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Abstract—There exist eight types of discrete cosine transforms
(DCT’s). In this paper, we obtain the eight types of DCT’s as
the .complete orthonormal set of eigenvectors generated by a
general form of matrices in the same way as the discrete Fourier
transform (DFT) can be obtained as the eigenvectors of an
arbitrary circulant matrix. These matrices can be decomposed as
the sum of a symmetric Toeplitz matrix plus a Hankel or close to
Hankel matrix scaled by some constant factors. We also show that
all the previously proposed generating matrices for the DCT’s
are simply particular cases of these general matrix forms. Using
these matrices, we obtain, for each DCT, a class of stationary
processes verifying certain conditions with respect to which the
corresponding DCT has a good asymptotic behavior in the sense
that it approaches Karhunen-Loeve transform performance as
block size NV tends to infinity. As a particular result, we prove that
the eight types of DCT’s are asymptotically optimal for all finite-
order Markov processes. We finally study the decorrelating power
of the DCT’s, obtaining expressions that show the decorrelating
behavior of each DCT with respect to any stationary processes.

1. INTRODUCTION

INCE its introduction in 1974 by Ahmed et al. [1], the dis-
S crete cosine transform (DCT) has become a significant tool
in many areas of digital signal processing, especially in signal
compression [2]. The original motivation for defining the DCT
was that its basis set provided a good approximation to the
eigenvectors of the class of Toeplitz matrices that constitutes
the autocovariance matrix of a first-order stationary Markov
process, with the result that it had a better performance than the

discrete Fourier transform (DFT) and some other transforms .

[1], [31, [4] with respect to such kinds of processes. In fact,
as shown in [2], the DCT is asymptotically equivalent to the
Karhunen-Loeve transform (KLT) of a first-order stationary
Markov process as p tends to 1, where p is the correlation
coefficient. Some years later, Jain [5] proposed two new types
of DCT, which he called the even discrete cosine transform 2
(EDCT-2) and the odd discrete cosine transform 1 (ODCT-
1), and almost simultaneously, Kitajima [6] constructed a
symmetric version of the DCT whose basis set approached
the eigenvectors of the KLT of a first-order stationary Markov
process as block size N tends to infinity. Finally, Wang [7]
showed that there exist eight types of DCT’s and classified
them in even and odd transforms. There exist four even DCT’s
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and four odd DCT’s, which he numbered from I to IV with
letter F or O indicating whether they were an even or an odd
transform. In this way, the original DCT proposed by Ahmed
et al. [1] is nowadays known as the DCT-IIE, the two new
DCT’s proposed by Jain are the DCT-IVE and the DCT-1VO,
respectively, and the symmetric cosine transform proposed by
Kitajima is known as the DCT-IE.

Jain [5] first proposed a parametric family of matrices,
which is a variation of the tridiagonal Jacobi matrix, whose
eigenvectors constituted the basis set for some types of DCT’s,
in particular, for the DCT-IIE, the DCT-IVE and the DCT-IVO.
Kitajima also proposed a generating matrix for his symmetric
discrete cosine transform. In this paper, we will obtain the
eight types of DCT’s as the complete orthonormal set of
eigenvectors generated by a general form of matrices in the
same way as the discrete Fourier transform can be obtained
as the eigenvectors of an arbitrary circulant matrix. These
matrices can be decomposed as the sum of a symmetric
Toeplitz matrix plus a Hankel or close to Hankel matrix
scaled by some constant factors. We will show that all the
previously proposed generating matrices for the DCT’s are
simply particular cases of these general matrix forms. Our
development is based on a recent work by Martucci (8], [9],
where the relation between symmetric convolution and the
discrete sine and cosine transforms is established.

As indicated above, the motivation for originally defining
the DCT-IE [6] was that its basis set provided a good approx-
imation to the eigenvectors of the autocovariance matrix of
the stationary Markov-1 process as N — oo. Such a good
asymptotic behavior with block size N of the DCT with
respect to any stationary finite-order Markov process has been
proven in the cases of the DCT-IIE, the DCT-IVE, and the
DCT-IVO [5]. In this paper, we will obtain, for each DCT, a
class of stationary processes verifying certain conditions with
respect to which the corresponding DCT has a good asymptotic
behavior in the sense that it approaches KLT performance as
block size N tends to oo. As a particular result, we will
extend the good asymptotic behavior of the DCT-IIE, the
DCT-IVE, and the DCT-IVO with respect to any stationary
finite-order Markov process (previously established by Jain
[5]) to the rest of the DCT’s, concluding that the eight types of
DCT’s are asymptotically optimal for all finite-order Markov
processes.

