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Speech/Non-Speech Discrimination Based on
Contextual Information Integrated Bispectrum LRT
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Abstract—This letter shows an effective statistical voice activity
detection algorithm based on the integrated bispectrum, which is
defined as a cross spectrum between the signal and its square and
inherits the ability of higher order statistics to detect signals in
noise with many other additional advantages: 1) its computation
as a cross spectrum leads to significant computational savings, and
2) the variance of the estimator is of the same order as that of the
power spectrum estimator. The decision rule is formulated in terms
of an average likelihood ratio test (LRT) involving successive in-
tegrated bispectrum speech features. With these and other inno-
vations, the proposed method reports significant improvements in
speech/pause discrimination as well as in speech recognition over
standardized techniques such as ITU-T G.729, ETSI AMR, and
AFE VADs, and over recently published VADs.

Index Terms—Contextual likelihood ratio test, higher order sta-
tistics, robust speech recognition, voice activity detection.

I. INTRODUCTION

ETECTING the presence of speech in a noisy signal is a

problem affecting numerous applications, including robust
speech recognition [1], [2], discontinuous transmission voice
communications [3], [4], real-time speech transmission on the
Internet [5], or combined noise reduction and echo cancella-
tion schemes in the context of telephony [6]. These systems
often benefit from voice activity detectors (VADs), which are
frequently used in such application scenarios for different pur-
poses. The classification task is not as trivial as it appears, and
most of the VAD algorithms often fail in high noise condi-
tions. During the last decade, numerous researchers have devel-
oped different strategies for detecting speech in a noisy signal
[7]-[10] and have evaluated the influence of the VAD effective-
ness on the performance of speech processing systems [11]. One
of the most important disadvantages of these approaches is that
no a priori information about the statistical properties of the sig-
nals is used. Higher order statistics methods rely on an a priori
knowledge of the input processes and have been considered
for VAD since they can distinguish between Gaussian signals
(which has a vanishing bispectrum) from non-Gaussian signals.
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However, the main limitations of bispectrum-based techniques
are that they are computationally expensive [12], and the vari-
ance of the bispectrum estimators is much higher than that of
power spectral estimators for identical data record size. These
problems were addressed by Tugnait [13], [14], who showed
a computationally efficient and reduced variance statistical test
based on the integrated polyspectra for detecting an unknown
random, stationary, non-Gaussian signal in Gaussian noise. This
letter advances in the field and shows an effective VAD based
on a likelihood ratio test (LRT) that is defined on the integrated
bispectrum of the noisy speech. The proposed approach also in-
corporates contextual information to the decision rule, a strategy
first proposed in [2] that has reported significant benefits [15],
particularly in robust speech recognition applications [16], [17].

II. BACKGROUND

The bispectrum of a discrete-time signal z(t) is defined as

Bo(wi,ws) = Y Y Capliyk)e itk ()
1=—o0 k=—o0
where Cs,. (i, k) = E{x*(t)x(t + )z (t + k)} is the third-order
cumulant of the process z(¢). Note that, from the above defini-
tion, the third-order cumulant can be expressed as

. 1 rr 7 (wyitw:
Csm(’hk)zw / /Bm(w1>w2)ej( vitwa k) g dws. (2)

Although the bispectra have all the advantages of cumulants/
polyspectra, their direct use has two serious limitations: /) the
computation of bispectra in the whole triangular region is huge,
and 2) the two-dimensional (2-D) template matching score in
the classification is impractical. To use efficiently bispectra, in-
tegrated bispectrum methods [13], [14] were proposed for dif-
ferent applications [18], [19].

