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Givens rotations to annihilate the inferior triangular part of the matrix
Y+ The update is operated on the change in the parameter (see
{10]) dw;(t) = W;i(t + 1) — W;(¢). The algorithm consists of the
following steps:
1) Compute the prediction error uw(t + 1) =
(t+ 1T wi(1).
2) Form the matrix

Lt + 1) —

AV () 0
Ft+1DT wt+1) |

3) Sweep the bottom part of this matrix using Givens rotatjons.
4) Solve the triangular system V(¢ + 1) d¥(t) = Z'' ",
5) Obtain w,(t + 1) = wi(t) + dw,(t + 1).

V. SIMULATION RESULTS

To evaluate the performance of the multichannel parameter
estimation method proposed, we simulated the algorithm. We adopted
as a measure of performance for a generic channel of the AR model
MSE; = [S7_, % lai () — ai,(OF/ X, las, (D, where
@i, ;(1) are the estimated parameters of the AR model, and a; ;(I)
are the true values. The system we used to generate data is a stable,
noncausal AR model 2 x 2 with

wo=[p 1]

A= [_(1)'5 —8.8}
A= {—Off% 0.%5}

with poles at (1.25, —0.75, 0.4 + j0.7, 0.4 — 50.7). The input data
was generated by a zero mean vector process with independent and
identically distributed components with the desired HOS properties
and a power of one. The values of cum;s(z) are —0.2474. A vector
Gaussian process with statistically i.i.d. components is added at each
oufput of the model. To start up the adaptive algorithm, 100 samples
were used to initialize data matrices. In Fig. 2, the SNR is 50 dB,
and the value of A is 1. The dashed lines are the true values of
the AR parameters for channel 1. In Fig. 3, the MSE convergence
process is shown at SNR = 8 dB and SNR = 50 dB. In Fig. 4, the
results of the batch algorithm running on a window of data samples
of length 5000 are given. The point of convergence is affected by the
additive noise: Fig. 5 shows the traces of two AR parameters and the
sensitivity of the adaptive algotithm to the number of samples used
for initialization, particularly that the traces of the AR parameters are
considerably smoother with 100 samples initialization.

VI. CONCLUSIONS

We have proposed an estimation technique for multichannel causal
or noncausal AR models when the input is non-Gaissian. We have
shown how the super exponential algorithm presented in [1] can
be generalized to vector processes and applied to the non-Gaussian
multivariate AR estimation problem. Since the algor thm is iterative,
further investigation is required to fully characterize the convergence
behavior of the method. An adaptive implementation has been
presented that is attractive from the computationa. point of view
with respect to other identification procedures based on HOS. Some
simulation results have been shown for the adaptive and the batch
(bk)ck processing) implementation.
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Generating Matrices for the Discrete Sine Transforms

Victoria Sdnchez, Antonio M. Peinado, José C. Segura,
Pedro Garcia, and Antonio J. Rubio

Abstract—In this correspondence, we obtain a general form for the
generating matrices of the eight types of discrete sine transforms. These
matrix forms can be used to study the performance of the different
discrete sine transforms as substitutes of the Karhunen—Loeve transform
and will allow us to show in a very straightforward way that the discrete
sine transforms, as the discrete cosine transforms, are asymptotically
optimal for any finite order Markov process.

I. INTRODUCTION

The discrete sine transform (DST) was first introduced by Jain
[1] in 1976, and several versions of this original DST were later
developed by Kekre et al. [2], Jain [3], and Wang ef al. [4], who
finally established that there exist four even DST’s and four odd
DST’s, which he numbered from I to IV with letter E or O, indicating
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whether they are an even or an odd transform. Ever since the
introduction of the first version of the DST, the different DST’s have
found wide application in several areas of digital signal processing
such as image processing [1], [5], [6], adaptive digital filtering [7],
and interpolation [8].

We have recently obtained [9] a general form of matrices whose
eigenvectors constitute the different discrete cosine transforms
(DCT’s). In this correspondence, we now propose a general form for
the generating matrices of the different types of DST’s and use these
matrices to study the asymptotic performance of the different DST’s
with block length N when applied to a stationary process.