Apart from showing that all the DCT’s have a good asymp-
totic behavior for stationary processes verifying certain con-
ditions, we are also interested in the rate at which each one
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of those transforms decorrelates a stationary process because
this rate will determine quality ranking among the different
DCT’s [10]. A good measure of the degree of correlation still
remaining after the application of a specific transform is given
by the norm of the matrix containing the off-diagonal covari-
ance elements of the transformed coefficients [11]. This norm
was shown to control the performance degradation resulting
from residual correlation in both coding and filtering [11].
We will refer to this norm as residual correlation from now
on. Several attempts were made in the past to find analytical
expressions for first-order stationary Markov processes that
showed the residual correlation as a function of the correlation
coefficient p and dimension N. Hamidi ef al. [3] and Kitajima
[6] obtained this dependence for the DCT-I/E and the DCT-IE,
respectively. Jain [5] developed expressions for the DCT-
IIE, the DCT-IVE, and the DCT-IVO that show how the
performance of these transforms depends on p, ignoring its
dependence on N.

In this paper, we obtain expressions that show how the
residual correlation for each one of the DCT’s depends on NV
and the covariance matrix elements 7;;,0 < 4,7 < N—1for
any stationary process. These expressions allow an analysis of
the decorrelation power of each one of the DCT’s for any given
stationary process and lead us to derive, among other results,
that the DCT-IO and the DCT-/IO have the same decorrelating
power for any stationary process and, when those expressions
are applied to a first-order stationary Markov process, we
obtain that in the same way as the DCT-/IE is the best discrete
cosine transform for very highly positive correlated processes,
the DCT-IIIO is the best discrete cosine transform for very
highly negative correlated processes for N > 2.

The rest of this paper is organized as follows: In Section
II, we first present the main results established by Martucci
[81, [9], relating the symmetric convolution and the discrete
trigonometric transforms, and on that basis, we then obtain a
general form of the generating matrices for the eight types of
DCT’s and show that all the previously proposed generating

matrices for the DCT’s are simply particular cases of these’

general matrix forms. Section III contains a study of the
asymptotic behavior of the DCT’s with stationary processes,
and in Section IV, we derive expressions that show the
decorrelating power of each DCT for any stationary process.
Finally, a brief summary is given in Section V.

II. GENERATING MATRICES FOR THE
DISCRETE COSINE TRANSFORMS

It is well known that the DFT can be obtained as the
eigenvectors of an arbitrary circulant matrix, the eigenvalues
of the matrix given by the DFT of the circulant elements.
However, no general matrix forms have been established
whose eigenvectors constitute the different DCT’s; only some
particular cases of matrices diagonalized by certain DCT’s
‘have been presented in the past [5], [6], [12]. In this section,
we will obtain a general matrix form for each DCT type
and show that the previously obtained matrices are simply
particular cases of these general matrix forms.
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A. Convolution-Multiplication Properties of the
Discrete Trigonometric Transforms

Martucci [9] has recently presented the convolution-
multiplication properties of the discrete trigonometric trans-
forms (DTT’s) that include the eight types of discrete sine
transforms (DST’s) and the eight types of discrete cosine
transforms [7]. In the same way as circular convolution is
the type of convolution related to the DFT, the symmetric
convolution is the type of convolution related to the DTT’s
[9]. ’

Let £ = [zo,21, -, 2n—1]" and ¥ = [yo, 91, -, yn—1
be two finite sequences. The convolution-multiplication prop-
erties of the DTT’s are expressed, according to [9], in the
following two equations:

Wn = (Ea{zn} ® o {yn HRE
Wn—no = T, H{To{zn} X To{yn}}

]T

ey
@

where w, is the symmetric convolution of sequences x and y.
In (1), ¢, and g, are two symmetric extension operators that
convert a finite sequence into the base period of a symmetric-
periodic sequence as defined in [9], the symbol &) represents
the convolution operation that can be either a circular or
skew-circular convolution, and RY is a length-K rectangular
window whose purpose is to extract the representative samples.
Equation (2) represents an alternative way of determining the
symmetric convolution of sequences x and y using transforms.
7, and Ty are the corresponding DTT’s of z and y, respec-
tively, and 7,~! is the appropriate inverse transform [9]. The
symbol x indicates element-by-element multiplication. As far
as ng is concerned, it can have two values: O or 1. In the case
ng = 1, that means that from the inverse transform, we get
the delayed result of the symmetric convolution. We have to.
point out that transforms 7, 7, and 7,71 are in convolution
form, which is a new formulation for the DTT’s proposed by
Martucci and different from the orthogonal form previously
established by Wang [7] for the DTT’s. The convolution form
is more suitable for expressing the convolution-multiplication
properties of the DTT’s, although the transform matrices
corresponding to the DTT’s in convolution form may no
longer be orthogonal. The orthogonal forms of the DTT’s are
enumerated in [7], and the convolution forms can be found
in [9]. The eight types of DCT’s in convolution form will be
denoted as Ci., Coe, Cse, and C4. for the even versions and
Cio, Ca0, C30, and Cy4, for the odd versions.

B. Generating Matrices

There are 40 different types of symmetric convolution listed
in [9]. Analyzing that list, we have observed that for each DCT
in convolution form C,, there is a convolution-multiplication
expression of the form

Wy = 5a{$n} ® 5b{yn} = Cc:l{ca{wn} X cb{yn}} (3)

where the inverse transform applied C; ! is of the same
type as one of the direct transforms used C, and where
transform C; can be different from C, in the most general
case. From now on, we will consider that the rectangular
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window RX is implicit and ignore ng as it is equal to 0 in
all types of convolution-multiplication relations in which we
are interested.

