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Abstract— Recent research on multiple vector quantization
(MVQ) has shown the suitability of such technique for speech
recognition. Basically, MVQ proposes the use of one separated
VQ codebook for each recognition unit. Thus, a MVQHMM
model is composed of a VQ codebook and a discrete HMM model.
This technique allows the incorporation in the recognition dynam-
ics of the input sequence information wasted by discrete HMM
models in the VQ process. The use of distinct codebooks also
allows to train them in a discriminative manner. In this paper,
we propose a new VQ codebook design method for MVQ-based
systems, obtained from a modified maximum mutual information
estimation. This method provides meaningful error reductions
and is performed independently from the estimation of the
discrete HMM part of the MVQ model. The results show that the
proposed discriminative design turns the MVQHMM technique
into a powerful acoustic modeling tool in comparison with other
classical methods as discrete or semicontinuous HMM’s,

[. INTRODUCTION

URING the last years, hidden Markov models (HMM)
have been successfully applied to acoustic modeling for

speech recognition. Two main variations of HMM’s have

been widely used: discrete HMM’s (DHMM) and contin-
uous HMM’s (CHMM). The first ones use nonparametric
discrete output probability distributions, due to a previous
VQ process. CHMM’s use parametric densities to model the
output probabilities [1]. The main problem of DHMM’s is
the loss of information about the input signal during the VQ
process. CHMM’s avoid this problem using probability density
functions (pdfs). Thus, CHMM modeling seems to be a more
flexible and complete tool for speech modeling. In spite of
this, they are not always used for the implementation of speech
recognition systems. There are several reasons for it. The main
problem is the large number of parameters to obtain. In order to
obtain a good estimation of them, a big amount of computation
and a large database is required. These requirements can not
be always satisfied with the available resources.

In order to avoid such problems of continuous modeling,
Huang et al {2] propose the use of Semicontinuous HMM
(SCHMM) models, similar to CHMM’s but forcing all the
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models to share the same set of pdfs. Huang has shown that
SCHMM'’s can achieve better results than CHMM’s. Besides,
our group has recently proposed new approaches based on the
use of multiple vector quantization (MVQ) for HMM’s [3.4].
The basic MVQ-based model is the MVQHMM, or simply
MVQ, and is composed of a VQ codebook and a discrete
HMM. These new models have been introduced as a direct
way to incorporate to the system dynamics the information
lost in the VQ process when using the discrete approach. In
order to do this, each MVQ model uses its own VQ codebook
to evaluate the average distortion of the input utterance. With
the same amount of computation in recognition, the MVQ
modeling can outperform DHMM’s and achieve similar or
better results than SCHMM’s (with less computation) [5].

In the case of MVQ models, the use of one specific
codebook per recognition unit allows us to train it in a
discriminative manner. In this paper we propose a discrimi-
native method for codebook design in a MVQ-based system,
derived from the maximum mutual information (MMI) esti-
mation [6], modified to control the error rate reduction. The
resultant centroid updating formulas, obtained from gradient
techniques, resemble the LVQ procedures for classifier design
[7], although avoiding the fixed duration restriction of these
procedures (see [8]). One important feature of the proposed
design is its independence from the estimation of the dis-
crete HMM part of the model, simplifying the computational
complexity of the discriminative training. The experimental
results show that this design improves the reference error rates
for all the tested codebook sizes. This improvement is more
important for small cedebooks, for which the standard ML-
estimated MVQ model performs worse in relation to DHMM’s
and SCHMM’s.

The rest of the paper is organized as follows. Section II
describes the MVQ modeling and its maximum likelihood
(ML) estimation, comparing its performance with that of
other HMM models. Section III discusses the MMI esti-
mation over DHMM and MVQ models. In' Section IV, a
MMI-based codebook design is proposed for MVQ models.
Section V deals with the application of the proposed VQ
design to speech recognition, introducing several modifica-
tions to the original MMI estimation in order to obtain a
meaningful test error rate reduction. The paper ends with the
conclusions and a discussion of the future applications of the
work.
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II. MULTIPLE VECTOR QUANTIZATION HMM MODELING

A continuous HMM model uses a mixture of pdfs to model
the output probabilities in the following form:

> Plxlve, i, ) Pvesi, A)
v €V (85,A)
M

where each P(z|uk,s;,A\) is a log-concave or elliptically
symmetric density [1] (Gaussian along this work) with mean
vector y;, and covariance matrix 3, and x is the input vector.
Each pdf is labeled by one symbol vy that varies in the set
V(si,A) defined for state s; in model A.

The simplification of (1) leads to different HMM ap-
proaches. For example, doing V(s;, \) = VVs;, A, we obtain
a SCHMM. Furthermore, if we assume nonoverlapped pdfs a
SCHMM becomes a DHMM.

Another simplification (MVQ models) can be derived by
assuming a different set of pdfs V() for each model A, and
considering nonoverlapped densities. Thus

bi(x) = Pla]si, \) =

b;(z) = P(z|o, \)P(o|si, A)
0 = maxy,cv(n)  [P(x|vj, A)].

