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Abstract

This paper deals with empirical multiresolution linear models intended for image processing. Such models contain
information about gray-level composition of regions in the image. First, a general method for building these models from
samples of selected images is described. Then, a measure of their quality, based on the Jensen-Shannon divergence, is
introduced. This divergence is also uged as a distance measure for classifying images. Applications in non-linear image
filtering are provided, giving better result than classical median filtering. © 1997 Published by Elsevier Science B.V.

Keywords: Gray-level image; Multirésolution histogram relationships; Probabilistic linear empirical models; Model-
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1. Introduction

In the frame of Image Processing, a theoretical
study of interrelations between gray levels of an
image at different resolutions was|developed by the
authors [7]. As a result, certain image character-
istics can be collected into a multiresolution linear
model, which is just a matrix whose elements are
probabilities of finding a particular gray level in

!This work was partially supported by grant TIC91-646 from
the DGCYT of the Spanish Government.'
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a region of a certain size. Each model identifies an
image class with a common set of characteristics,
and so it can be used as prior information in order
to either estimate histograms across resolutions or
develope a model-based filter. In this line, this
paper analyzes the empirical models, as well as
their quality and filtering applications.

We deal [10] with digital gray-level images,
mainly with gray-level histograms at different res-
olutions. Discrete gray scales (binary at the finest
resolution) and additivity between gray levels are
assumed. The aim is to relate gray levels and histo-
grams at a finer resolution to gray levels and histo-
grams at a coarser one.
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Fig. I. An image observed at two resolutions: (a) m =0,
k=1{0,1} 1 pixel =1 dot; (b) m" =2, k' =1{0,1,2,3,4} and
1 region = four pixels.

1.1. Interdependence of histograms at different
resolutions

Let us consider an image observed at two differ-
ent resolutions m < m' in such a way that every
m’-region is a set of adjacent m-pixels (see Fig. 1).
Because of the assumed additivity, k" =} k for all
m-pixels included. The image histograms at both
resolutions are connected by the linear relationship

R,

Pk = Z gm, k\m', K Yppr, keK,, — € N.
kK'ekK,: Rm
(1)

Coeflicients g(m, k|m’, k') stand for the average
proportion of (m, k)-pixels inside (m', k')-regions
and constitute the so-called “composition matrix”
Q,..m» With an opposite sense to the aura matrix
defined by Picard [8], both in the general context
of the pixel-neighbourhood relationships. Columns
of Q,,,» are the m-histograms averaged for all k’
regions.

For our particular interest, each matrix
O = {q(m, k|m' k')} (m and m' fixed), will be
considered an image model and defines the concept
of image class: that set of images with an internal
structure obeying the coefficients g(m, k |m’, k') and
therefore the relationship (1).

Not any arbitrary matrix is a composition
matrix. The necessary and sufficient condition for
being a composition matrix [6] is that every col-
umn Q,, .., be a linear convex combination of
possible, real m-histogram of (m’, k')-regions.

An image model Q,, ,, can be obtained either
theoretically by formulating hypotheses about the

internal structure of the regions [ 7], or empirically,
by counting regions and pixels from a preselected
training set of images and by averaging their partial
m-histograms for each k. The latter is the subject of
this paper.

2. Empirical models

Instead of making prior assumptions about the
structure of an image class, Q,, . can be directly
computed from a selected sample. Thus, the model
is empirically determined, obtaining each matrix
column, @, ..x» by averaging the m-histograms of
all the (m', k")-regions in the sample. Let N,, . be
the number of (m, k')-regions in the sample and
2. the m-histogram of the ith (m', k')-region
(i=1,....Nuy)

1 Nu &

25,
Nm'.k' ,';1 (2)

Qm.m’.k' =

By doing so for each k', a composition matrix
O, 1s obtained. The sample and the images to
which the model is applied do not need an acquisi-
tion system with specific features, but the capture of
these images must be done always under the same
illumination conditions. That is to say, for a specific
filter application, the samples for obtaining the
empirical model should be processed by the same
equipment and under the same conditions as in
images to be filtered. These models are to be used in
filtering applications, and also in image classifica-
tion. It is therefore necessary to study its goodness
or quality.

For each k', the m-histograms computed from all
(m’, k')-regions are averaged; thus, in order to know
the quality of the obtained model, both the sim-
ilarity (homogeneity) between the averaged m-his-
tograms and the number of them (sample size) must
be considered.