Let us express (3) in matrix form. We will use [C?] to
indicate the matrix expression of transform C, and [C%],, , for
the specific entry at row m and column n. We have to point
out that [C%]z x [C*]y is not a matrix operation, the resulting
vector having as elements the result of the element-by-element
multiplication of vectors [C*|z and [C®]y. We will indicate this
including the resulting vector in parenthesis (), obtaining the
following equation:

w =[]z = [C*] 7 ([C]z x [C*ly). )

Matrix [V*] is a square matrix whose elements can be
expressed as combinations of the elements of sequence y. We
have built matrix [V*] for each type of symmetric convolution
of the form given by (3), and we will show in Section II-B-1
that it can be decomposed as [V*] = [VZ] + [V5], where [V ]
is a Toeplitz symmetric matrix, and [)7] is a Hankel matrix
or close to a Hankel matrix. In the cases when [V{] is close
to a Hankel matrix, all the elements along any cross diagonal
are identical except the first or last element, which are equal
to zero. ' )

We will next express the term ([C*]z x [C®]y) of (4) as a
matrix operation. In fact, the operation £ X y = y x x can be
put into matrix form as [D(z)]y = [D(y)}x, where [D(z)] is a
diagonal matrix whose diagonal elements are the components
of vector z. Doing so, we have

Velz = [c*] 7 D(ICly)][C)=. )

Given a certain [Y*], (5) must be verified for any , which
implies that

V] = [c] 7 [D([Cy)]IC?] (©)
or, equivalently
[eelvliee)™ = [D(Cly)l- 0]

Let us now express the relation between the orthogonal and
the convolution forms of the DCT’s in a form that suits our
purposes. Denoting as [CA} the orthogonal form of transform
C,, we have

¢4 = Dpjletiy] ®

[C4™t = DA~ e DE] )

where [D}] and [D?] are two nonsingular diagonal matrices
that depend on the type of DCT being considered.

Using (8) and (9), we can express (7) in terms of transforms
in orthogonal form as follows:

[DAHCHDA T YDAICA (D] = [D(IC*l)] (10)

and finally, as the first term of (10) 1s the product of three
diagonal matrices, and diagonal matrices commute, we have

[CAD YDACA™ = [D(Cl))- an

We obtain, in consequence, that matrix [Y4] =
(DA~ YelDg] = [D7H[Ye] + [VRI[Dy] is diagonalized
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by the DCT given by [C4]. Thus, we can conclude that the
DCT’s can be obtained as the eigenvectors of such matrices
with eigenvalues A4 given by [Ct]y.

1) Matrix Forms: We have indicated above that matrix
[Y?] is built from the elements of sequence y and can be
decomposed as the sum of a symmetric Toeplitz matrix [V
and a Hankel, or close to a Hanokel, matrix [V{]. We will
now show how we have derived this result for the DCT-IIE,
which is the most popular of the DCT’s and the first one to be
proposed [1]. A similar procedure can be followed for the rest
of the transforms where the only difference is the symmetric
extension operators that have to be applied in each case and the
kind of convolution operation we have to perform (circular or
skew-circular).

As stated above, our development is based on the
convolution-multiplication expressions of the form given by
(3). In the case of the DCT-IIE, we have

wyp, =HSHS{z,} © WSWS{yn} =C5. {Coc {20} X Cic{yn}}
“ 12)
where ©) represents the circular convolution, Cs, is the con-
volution form of-the DCT-IIE, Cy. is the convolution form
of the DCT-IE and, HSHS and WSWS are two symmetric
extension operators that, when applied to sequences z and y, -
respectively, generate sequences £ and g of the form

. JTn n=01,---,N—-1
mn—{$2N—l—nn=N7"'72N—l (13)
S n=0,1,---,N
yn_{y2N—nn=N+1,"‘,2N—l. (14)

The next step is to perform the circular convolution ) of .
sequences Z and g. Let us express this in matrix form:

TQy=
Yo ‘vt YnN-1 YN YnN-1 - Y1 g
. . . . . 21
YN-1 YN-1
L. .. . TN-1
yN t. . . yN TN—1
YN-1 YN-1
: . . : T
Y1 0 YN-1 YN YnN-1 Yo Zo

(15)

The result of that matrix product is a sequence of length
2N. The result of the symmetric convolution corresponds, in
this case, to the first N elements of that sequence that can
be expressed in matrix form as in (16), which appears at the
bottom of the next page.