II. GENERATING MATRICES

In [9], we obtained the eight types of discrete cosine transforms
as the complete orthonormal set of eigenvectors generated by a
general form of matrices that can be decomposed as the sum of
a symmetric Toeplitz matrix plus a Hankel or close to Hankel
matrix scaled by some constant factors. Our development was based
on a recent work by Martucci [10], where the relation between
symmetric convolution and the discrete sine and cosine transforms
was established. Following a similar procedure to that developed in
[9], we are going now to obtain a general form for the generating
matrices of the eight types of discrete sine transforms. In this case, if
we analyze the list of the 40 different types of symmetric convolution
[10], we can observe that for each DST in convolution form S., we
now have a convolution-multiplication expression of the form

W = ca{2n} @ su{yn} = Sa  {Salan} x Colyn}} (D

where the inverse discrete sine transform applied S; ' is of the same
type as one of the direct transforms used S, and where transform
Cy is one of the discrete cosine transforms in convolution form. w;,
is the symmetric convolution of sequences z and y.2, and £, are
two symmetric extension operators, and the symbol (® represents
the convolution operation that can be either circular or skew circular.
We will use [S®] to indicate the matrix form of transform S,, and
the relationship between the orthogonal and the convolution forms of
each discrete sine transform will be expressed as

[$] = [D{NS"ID}] ©)

where [$'] denotes the orthogonal form of transform [S*], and [D}
and [D}] are two nonsingular diagonal matrices that depend on the
type of DST being considered.

Expressing (1) in matrix form and following a similar development
to that presented in [9] for the discrete cosine transforms, we obtain

[SD T DS T = [D(C )] 3

where [V?] is a matrix whose elements are built from the elements
of sequence y, and [D([C’]y)] represents a diagonal matrix with
diagonal elements given by [C"]y. From (3), we obtain that matrix
[VA] = [D¢]71[V*][D?] is diagonalized by the DST given by [S"]
and therefore, we can conclude that the DST’s can be obtained as
the eigenvectors of such matrices with eigenvalues A\%4 given by
[C"ly. We have built matrix [Y] = [D2]7'[[V¢] + [Vil[Dy] for
each type of discrete sine transform, and we have obtained that it
can also be decomposed as the sum of a Toeplitz symmetric matrix
[#] plus a Hankel or close to Hankel matrix [V;;] scaled by some
constant factors.

We give below the listing of the generating matrices for the
eight types of discrete sine transforms where we have indicated
by a subindex included in parenthesis () the dimension of the
corresponding matrix. We only give explicitly the form of the Hankel
or close-to-Hankel matrix as the Toeplitz symmetric matrix is the
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same one in all cases (except for the dimension in some cases) and
is given by

Yo Yi YN—-2 YN-1
Y1 YN -2
il=1 N @
YN -2 Y1
YN—-1 YnN-2 - Y1 Yo
A. Matrix Forms
DST-IE:
Yns 0<n<N
[Dif-1).] =[1]
Y2 Y3 TYN-—1 TYN
—Ys3 ) —YN-—1
[Vih—in) = :
—YN-1 —Us3
—YN —YN--1 -Y3 —Y2
[ /({NE—L)] = D"(l;v‘l)‘t] + [y(lﬁ"——l),h]
Ay = {[CtRanlwh vt
DST-IIE:
y(n), 0<n<N
2¢
[Dixy,] =]
—Y1 —Y2 —YN-1 —YN
—Y2 ’ —YN -1
{yiﬁ'):h] = :
—YN-—1 —Y2
—YN  TYN-1 —Y2 —Y1
[Y(I\{)E] = [yfz(\z/),t] + [yfﬁv)_h]
/\fﬁf])j = {[C(]XIH)]!I}D,--»,N—L
DST-IIIE:
Yns 0<n<N-1
D)) = diag(1, -+, 1. V)
—Y2 -yn—1 0 0
‘ yn—-1 O
[)}(‘;&)‘h] =| —yn-1 yn—2 O
0 , 4 C0
YN—1  YN-—2 s Y1 0