(a)
(2b)

It can be proved that, for an input sequence X = z;---zp,
the density P(X|\) can be expressed as

P(X]A) = P(X]|0,\)P(O[A) ©)

where O = o0;---or is the sequence of symbols obtained
by (2b) corresponding to X for the model A. We shall refer
to P(X|0,)) and P(O|\) as quantization and generation
probabilities, respectively.

If we consider that the model parameter set can be de-
composed as A = (0, ¢), where 6 represents the parameter
set of densities P(z|v;, A) and ¢ is the parameter set of the
discrete HMM model, it can be proved that the ML estimation
of A is obtained from the independent ML estimation of 6
and ¢ [5] (this statement is not exactly true in CSR due
to the use of subword units). The first parameter set (mean
vectors and covariance matrices) can be obtained from a
VQ codebook {y;,j=1,---,M} (trained using the LBG
algorithm, for example). The second one is estimated by
applying the Baum—Welch algorithm, as for DHMM models.

A. Recognition with MVQ Models

A convenient form for the densities P(|o, \) in expression
(2a) is Gaussian with covariance matrix ¥y = a?\l , Where [ is
the identity matrix and 0/2\ is the average distortion per center
and per feature of the codebook # associated to model A\ [4].
Thus, the quantization log-probability for an input sequence
X is written as

T
log P(X|0, ) = > " log P(zy|os, )
t=1

= —% [log(Qﬂ'D_,\/p) + DADE:\X)} 4

where
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2
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and p is the dimension of the considered feature space. Dy
is the average distortion of the codebook associated to model
A, and Dy (X) is the average distortion of the input sequence
X in the same codebook. The log-probability of (4) can be
weighted in order to obtain an optimal composition with the
log-generation probability.

For simplicity, the different techniques introduced in this
paper are tested and tuned on an isolated word recognition
system (due to the large number of performed experiments and
the computation required by some of them). The vocabulary
is made up of 16 words, the 10 Spanish digits and six
keywords, uttered three times by 20 male and 20 female
speakers. The average SNR measured over this database is
24 dB. The speakers are separated in five disjoint groups
containing utterances from eight different speakers (four male,
four female), to be utilized for test (the rest for training).
Thus, each experiment is composed of five different speaker-
independent experiments, whose error results are averaged.
This procedure is similar to the well-known leaving-one-out
technique [9] for error probability estimation. Feature vectors
incorporate liftered cepstrum, delta cepstrum and delta energy
(appropriately weighted), and are compared with an euclidean
distance measure. '

For comparison of MVQ with DHMM models in the
recognition stage, it must be taken into account that with
a 16-word vocabulary, the use of 16 N-center codebooks
in a MVQ system is computationally equivalent to the use
of a single (16 x N)-center codebook in a DHMM system.
However, for the training stage the MVQ procedlire is always

less time-consuming due to the exponential complexity (with -

the codebook size) of the LBG algorithm. Besides, the MVQ
models are always simpler than SCHMM’s in both recognition
and training [3]. Fig. 1 shows that MVQ modeling clearly
outperforms DHMM modeling with the same computational
cost in recognition (for eight or more centers per codebook).
Besides, MVQ models can achieve similar or even better re-
sults than SCHMM’s with a meaningful computational saving.
SCHMM'’s have been designed using Gaussian multivariate
pdfs with diagonal covariance matrices [2].

III. MMI ESTIMATION OF DHMM AND MVQ MODELS

It can be proved that the ML estimation method is optimal
under certain assumptions such as the true model is known or
the training data is large enough [10]. Besides, there is a well-
known algorithm, called Baum—Welch procedure, that provides
a straightforward way for the ML estimation of Markov
models. These reasons explain the success of this type of
estimdtion for HMM models. However, the required optimality
assumptions are basically false and the Baum—Welch method
is not specifically designed for error minimization. On the
other hand, the MMI estimation method does not need any
of the ML optimality assumptions and is related to error rate
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Fig. 1. Error rate versus number of VQ centers for MVQ, DHMM, and
SCHMM.

minimization [11]. The criterion function to be maximized in a
MMI estimation for a training symbol utterance O and DHMM
modeling is (obviating language modeling considerations)
given by

In(0,A) = logPrn(0, A) ©)

where A = {\1,---, A} Qs = {4, Bs,IL}) is the set of
acoustic models, m is the index corresponding to the correct
class model of the input sequence X, and

P(O|A)
L 3

Y P(OIN)
=1

Obviously, s = m in (6). The maximization over the parameter
set A is carried out in this work by means of a standard gradient
descent (see reference [11] for more details). Table I shows the
recognition error rates using ML and MMI estimations in the
DHMM-based system for several codebook sizes. There are no
clear improvements due to MMI estimation on the tested task.