Performing the corresponding operations, we would finally
obtain the length-V sequence in (17), which is shown at the
bottom of the next page

The expression for this length-N sequence can be alterna-
tively expressed in matrix form as the product of an N' x N
matrix and the length-N sequence z,,,n =0,..., N — 1. This .
is shown in (18) at the bottom of the next page.
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That means we can express the symmetric convolution w as
w = [V 2 + Vi allz (19

where we have indicated by a subindex included in parenthesis
() the dimension of the corresponding matrix. In the case of the
DCT-IIE, the diagonal matrix [D(I {Vﬁr] is equal to the identity
matrix [I(,)]. Consequently, we finally have that the matrix
diagonalized by the DCT-IIE is given by

[Y(HE] Vi, t] + [Vl (20)

with eigenvalues

AIIE

5 = @1)

{[C(lﬁr-f-l)]y}o,...,N—L

Following a similar procedure with the rest of the DCT’s,
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reason, we will only give explicitly the form of this matrix in
the listing below.

DCT-IE
Yn, 0 <n <N
[D{f11y,0] = diag(1,1/v2,...,1/v2,1)
0 Y1 yn-1 O
0 : YN 0
Dimsnpel =] 0 ynaa yn-1 0
0 YN—1 Y1 0

we have obtained the generating matrices for each transform [YIE 1= Dle 0 1[[ ]+ [V Dk ]
together with their corresponding eigenvalues, which are listed (N+1) (N-+1), NH) ¢ (V41 R AL (N A1),
below. In all cases, the Toeplitz symmetric matrix [V7] is the B .
same, and it is equal to the Toeplitz symmetric matrix obtained )‘(N+1) = [C(N+1)]y
in 'the case f’f the.DCtT-IIE [V? ), .|, with the only difference DCT-IIE
being the dimension in some cases. The Hankel, or close to
Hankel, matrix [V?] is different for each DCT, and for that y(n),0 <n< N
To
Z1
Yo YnN-1 YN YN-1 n :
P : ) ’ : TN—
w={&©ho,..N-1= o (16)
Yn-—2 YN-1 1\{_1
Yn-1 Yn-2 Yo Yn-1 YN
Z1
Zo
Eiv:—ol YnZn + Z,J:le ynmn—l
N— 1 i i : N—-1-i
w = En—o Yi—nTn + Z YnLnti + ano yN—(i—n)‘TN—l—n -+ anl YN-—nTN—-1—(n+i)
Eiv_ol YN—1—nTn + Zn 1 YnTN—n
(yo+y1)zo+ (y1 +y2)z1 + -+ (Yn-2 +ynv-1)TNv-2 + (Ynv—1 + YN)TN -1\
N-1 :
= 2 m=0 (Yli—n| + yN—|i+n—-(N—1)|)$n (17)
(yn-1 +yn)To + (Un-2 + UN-1)T1 + -+ (U1 +v2)zv-2 + (¥o + ¥1)aN-1
Yo+ U1 Y1t Y2 yn— 2+yN 1 YnN—1+YN Zo
W= | Yt YN-i~(N-1)|  Yi-1 T YN—fit1—(NV-1)| Y- (N-2)| T YN~li-1| Yli—(N-1)] T YN—i :
Tys
YN—1 + YN YN-2 +YN-1 Y1+ Y2 Yo+ Y1 TN_1
Yo EUI YnN-2 Yn-1 o Yo YN—1 YN o
Y1 YN—2 Y2 Sttt YN-1 z1
=1 S I A : : (18)
YN-—2 e n UN-1 Y2 TN-_2
L\yn—1 Yn-—2 Y1 %o v Un-1 Y2 b1 IN-1
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D%y .1 =]

Y1 Y2 cer YN-1 YN
Y2 . . YN-1
Vi hl = .
YN -1 ces . Yo
ynN YN -1 PN Yo Y1
YR = e + Vo )
Ir R
’\(N})E = {[c(lN—#l)]y}O,“.,N-—l

DCT-IIIE
Yn,0Sn <N -1

[D?Ifl),r] = diag(1, 1/\/57 M) 1/\/5)
0w v YN-2  YN-1
0 0
Ve =10 ynv—2 - o —YN-1
0 yn—1 .. :
0 0 —YN-1 Y2

Yy Z1 = D8 1 IV ] + Vi D3]

Ay = ey

DCT-IVE
Y, 0<n <N -1
[Diry,) = 1]
Y1 Y2 trr YN-1 0
y2 . e e ) _yN_l
Vi ) :
YN-1 e e —ys
0 “Yn-1 -+ —Y2 —Y1
[Y(%E] = [yfzfr),t] + [yflsz),h]
NP = ol
DCT-IO

Yn,0<n< N -1

[D(ll%),r] = diag(1, 1/\/57 SRR ) 1/\/5)
0 ‘vt YN—2 YN-1
. 0 : YN_1
[y(;\)]),h] = 0 YN—2 . N YN—2
0 yn-1 :
0 ynv-1 yn-2 n