A. Definition

Let z(t) be a zero mean stationary random process. If we
define () = z%(t) — E{x?(t)}, the cross correlation between
y(t) and z(t) is defined to be

rg®)=E{jOzt+h} =E {2*Qzt+k}=C3.0,k) ()

and its cross spectrum is given by

k=400
Se(w) = > Cs,(0,k)e ¥ 4)
k=—oc0
with L Pd
C3.(0,k) = o / Sy (w) exp {j(wi)} dw. 5)
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If (2) and (5) are compared, we obtain

K ™

1 1

Sy (w) = Py / B, (w,ws)dws = Py / B, (w1, w)dw;. (6)

—T —T

Thus, the integrated bispectrum is defined as a cross spectrum

between the signal and its square, and therefore, it is a function

of a single frequency variable. It is easy to see that the bispec-

trum of a Gaussian process is identically zero, and its integrated

bispectrum is as well. Hence, its computation as a cross spec-

trum leads to significant computational savings. However, more

important is that the variance of the estimator is of the same
order as that of the power spectrum estimator [13].

B. Estimation

Let S,.(w) denote a consistent estimator of Sy, (w),
where y(t) = 2%(t) — E{z%(t)}. Given a finite data set
x(1),2(2),...,2z(N), the integrated bispectrum is normally
estimated by dividing the sample sequence into segments or
blocks [20]. Thus, the data set is divided into K g nonoverlap-
ping segments, each of size Ng samples, so that N = KgNp.
Then, the cross periodogram of the kth block of data is given by

= - XO() [r®w)] ™)

k
S = 57

where X *)(w) and Y (*)(w) denote the discrete Fourier trans-
form (DFT) of the kth block. Finally, the estimate is obtained
by averaging K p blocks

Syl Z S (w) ®)

III. INTEGRATED BISPECTRUM LIKELIHOOD RATIO TEST

This section addresses the VAD problem formulated in terms
of a classical binary hypothesis testing framework

Hy : z(t) =n(t)
Hy : x(t) = s(t) + n(t). )

In a two-hypothesis test, the optimal decision rule that mini-
mizes the error probability is the Bayes classifier. Given an ob-
servation vector y to be classified, the problem is reduced to
selecting the class (H, or H7) with the largest posterior proba-
bility P(H;|y). In [17], the LRT, first proposed by Sohn [7] for
VAD, which was defined on the power spectrum, is generalized
and extended to a multiple observation LRT (MO-LRT) when
successive observations ¥1—m., - - - s ¥i—1, Y1, Yit1y - - - s Yi+m Of
the noisy signal are available, where [ is the frame being classi-
fied as speech or non-speech. This test involves evaluating and
comparing to a fixed threshold 7, the LRT of the joint condi-
tional distributions of the observations under Hy and H;

le()’l m-“':yl—l—m)
o Pyi sy Yigm | Hy (ylfmv v 7yl+m|H1)
pyl,m,...,yprm |Hg (ylfwu s 7yl+m|H0)

which is easily performed if the observations are independent.
The so-defined log-LRT

(10)

Tz pyA|H1 Yk|H1)
Z In an
S Pyt (FrHo)
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is recursive in nature, and if the ® function is defined as

py;‘-‘Hl (yk|H1)

®(k)=1In — (12)
Py Ho (Y| Ho)
equation (11) can be calculated in recursive fashion as
Ustm =lim — @1 —m)+@(I+m+1). (13)

Assuming the integrated bispectrum {Séi) : w} as the feature
vector ¥, and to be independent zero-mean Gaussian variables

L] Rl
S5 (w)|Hy) = -
p (S @)1 ) 2P@ T A w)
[ 59 w)|]
g (k) o) = 1 Y 14
p( ' (W)] 1) S\CPe exp o) (14)
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(W) =22 -1 4/ W(w)=1——1. (16)
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Note that the decision rule is formulated over a sliding window
consisting of (2 + 1) observation vectors around the frame for
which the decision is being made. This fact imposes an m-frame
delay to the algorithm that, for several applications, including ro-
bust speechrecognition, is not a serious implementation obstacle.
The two key issues to evaluate the proposed LRT are /) the es-
timation of the integrated bispectrum by means of a finite data
set and 2) the computation of the variances )\((]k) (w) and /\gk) (w)
of the integrated bispectrum under Hj and H; hypothesis.