2.1. Sample homogeneity: the Jensen—Shannon
divergence

A badly selected sample of images could lead
to a model with very different structures, and
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therefore, with a loss of validity for reaching specific
objectives in image processing. In order to assess
the degree to which the mode] corresponds to
a well-defined structure, the Jensen—Shannon (JS)
divergence measure between probability distribu-
tions has been used [5] (other|measures are in
[3, 4]). This measure shows the heterogeneity in the
set of gray-level histograms. The' (unweighted) JS-
divergence is

JS(919929933-“:'@N)
1 X 1Y
—H(=Y 2)-= Y H®
H<N igl l> Nigl (gh)’

where H(?)= — Y p.logp: is the Shannon en-
tropy. Applied to model columns,

IS@W, 22, ... PN

2.2. An approach for classifying images

When an empirical model is constructed, the
most common case is to find differences between
the m-histograms of the (m', k’)-regions for each k’,
and this can lead to a very mixed model. That is
why a less restrictive class definition is proposed: an
image class is now defined as that containing all
images in which the m-histograms for each k' are
similar, the similarity being evaluated by means of
the Jenssen—Shannon divergence. For the diver-
gence vector, the lower its elements are valued, the
more unified the corresponding model is, thus rep-
resenting a better-defined image class.

On the other side, this JS-divergence may also
be used to compare a single image matrix (QF )
with the model Q,, ,» of a whole class (called proto-
type [2]) in order to verify whether that image
belongs to this class or not. Fig. 2 provides

1 N “k an example of classification of an image. For each
= H(Q@n.m.x) — N i; H(Z ). @) gray level k', the Jenssen—Shannon divergence

There is a JS-divergence measure for each matrix
column; therefore a divergence vector with R,, + 1
elements stands for the image model.

IS(Q wis Om.m.x) for several models Q,, . avail-
able has been plotted. It is clear that for nearly all
gray levels the distance (as given by JS) between
the image and the class prototype to which it
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Fig. 2. Divergence values for the classifi¢ation of an echograph. The gray scale {0, ... ,63} and a region 3 x 3 size has been used.
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Table |
Discriminating indices for the examples of Section 2.2

DI
Image to classify (i) DI(i, RX) DI(i, TX) DI{i, EC)
rx 1 76,16 29,66
tx 3,18 1 2,80
ec 6.41 8,78 1

belongs is much less than the distances to the other
prototypes.

Now, let us introduce the following notation: A4,
RX ... stand for image classes, while ¢, rx ... stand
for single images (¢ € A, rxe Rx, ... ); Q(4), Q(RX)
denote class prototypes (models of classes 4, RX)

and @*(«a), O*(rx) stand for composition matrices ol

single images a, rx ... A discriminating index (DI) in
the classification of an element a e A with respect to
B is defined as the quotient between the following
column-averaged divergences:

Dl(a, By = 227 (@) Q(B) “

IS(0*(a), Q(A))

Some classification examples done have the
values for DI given in Table 1. The DI is higher for
radiographs, confirming that it is the most homo-
geneous class. The used DI, based on the JS-diver-
gence measure, has proved to be better than others
based on different measures (Kullback, etc.).

2.3. Training sample size

For a given resolution pair (m, n'), the size of the
samplc is actually realized by a size vector whose

elements, one for each k'e K,,, are the numbers of

k'-regions in the training sample, which is a visually
sclected set of images.

In the training process the sample size may be
small or even null - that is, for one or more k' levels
therc may be no k’-regions. In this case, the matrix
would have one or more undetermined columns.
This difficulty is overcome by initializing the em-
pirical models with an appropriate theoretical one
having unit weight. The initialization proceeds by
considering the theoretical base model as coming

from a hypothetical sample. This means that the
first-scanned samples arc assumed as i they were
regions corresponding to a theoretical model. Thus,
a theoretical hase model is added to every empirical
one, in order to prevent undetermined columns.
Since one theoretical m-histogram is included in
every column, its influence depends on the sample
size.

The most rcliable procedure to sclect a suitable
base model is a rather empirical one, by adding
different bases to the empirical model with undeter-
mined columns. This lcads to several complete
models which will have the same sample size but
different divergence valucs. The best of the added
bases can then be determined as that of the min-
imum incrcase in the original divergence.

Let us now consider the divergence of the un-
complcted model and the divergence of the com-
plete one. The two values differ because in the
second model onc more m-histogram has been
averaged. The difference is

AD]V(X) = JS(Q:: m. k') - ~IS(Qr11.nl',k')~

where the letter X stands for the theoretical base
added (X =B, H.Y,Z,...) and QO .. is the
matrix column of the complete model.

In the following example, Fig. 3, ADiv(X) is
plotted versus k' for X = B, H, Y, Z. ... . As it can
be seen, a curve corresponding to a certain base
remains clearly below the others: model B is the
best to be added as a base for an echograph model.
This behaviour is general for echographs.

2.4. Examples

Several models with different m and m’ valucs
have becn done. The best way of visualizing them is
by means of a 3-D representation of the matrices
Q. gray levels k at the finer resolution m are
on the X-axis; gray levels at resolution m’ > m are
on the Y-axis. Probabilities (matrix’s elements) arc
on the Z-axis.