Y1 = Dy .1~ Y + iRy wllDiRy L]
A = [Cyly
DCT-11O0
[D?XI),T] = dlag(L B 1a \/5)
Y1 “++ YnN—2 Yn-1 O
, : yn-1 0
Yyl =yv—2 -+ - yn-g 0
YN-1 : 0
YN-1 YnN-—2z - nn O
YAY = (D 1™ 1[[3)(21(\71),75] + [V w DR ]
AR = [Clly
DCT-IIIO
yn70 S n S N-1
[D¥,] = diag(1,1/V2,...,1/V2)
0 Y1 YN—2  YN-1
0 : —YN-1
[ ~ h] 0 yn-2 Tt TUYN--2
(NV),
0 yna1 :
0 —yn-1 —-yn—2 - -1
Y01 = D& 17 ViR ] + 8% aNDE ]
AR = eyl
DCT-IVO
Yn,0<n <N -1
(D -1y, = ]
n Y2 o YN-2  YN-1
y2 .« DR —yN__l
ViR -yul = :
yN_2 . e —y3
YnNn-1 —Yn-1 -+ —Y3 —Y2

xfol)] = V-0 + Vir-1y4]

The generation of the eight types of DCT’s as the eigen-
vectors of these general matrix forms facilitates the study
of the statistical properties of the different DCT’s or, more
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specifically, their performance as substitutes of the KLT. Using
these matrix forms, we will obtain, in a very simple and
straightforward way, processes that include the finite-order
Markov processes for which the different DCT’s have a good
asymptotic behavior with block size N; we will also obtain
analytical expressions that show the decorrelating behavior of
each DCT for any stationary process.

C. Previous Results

We will now show that the different types of matrices
presented in the past that were diagonalized by the DCT’s are
simply particular cases of the general expressions obtained in
the previous subsection.

The first to propose a paramemc family of matrices whose
eigenvectors constituted different DCT’s was Jain [5]. He
considered the parametric family of matrices

J= J(k17 k?a k37 k4)

l-ka —-a 0 - 0 kao
“o i 0
- 0 R : (22)
. T, -, 0
0 I | e
ki 0 -+ 0 —a 1-ka«a

which is a variation of the tridiagonal Jacobi matrix.

The DCT-IIE, DCT-IVE, and DCT-IVO are obtained ac-
cording to [5] as the eigenvectors of mairices J(1,1,0,0),
J(1,-1;0,0), and J(1,0,0,0), respectively. In fact, these ma-
trices are simply particular cases of matrices [Y/y], [Y(i\"],
and {Yé\‘,’ 01)] described in Section II-B, where yo = 1,41 =
—a,yp = -+ = yy = 0 in the case of the DCT-IIE and
Cyo=1,y1 = —a,yp = -+ = yy_1 = 0 in the cases of the
DCT-IVE and DCT-IVO.

As far as the DCT-IE is concerned, Kitajima [6] defined it
as the eigenvectors of matrix A,

0 1/\/5 0 .- 0
1/\/§ . 1/2 . .
a=| 0 2 @3)
’ 1/2 0
: NV VAVE)
0 e 0 1/V2 0

This matrix can also be obtained from matrix [Y&EH)]
simply by making yo = 0,y1 = 1/2,32 =--- =yny = 0.

Finally, Hou [12] obtains two new matrices A and B,
which are diagonalized by the DCT-IIIE and the DCT-IVE,
respectively.

2 V2 0 -0
i1
A=19 1 . 0
. '._' 1
0 0 1 2

Vnets o= [A(N)](;v’o
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3 1 0 0
1 2

B=1o - 0 (24)
Do w201
0 -~ 0 1 1

It can be also shown that these matrices are equal to [V #]
and[YIVE]lfwemakeyo—2y1—1 Yo = = YN~ 1,0

Regardmg transforms DCT-I0, DCT- IIO and DCT-1IIO,
no generating matrices had been previously proposed.

III. ASYMPTOTIC BEHAVIOR OF THE
DISCRETE COSINE TRANSFORMS

A. Definitions

We follow here the formalism developed by Yemini and
Pearl [10]. Let [A(y)] be a symmetric matrix of dlmensmn
N x N with elements given by a;; and eigenvalues {\;} 1"
The weak norm of [A(y)] is defined.

N—1N-1 N-1
Amll = 2} ZO Jaig | = N Do @S
=0 7 =0

This norm is invariant under unitary transforms, i.e., if [T( )
is unitary, then

Al = [T A [T 7|

where the superscript H indicates Hermitian trahspose. In
order to consider sequences of matrices, several terms will
be defined [10]. A net is a strongly bounded sequence of
matrices [A(n)], N = 1,2,..., 00 denoted by o = [A()IF=1-
A matrix class is a collection of nets. We will denote it by A.
Finally, an IV section is the collection of NV x N matrices that
belong to the nets in a class. We will denote it by Ay.