IV. VARIANCE OF THE INTEGRATED BISPECTRUM

The properties of the bispectrum estimators have been dis-
cussed in [20] and [21]. The test proposed in the previous section
and the model assumed in (14) are justified since for large N,
the estimate gé? (wym ) is complex Gaussian and independent of
Ség(wn) form # n (m,n =1,2,..., Ng/2 — 1). Moreover,
its mean and variance for large values of Np and Kp can be
approximated [13] by

E {Syz(w)} ~ Sye(w)
var {§R [S‘ﬁ(w)}} ~—— [Syy (W) Sew(w)
var {s [Sgg)(w)] } ~ [y () S (w)

—R{5,.(@)}]

In this way, it is needed to estimate S, (w) and Sy, (w) under
Hj and H; hypothesis in order to compute \g(w) and A1 (w). It
can be shown [13], [14] that

! 4
KB [2Snn( ) * Snn(w) + 27r0n5(w)]

X Spn(w)

+R{SL @)}

7)

Ao(w) =
(18)
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M) = 5 [80(@) + Sanw)]
X [28ss(w) * Sss(w) + 2Spn(w)
*Spn (W) + 4555 (W) * Spn(w)] - (19)

Finally, a way to estimate the power spectrum of the clean signal,
Sgs(w), is needed. In this letter, a method combining Wiener
filtering and spectral subtraction is used to estimate S, (w) in
terms of the power spectrum of the noisy signal S,.,.(w). During
a short initialization period, the power spectrum of the residual
noise S, (w) is estimated assuming a short non-speech period
at the beginning of the utterance. Note that S,,,, (w) can be com-
puted in terms of the DFT of the noisy signal z(¢) = n(t). After
the initialization period, the integrated bispectrum of the noisy
signal Sy, (w) is computed for each frame using (7), and Sss(w)
is then obtained by applying a denoising process. Denoising
consists of a previous smoothed spectral subtraction followed by
Wiener filtering. It is worthwhile clarifying that S,,,, (w) is not
only estimated during the initialization period but also updated
during non-speech frames based on the VAD decision. Thus,
the denoising process consists of the following stages.
1) Spectral subtraction

S1(w) = LsSss(w) + (1 = Ly)
X max (Szz(w) — @Snn(w), BSzx(w)) -
2) First WF design and filtering
_ 51 (w)
p1(w) = Son (@)
pa(w)
(1 + p1(w))
Sa(w) = Wi (w)Sez(w).

3) Second WF design and filtering
_ Sa(w)
M2(w) = Snn(w)

p2(w)

Wate) = o (722 50

Sss(w) = Wa(w)Ser(w) (22)
where L, = 0.99, « = 1, and 8 = 10(=22/10) jg selected to
ensure a —22-dB maximum attenuation for the filter in order to
reduce the high variance musical noise that normally appears
due to rapid changes across adjacent frequency bins.

(20)

Wi(w) =
21

V. RECEIVER OPERATING CHARACTERISTICS

This section analyzes the proposed VAD and compares its
performance to other algorithms used as a reference. The anal-
ysis is based on the receiver operating characteristics (ROC)
curves, a frequently used methodology to describe the VAD
error rate. The Spanish SDC database [22] was used in this anal-
ysis. The non-speech hit rate (HRO) and the false alarm rate
(FARO = 100 — HR1) were determined as the threshold varies
being the actual speech frames and actual speech pauses deter-
mined by hand-labeling the database on the close-talking micro-
phone. Fig. 1 shows the ROC curves of the proposed VAD and
other frequently referred to algorithms [7], [23]—[25] for record-
ings from the distant microphone in high noisy conditions (i.e.,
high speed, good road) with an average SNR of about 5 dB.
The working points of ITU and ETSI VADs are also included
just for reference since they are specifically designed for speech
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Fig. 1. ROC curves obtained in high noise conditions.
TABLE I
AVERAGE WORD ACCURACY (%) FOR THE AURORA 2 EXPERIMENTS
G.729 | AMRI1 AMR2 AFE Proposed
WF 66.19 74.97 83.37 81.57 84.15
WF+FD 70.32 74.29 82.89 83.29 85.71
Woo Li Marzinzik | Sohn Hand-labelled
WEF 83.64 77.43 84.02 83.89 84.69
WF+FD 81.09 82.11 85.23 83.80 86.86

communications and not tunable. The proposed VAD exhibits a
shift of the ROC curve when the number of observations (m)
increases. The best results are obtained for m close to eight
frames, which yields clear improvements in detection accuracy
over standardized VADs and over a representative set of recently
published VAD algorithms [7], [23]-[25]. Moreover, when con-
textual information is not used (m = 0), the proposed VAD
using bispectrum also yields improvements over Sohn’s VAD.