YN ) = 1D 1 IV o] + 3R w 1D R 4]

NAE = (et
DST-IVE:

Yns 0<n<N-1

(D) =]

- —Y2 —YN-1 0
—Y2 ' YN—1
yhe
YNyl = )
—YN-1 L N Y2
1] YN—1 Y2 Y1

AAVE y4e e
D(I\«Y)F] = [}éN'),t] + [3/(41\7)‘h]
AN =10
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DST-10:
Yn s 0<n<N-1

(DR -1y..] =[]

—¥2 —Y3 —YN-1 —YN-1
=3 ’ —YN-—2
[3/'(1,3'—1),/1] =
“YN--1 —Y2
—YN-1 —YN-_2 —Y2 -1
1O 1lo lo
Y] = [VR-n.e + DR -1y a]
IO +1lo
A-n ={Cxlwhe v
DST-I10:
Yns OSHSN—I
D%y, ] =11]
—Yi —Y2 —YN-—2 TYN-1
—Y2 ’ —YN-—1
[yﬁ’%—l),h} =
—YN--2 —Y3
TYN--1 TYN-1 —Y3 —Y2
Y20 = 8—n) + 8 -0)]
AMAZ ={Clwbo, - v
DST-IIIO:
Yn . ‘ 0<n<N-1
3
(DX ] =[]
—¥2  ~Ys —YnN—1 YN-1
Y3 - YN -2
[y(3]€'~1)‘h] = ) :
“YN-1 Y2
YN-—-1 Yn—-2 Y2 Yt
D([\IL(]))} = [y?ﬁ‘—m,t} -+ [yﬁ‘.’(\)"~1),h]
/\([{[_Ol) = {[CSK/)]y}l)...,,\r_l.
DST-IVO:
Yns OS'nngl
[D{%),.] = diag(1,---.1,v/2)
=1 —ynN-2 —yn-1 O
: yn—1 O
o
[J’(N),h} = —YN-—-2 yn-—2 0
—yYn-a , : 0
YN—1  YN-—2 Y1 0

Y] =D IV ]+ VR AlIID R 4]
A =00l

It can now be shown that the generating matrices that were
proposed by Jain [1], [3] for the DST-IE, DST-IIE, DST-IVE, DST-
10, DST-IIO and DST-IIIO are simply particular cases of the matrices
presented above if we make yo = 1,41 = —a,ys = -
yny = 0 in all cases.

Using these matrices, we can as well study the asymptotic behavior
of the DST’s with block length N for any stationary process.
Following the formalism developed by Yemini and Pearl [11] and

TE=EYN-—1 =
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the same kind of development as that presented in [9] for the discrete
cosine transforms, we have found for each DST a class of stationary
processes verifying certain conditions with respect to which the
corresponding DST has a good asymptotic behavior in the sense that
it approaches Karhunen-Loeve transform performance as block size
N tends to infinity. If r|,_; = 7, are the elements of the auto-
covariance matrix of a stationary process, we have a good asymptotic
performance for the following:

1) the DST-IE for those stationary processes for which X525 (n —
1)7‘3 < o0
2) the DST-IIE and DST-IVE for those verifying £52; nr? < oc
3) the DST-HIE for those verifying ¥°%, r2 <00, B5lo(n —
172 <oo and B2, nr2 <o
4) the DST-I0, DST-IIO and DST-IIIO for those verifying
22 ,(n — 1)72 <oc and 252, nr? < oo
5) the DST-IVO if £, 72 <oc and £3% nr2 < oo,
All three conditions 5%, 72 < o0, L5%,(n — 1)72 <oc and
°. nri<oc are verified for finite-order Markov processes;
therefore, we can conclude that as in the case of the discrete cosine
transforms, the discrete sine transforms also have a good asymptotic
behavior with these kinds of processes.
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