We define a net equivalence relation in .4 and say that two
;and 8 = [B(N)]?\? ; are asymptotically
equivalent if |[Awy] — [Bw)l] M22%° 0. In order to define a
matrix class equivalence, we will first define the concept of
asymptotic cover. Let .4 and B be two matrix classes; .A is said
to be an asymptotic cover of B if for any net § € B there is
a net o € A such that o and § are asymptotically equivalent.
We will use the notation A D B to indicate this. Two matrix
classes A and B are asymptotically equivalent A « B if both
AD Band B D A

Using the previous definitions, let us now focus on the
problem of diagonalization of a given signal covariance matrix.
Let 7 = [T(ny]¥=; be a net of unitary transform matrices,
S be a class of signal covariance matrices, and D be the
diagonal class that contains all nets of diagonal matrices
6 = [D(n)5=1, and let the transformed signal covariance
class be denoted by 7S7. 7 has good behavior on signal class
S in the sense that it approximately diagonalizes the class &
if every net 7¢7H in rSTH is asymptotically equivalent to
a diagonal net, ie., if D is an asymptotic cover of 7STH
Taking into account the invariance of the weak norm under

(26)
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TABLE 1
NORM OF THE DIFFERENCE OF A TOEPLITZ SYMMETRIC NET [R(n)]R7-; AND A NET OF THE CLASS DIAGONAL IN EAcH DCT [Y(?\,)]"A?:l
DCT-A [YO‘V)] I[R(N)] [)(N)“
_ Yn =Tn 1 N - 2 re _ 2 —

DCT-IE | o ‘P Ny L [12eNz e - 8VELNI 2 4 Tas (n - Dk + TS (n = ) H

Un =T

0<n<N-1 1

DCT-IIE 20 ¥ [2xin vl

n=N

n = 7‘" 2
per-mE| o T L lexiniez- Z,’f_fuﬁ?‘; 2 (n— 1]

Yn = Tn
DCT-IVE | o "2, —[22 o]

n = Tn ’ 2
DCT'IO 0 _<_yn <N-1 ¥ [6 Sa - aVa e 4 s (n—1)r2 + PO oo ]

n = Tn
DCT-1I0 | o Syn <N-1 L [6 S = a2V R+ TN (= )2 + T ]

Yn =T
DCT-1IIO 0<n51\7_1 1_31'[6211 1 n—4\/_z r2+zn—o(n"1)7 +z ln"']

Yn = Tn

0<n<N-~-1 1 2

DCT-IVO .y L [Eh5 w4+ E05 (n - 1))
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unitary traﬁsforms, we have [10] forms, we have built for each DCT a net of the class of
. : : . A oo :
D 7St ifandonlyif 7HDr 2 S. @7 matrices diagonalized by that DCT: [Y( N)] =1~ These matrices

That means that if we want to find out whether a certain
unitary transform has a good asymptotic behavior when ap-
plied to a given signal covariance class, what we have to
do is to determine whether our signal covariance class is
asymptotically covered by the class diagonal in 7, i.e., by the
class formed by those matrices that are diagonalized by 7.

B. Stationary Processes

Let [R(n)|%=; be a Toeplitz net that constitutes the au-
tocovariance net of any stationary process. The elements of
theses matrices [R(n)): ; are given by the covariance elements
Ti—j,0 < 4,5 < N — 1. In order to simplify the notation, we
will refer to r|;_;| as rp with 0 < n < N — 1. For each DCT,
we will now find a net of the class of matrices diagonalized
by that DCT that is asymptotically equivalent to [R(n)]%=1
for stationary processes verifying certain conditions. The nets
built from the autocovariance matrices of such processes will
constitute a signal class that is asymptotically covered by the
class diagonal in the corresponding DCT, which is equivalent
to saying that the corresponding DCT has a good asymptotic
performance with such a signal class.

In Section II-B, we obtained eight general forms of matrices
that were diagonalized by the DCT’s. Using those matrix

are shown in Table I together with the norm |[R(x)] — [Y¢a -
Analyzing Table I, we can then conclude that we have a
good asymptotic performance of the following:
¢ The DCT-IE and DCT-IIIE for those stationary processes
for which 5°°° | 72 < oo and 3 po,(n — 1)r2 < 0o
« the DCT-10, DCT-IIO, and DCT-IIO for those verifying

S0 12 <00, Y02 H(n—1)r2 < oo,and Yo7 nrk <
o

+ the DCT-IIE and DCT-IVE if Zflnr < 0

+ the DCT-IVO if 300 ,(n— 1)r2 < oo and Y > nra <

Q.

We have to point out that the condition Y oo, nr2 < co for
the DCT-IIE had been already obtained by Yemini et al. [10]
using numerical quadrature theory.

In the case of a finite-order Markov process, all three
conditions 3°0° 72 < o0, Y00 ,(n — 1)rZ < oo, and
S nrl < oo are verified because 7, is asymptotically
exponential with n. Consequently, the eight types of discrete
cosine transforms have a good asymptotic behavior with these
kinds of processes.

IV. RESIDUAL CORRELATION

In Section III, we studied the behavior of the DCT’s with
stationary processes and showed that for stationary processes
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verifying certain conditions, there is a good asymptotic behav-
- ior in the sense that they approach KLT performance as N —
oco. However, although all of them have a good asymptotic
performance, we are interested in how the decorrelating power
of each DCT depends on both dimension /V and the covariance
matrix elements 7,,0 < n < N — 1. A good measure of
the degree of correlation still remaining after the application
of a specific transform [T(y] is given by the norm of the
matrix containing the off-diagonal covariance elements of the
transformed coefficients [11], i:e., the residual correlation (RC)
is given by

1
RC = <> |Ton][BonlTon] 15 28)

i#]
This norm was shown [11] to control the performance degra-
dation resulting from residual correlation in both coding and
filtering. From now on, we will refer to it as RC.