VI. SPEECH RECOGNITION EXPERIMENTS

Performance of speech recognition systems rapidly degrades
in noisy environments due to the mismatch between training and
testing conditions. In order to compensate for this effect, a pre-
vious noise reduction scheme working in combination with a
precise VAD is normally used. The accuracy of the VAD has a
strong influence on the system performance. There are two clear
motivations for that: /) the noise parameters such as its spec-
trum are estimated during non-speech periods being the speech
enhancement system strongly influenced by the accuracy of the
noise estimation, and 2) frame-dropping, a frequently used tech-
nique in robust speech recognition to reduce the number of in-
sertion errors caused by the noise, is based on the VAD decision,
and speech misclassification errors lead to loss of speech and
irrecoverable errors. The reference (base) framework consid-
ered for these experiments was the ETSI AURORA project for
distributed speech recognition (DSR) [26], while an enhanced
feature extraction scheme incorporating a Wiener filter (WF)
noise reduction system and non-speech frame-dropping (FD)
was built on the base system.

Table I shows the word accuracies that yielded the different
VADs compared. These results are averaged over the three test
sets (A, B, and C) of the AURORA-2 recognition experiments
[27] and SNRs between 20 and 0 dBs. The proposed integrated
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AVERAGE WORD ACCURACY (%) FOR THE SPANISH SDC DATABASES

TABLE II
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Base Woo Li Marzinzik | Sohn | G729 | AMRI AMR2 AFE Proposed
WM | 9294 | 9535 | 91.82 94.29 96.07 | 88.62 94.65 95.67 95.28 96.39
MM | 83.31 | 89.30 | 77.45 89.81 91.64 | 72.84 80.59 90.91 90.23 91.75
HM 51.55 | 83.64 | 78.52 79.43 84.03 | 65.50 62.41 85.77 77.53 86.65
Avg. | 7593 | 89.43 | 82.60 87.84 90.58 | 75.65 74.33 90.78 87.68 91.60

bispectrum MO-LRT VAD outperforms the standard G.729,
AMR1, AMR2, and AFE VADs in both clean and multicondi-
tion training/testing experiments. When compared to recently
reported VAD algorithms, the proposed one yields better re-
sults, being the one that is closer to the “ideal” (hand-labeling)
speech recognition performance. Similar results were obtained
for the experiments conducted on the AURORA 3 Spanish
SpeechDat-Car database shown in Table II. Note that these
particular databases have longer non-speech periods than the
AURORA 2 database, and then, the effectiveness of the VAD
results are more important for the speech recognition system.
This fact can be clearly shown when comparing the perfor-
mance of the proposed VAD to Marzinzik VAD [25]. The word
accuracy of both VADs is quite similar for the AURORA 2 task.
However, the proposed VAD yields significant performance
improvements for the AURORA 3 database.

VII. CONCLUSION

This letter showed an effective VAD for improving the per-
formance of speech recognition systems working in noisy
environments. The proposed approach is based on a statistical
LRT defined on the integrated bispectrum, which is defined as
a cross spectrum between the signal and its square, and inherits
the ability of higher order statistics to detect signals in noise with
many other additional advantages: /) its computation as a cross
spectrum leads to significant computational savings, and 2) the
variance of the estimator is of the same order as that of the power
spectrum estimator. The decision rule incorporates contextual in-
formation, a strategy that has reported significant improvements
in speech detection and robust speech recognition. With these
and other innovations, the proposed method reported significant
improvements over standardized techniques such as ITU G.729,
ETSI AMR, and AFE VADs, as well as over recently published
VAD:s in speech/pause detection and recognition rate.
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