tuning the contribution of the dif-
ferent components to the acoustic evaluation. This
tuning is performed with a discriminative criterion.

Two different categories of recognizers are
considered in this work: those for which the
acoustic evaluation is based on an Euclidean dis-
tance measure (like the DHMM recognizers) and
those based on a mixture of Gaussian pdfs (like the
continuous and the semi-continuous HMM rec-
ognizers). For the systems in the first category,
the discriminative training is applied to estimate a
transformation of the feature space. For those
recognizers in the second category, the acoustic
evaluation is not affected by the application of a
transformation of the feature space, as discussed in
Section 3.2.1. In this case, we have applied expo-
nential weights to the partial probabilities associ-
ated to each component, and so, this method is
named Partial Probability Weighting. In both
cases, the objective of the DFW method is a fine
tuning of the contribution of the different com-
ponents to the acoustic evaluation.

Those systems based on an Euclidean distance
measure are very sensible to the application of
feature space transformations and important im-
provements can be achieved by the application of
transformations properly estimated. The recog-
nizers based on mixtures of Gaussian pdfs are less
sensible to the application of the PPW weights.
The reason of it is the different nature of the
acoustic evaluation in both cases.

The application of the DFW formalism to the
CSR systems has improved the performance for
both categories of recognizers. In the case of the
DHMM systems, the application of the DWT
transformations has reduced significantly the rec-
ognition error rate. Reductions in the average
number of active nodes and the recognition time
have also been observed. The application of tem-
poral windows for the estimation of the transfor-
mation leads to additional improvements in the
performance of the DHMM recognizers.

In the case of SCHMM recognizers the im-
provements are significant, although not so im-
portant as in the discrete case. We have combined
the DFW with LDA (Fukunaga, 1990). The ap-
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plication of a LDA transformation before the es-
timation of the PPW exponential weights selects
the basis vectors (and then the proper directions
that will be enhanced by the PPW weights) with a
discriminative criterion. This way, the combina-
tion of LDA and DFW provides more significant
improvements in the discriminative capability of
the recognition systems which leads to a better
recognition performance for mixture of Gaussians
HMM-based continuous speech recognizers.

The application of both, transformations or
PPW weights, does not implies an increment in the
recognition time. Moreover, the application of the
transformations or the PPW weights properly es-
timated with the DFW formalism provides a
reduction in the recognition time due to the im-
provement of the discriminative capability of the
feature extractor.
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