This residual correlation can also be expressed in a different
way [11]. Let [R(N)] (TR [Ty |7 be the autoco-
variance matrix in the transform domain and [D([R(n)];,;)]
be the diagonal matrix representing the diagonal elements
of [R(n)]. Then, an autocovariance matrix [Rin)] that is
diagonalized by transform [T )] can be obtained by inverse
transforming [D([Rn)];,;)] such that

[R )] = [T 2 ID(R )], Ty

and the residual correlation can be alternatively expressed as
(11]

29

RC = [[Ron)] = [Bw)ll- (30)

A. Development

Let [Ty = [C’é\,)], where [C’ﬁv)] is any of the eight
types of DCT’s in orthogonal form. In order to calculate
the previous norm, we first have to determine matrix [R/y,].
This can be easily done by using the expressions obtamed
in Section II for the generating matrices of the DCT’s and
their eigenvalues. By determining [R’( N)], what we want is to
obtain the form of the matrix diagonalized by [C’é\, ] whose
eigenvalues are given by the diagonal elements of matrix
[D([R(w)]; ])] Putting these diagonal elements in vector form,
we have v = [[R(n)lo,0, [Rw)li,1;- -5 [Bewylv—1,n-1] We
will first express v as v = [V |r Wlth r=[ro,m1,... rv1]¥
and [V(x)] given by (31), which appears at the bottom of the
page.

From Section II, we know that the eigenvalues of the matrix
{Yé%], which is diagonalized by the discrete cosine transform
[C{ivy), are given by [C®]y; consequently, we would only have
to apply the inverse Cp to our vector v in order to obtain the
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elements of vector y. Doing so, we have
y = [C1 Vil

Once we know g, we only have to construct the corresponding
matrix [R{,] = [Y},] as given in Section IL

For the sake of brevity, we will not give the expression
of matrix [C®]7}[V(s)] for each transform. We will simply
indicate that in the cases of transforms [C/{J] and [C{Y9,],

N
the corresponding matrices [C*]~![V{ )] ar(e 1)10t square matri-
ces. This is due to the fact that in the case of the DCT-IIE,
the eigenvalues of matrix [Y/] are given by the first N
components of [C%ﬁ, _H)]y with ¥ = [yo,v1,- .. yn]T. Matrix
[Viay] is then a (N +1) x N matrix with the last row havmg all
elements equal to zero, and consequently, [C(lji, )7 Vi) is
also a (N 4 1) X N matrix. In the case of the DCT-IVO, the

eigenvalues of matrix [Y(‘;\‘,/ 01)] are given by the first N — 1
components of [C?j\’,)]y withy = [yo,¥1,. .. yn—1]7, and then,
matrix [Viy)], as well as [CF5,] 7 [Viw)], are N x (N — 1)
matrices.

Once we have matrix [R},, ] for each transform, we simply
have to calculate the norm (30). In Table II, we give the
expression of the residual correlation for each discrete cosine
transform. Symbols RC-IE, RC-I0, and RC-IIIO that appear
in Table II are defined as follows:

(32)

RC-IE =
| N(N Z<4< — 1) —4(N - 2))
+2(N —2-n)(4(N - 3)+ (n - 1)(N = 5)))r2
N-2 :
+2(N =231 = > 8(N —2—n)(N —3)v2r2
n=1

|22 [ 2521

+ Z Z 32(1 = (N = 2n — 1)m)ram—172n-1

Lzl LEFl-1
- Z 16n7r9m_172n-1

m:LN;dJ n=1

N
NFS

I (32 = (N =2 — 2n)(32m + 16))ramran

(161 + 8)romran

[WN)]m n
N l —n
[O(N)]m k+n[C(N)]m kTt Z

N-1
k=0 [Oé\])]f%mk

0<m<N,n=0
€19)
[O(N)]mk n[O(N)] & 0<m <N, 1<n<N
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4 TABLE II
RESIDUAL CORRELATION (RC) EXPRESSIONS FOR EacH DCT
[ DCT-4 | RC ]
DCT-IE RC-IE
DCT-IE | 75 [SN5 2N = 2)n(N = n)r2 = Szl Tl 8V = n)mrpr,]
DCT-INE | 5[5} 2(n— 14 (N = L= n)(2+ n))r2 - NI 4(N -1 - n)V2r2]
DCT-IVE & [Ta5 2N a(N - nprl)
DCT-10 RC-10
DCT-IIO Same as DCT-10
DCT-1IIO RC-1IIO
DCT-IVO D [Zn L 2N —n)(2n— 1)7';“;]