Three examples of cmpirical models (for echo-
graphs, radiographs and texts) are shown in Figs
4-6. The gray scale at the finer resolution (m = 6) is
K, = {0, ...,63}. The region at the coarser resolu-
tion m’ is nine pixels in size (for a 3 x 3 observation
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Fig. 3. Determination of a theoretical base model for an echograph one (k = 0, ..., 15 and region size 2 x 2).

window). Below each matrix, the divergence values
and the sample size are represented for each gray
level k. U and W stand for: unweighted and
weighted (with sample size) averaged divergence,
respectively. ‘

3. Filtering applications

In previous works with theoretical models, some
useful applications in histogram estimation and
image processing [10] were developed. Recently,
filters based on empirical mod¢ls have been de-
signed. In these, each time a pixeliis to be processed,
the gray level k' of a region containing it is
observed, and the information given by the col-
umn Q,, .., of the appropriate ¢mpirical model is
used to find the filtered gray level k; of the pixel.
Different ways of using this information are the
following:

(1) k¢is a central value (mean, median, mode) of the
distribution Q,, i
(2) k; is the result of an empirically weighted me-
dian filtering (EWMF). Median filters [1,9]
sort the gray levels k of the pixels contained in
a region and assign the middle value to the pixel
centred in the region. The EWMF puts a weight
to every k given by its probability in the corres-
ponding @, ,.,- column of the empirical model.
(3) One of the previous procedures is performed for
every region containing the pixel, and then
again, a central value of these filtered gray levels
is chosen.
The examples in Fig. 7 show the results of
a noisy-image filtering using the EWMF. The
source image (b) is the original one (a) corrupted by
30% of salt-and-pepper noise. First, the classical
median filtering with region size 3 x 3 is shown in
(c) for comparison. Part (d) is the result of an
EWMEF using a text model with no theoretical base
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Distributions p(63,k/3x3K) for k'=0 to 567 (C0243F33)
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Fig. 4. Representation of the matrix of an cchograph model. The divergence and histogram versus region gray-level are shown below.
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Distributions p(63k/3x3K’) for k=0 to 567 (RXMJSF33)
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Fig. 5. Representation of the matrix of a radiograph model. The divergence and histogram versus region gray level are shown below.
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Fig. 7. Experimental results of filtering a text image: (a) original image; (b) source; (c) classical median filtering region 3 x 3; (d) EWMF
with an uncompleted text model (without 1dase); () EWMF with the same model completed with base H; (f) EWMF with the same model
completed with base B; (g} theoretically Weighted (B) median filtering; (h) classical median filtering region 5 x 5; (i) EWMF with an
uncompleted text model (region 5 x 5).
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(h)

Fig. 7. Continuced.

added, and still having undetermined columns.
When one of these is required, then the lack of
information prevents filtering. The result was much
better than the classical one, although the noise was
not completely removed. If we choose a complete
model, the results are shown in parts (e), with basc
H. and (f), with base B, where Model B is clearly the
best choice: the noise was eliminated from the back-
ground and the next is easily readable. However.
this is not due only to Model B, as demonstrated
in (g). where the filter used only the theoretical
Model B.

It might be thought that a larger region (such as
5 x 5) should remove the noise better in a classical

median filtering, as shown in (h). The impulsive
noise has in fact disappeared, but the text is now
blurred and unreadable. The empirical filtering
again gives a better result (i); even without any base,
the noise is completely removed from the back-
ground and the text is still readable. Empirical
models built from other image classes did not give
any good result, even with a different region size.

EWMF made for source images belonging to
other classes (radiographs and texts) exhibited the
same behavior: the best result was always the one
obtained with an EWMF using an allied model (of
the same class) completed with the theoretical one
that best suit that class.
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4. Conclusions

In this paper the Empirical Multiresolution
Models have been presented as a tool in image
processing. A general method for building these
models from samples of selected: images has been
described. The Jensen—Shannon divergence and the
sample size are used as parameters for measuring
the quality of a model. The Jensen—Shannon diver-
gence has also been used as a distance measure to
classify images. Finally, applications in image filter-
ing have been outlined.

Notation and definition

dot elementary component  of
a digital gray-level image. It
can only be black or white

pixel a rectangular maximally con-
vex set of dots

image array of equal-sized, equal-
shaped pixels

m=0,1,2, ... resolution index (from fine to
coarse)

R, size in dots of the pixel at the
resolution m (called m-pixel)

K,.={0,1, ..., R,} gray scale for each resolution

kekK,, gray level of a pixel, given by
the number of black dots in-
cluded

P = {Dm.i} gray-level m-histogram

Qo image model matrix

Om,m. i each k’-column of the above

matrix (K =0,1, ...)

JS the Jensen—Shannon divergence

DI discriminating index

EWMF empirically weighted median
filter
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