—2n — 1)16)\/57‘27”_17'2",_1
-1
8V2ram—172n-1

(—32m + (N
L

le
i

m=

L¥]-2 1F]-1

+ > Y (16(N-2-2n)

m=1 n=m-+1

,_
2
Sl
i
3
Il
_

- (32m +16))V2romran

o B A
+ Z Z 8\/_7'2m7'2nj|

m=[§] n=1

RC-I0 =
1 N-1

+2(N —1-n)(10(N - 2) +
N-2

- > 8N —1-n)(3+2(N -3)Var2
n=1
N-1 N-=-2

-3y 16(2m + (2m + 1)(N = 2 = n))rmry

m=1n=m-+1

3)(4N - 6)

N—-1 N-1
+216rnm Y Y 4(-6+4(N-1-n)
=1 m=1n=m+1

(n—1)(4N —10) + 3))r2

—4(m — 1))\/§rm7"n]
RC-1IIO =

1 N-1
NGV 17 [Z ((2N = 3)(4N - 6)

+2(N -1 —n;)l(lo(zv -2)

+ (n = 1)(4N = 10) + 3))r2
N-2

=Y 8(N-1-n)(3+2(N -
;’_;11 N-2

+Z z (_1)m+n+1

m=1n=m<+1

16(2m + (2m + 1)(N = 2 = n))rmrn

3)V2r2

N-2

+ Z (—1)"+N_116’I’n7‘]v_.1
n=1
N-1 N-1

+ > ) ()6 +4(N —1-n)

m=1n=m+1

—4(m — 1))\/§rmrn] »

B. Discussion

In Section IV-A, we obtained expressions that indicate the
rate at which the different DCT’s decorrelate a stationary
process. Analyzing those expressions, one conclusion is im-
mediately obtained: The DCT-IO and the DCT-IIO have the



2640

same decorrelating power for any stationary process. This,
of course, also applies to any stationary Markov process of
first order. The covariance matrix in this case is a Toeplitz
matrix with r, = p", where p,|p| < 1 is the correlation
coefficient. We simply have to substitute in the expressions
of Table II, and we will obtain the residual correlation for
each DCT as a function of both the block size N and
the correlation coefficient p. Such expressions for first-order
Markov processes had been previously obtained by Hamidi et
al. [3] and Kitajima [6] only for the DCT-ZIE and the DCT-
IE, respectively; meanwhile, Jain obtained some expressions
for the performance of the DCT-IE, the DCT-IVE, and the
DCT-IVO, where the dependence on N was omitted.

Analyzing those expressions, we can conclude that the
DCT-IE, DCT-IIIE, DCT-IVE, and DCT-IVO have the same
decorrelation performance for positive and negative p; mean-
while, in the cases of the DCT-IIE, the DCT-IO, and the
DCT-IIIO, there is a different decorrelation behavior for
positive and negative p. In particular, the residual correlation
of DCT-IO for positive p is equal to the residual correlation
of DCT-IIIO for negative p and vice versa.

In Section III, we studied the asymptotic behavior of the
DCT’s ‘with dimension N. Expressions in Table II allow us
now to study the asymptotic behavior of the different DCT’s
as p — 1 or p — —1. We can obtain expressions for the
asymptotic behavior of each DCT when p — 1, which are
functions of N except for the DCT-IIE, which tends to 0 as
p — 1 independently of N. This result had been previously
stated; in fact, it was considered in the original derivation
of the DCT-IIE [1] that was conceived as asymptotically
equivalent to the KLT of a first-order Markov process as
p — 1. That means that for a given N, the DCT-IE is the best
transform for highly positive correlated Markov-1 processes,
as is well known. It can now be easily shown that in the case
of a highly negative correlated first-order Markov process, the
DCT-IIIO gives the best performance for N > 2. We have to
point out that unlike the DCT-IE, the DCT-/IE, and the DCT-
. IIIE, the rest of the transforms do not diagonalize symmetric
Toeplitz matrices of dimension N = 2.

V. SUMMARY

We have obtained the eight types of DCT’s established by
Wang [7] as the complete orthonormal set of eigenvectors gen-
erated by a general form of matrices that can be decomposed
as the sum of a symmetric Toeplitz matrix plus a Hankel or
close to Hankel matrix scaled by some constant factors. We
have also shown that all the previously proposed generating
matrices for the DCT’s are simply particular cases of these
general matrix forms.

Using these matrices, we have obtained for each DCT a
class of stationary processes verifying certain conditions with
respect to which the corresponding DCT has a good asymptotic
behavior in the sense that it approaches KLT performance
as block size N tends to infinity. As a particular result, we
have proven that the eight types of DCT’s are asymptotically
optimal for all finite-order Markov processes.
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We have finally studied the decorrelating power of the
DCT’s, obtaining expressions that show the . decorrelating.
behavior of each DCT with respect to any stationary process.
These expressions allow us to conclude that the DCT-IO
and the DCT-TIO have the same decorrelating power for any
stationary process and, when those expressions are applied to
a first-order stationary Markov process, we obtain that, in the
same way as the DCT-IIE is the best discrete cosine transform
for very highly positive correlated processes, the DCT-IIIO is
the best discrete cosine transform for very highly negative
correlated processes for N > 2.
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