P,(0,A) = =1,---,L. ()

When using MVQ models, it must be taken into account

that the conditional probabilities P, include the quantization
scores, that is, Py = Ps(X, A) [with the same expression as in
(7)]. The derivatives for the (A, B, IT) matrices are exactly the
same as for DHMM’s. The main difference, related to discrete
modeling, is that the MMI estimation must be extended to the
VQ codebooks. Thus, two new derivatives must be included
in the gradient

oI, L oz - y;
™ = (6m.s — P — 15, (8a)
ay; ( y ) ; Ug‘ sVj
oL, Tp [Dy,(X)
E;{ = (0m,s — PS)2U§S [—f);— -1 (8b)

where s and j indicate the model and the center under
consideration, respectively, and §,, ., denotes the Kronecker
delta function between the symbol o, corresponding to the

nearest neighbor center to z; and the symbol v; corresponding

to the considered center y;.

Training Error Rate (%)
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Fig. 2. Training Error Rate evolution for a MMI estimation of matrices
II, A, and B using DHMM models (64 centers) and MYQ (eight centers)
with LBG codebooks.

IV. DISCRIMINATIVE CODEBOOK
DESIGN IN MVQ MODELS By MMI

The MMI estimation of MVQ models does not generate two
independent training processes like the ML estimation [for the
VQ codebook and the (A, B, II) matrices, respectively], since
the P, probability includes both quantization and generation
probabilities.

In spite of the fact that the MMI estimation of MVQ models
is not fully decoupled, there are several reasons that support
the idea of obtaining a discriminative VQ training independent
from the discrete HMM training. These reasons are:

1) The results.of MMI estimation in DHMM'’s do not show

clear improvements (in the reference system) related to
a ML estimation, and, in fact, the MVQ models are,
removing the VQ part, discrete HMM models.
2) The MMI estimation of the discrete HMM part in a
MVQ system would increase the training complexity.

3) The codebook sizes used in MVQ modeling are mean-
ingfully smaller than those of DHMM or SCHMM
modeling. Thus, the recognition with only generation
probabilities is not accurate, and error retrieval is not
easy. Fig. 2 shows how training error rate evolves when
(A, B, II) matrices are obtained by a MMI estimation for
DHMM and MVQ models (LBG-trained codebooks with
64 and eight centers, respectively, are used). It can be ob-
served that the error reduction is much more pronounced
for DHMM’s, and negligible for MVQHMM’s.

The above items point out that only a MMI codebook design
could be profitable for error rate reduction, using equation
(8a). Parameters o2 are still estimated as average distortions
and are not updated by (8b) (in the next sections we will go
back to this point). In order to obtain a VQ design method
totally independent from the discrete HMM training, the P
probabilities must include only quantization probabilities

P.(X,0) = LP(XIOS,/\S) _ LP(Xlgs) o
ST P(X[0uN) Y P(X|6)
=1 =1
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Fig. 3. MVQ codebook evolution by means of MMI-MVQ design.

where © = {0;,---,01} C A only contains the VQ parame-
ters (center vectors and average distortions). We shall refer to
this codebook implementation as MMI-MVQ design.

The MVQ system training can be summarized in the three
following steps:

1) Construction of one codebook per recognition unit using
the LBG algorithm.

2) Reestimation of codebook centers using derivative (8a)
[with P corresponding to (9)] for iterative updating.
Parameters 0% maintain the average distortion sense.

3) Estimation of the discrete HMM part (matrices 11, A,
and B) using the Baum-Welch algorithm.

To illustrate the codebook evolution (step 2), let us consider
the following example depicted in Fig. 3: we have a set
of training sequences belonging to two different classes W1
(framed by solid lines) and W2 (framed by dotted lines). A
LBG two-center codebook is constructed for each class (C1
and C2). This recognition scheme’ presents one error using
probabilities P(X|0) for decision. We apply 10 iterations
using a gradient descent and equation (8a) for center updating.
Fig. 3 shows the center trajectories. After five iterations, the
classification error disappears. The main effect of the MMI-
MVQ design is to move away the VQ centers from incorrect
vectors, maintaining a correct classification. It is interesting
to observe the great difference between the original LBG
codebooks and the error-free ones.

V. APPLYING THE MMI-MVQ
DESIGN TO SPEECH RECOGNITION

In the expression (8a), the corrections are weighted by the
factor (6,,,s — Ps), where Py is given by (9). According to
(4), the quantization probabilities P(X|6;), and therefore P,
strongly depend on the duration 7'. Since P(X8;) is obtained
as the product of 7' Gaussian densities, the T'th root provides
a time normalization that removes such dependence from
P(X]18,), and, therefore, from Py and (6,,, s — Ps). Probabilities
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Fig. 4. Error rate evolution with and without temporal normalization. Effect
of a?\ estimation. (a) Training error rate evolution. (b) Recognition error rate
evolution.
Py are expressed now as

P(X18,)°/T
Z P(X6,)°/"

=1

P.(X,0) = (10)

where B = 1 in the following discussion.

In addition to the time equahzatlon effect of the normal-
ization, there is another issue that is addressed next: let us
assume that no T'th root is applied and T — oo. Then, we
have P, —» 1 if P(X|6;) is the maximum probability, and
P, — 0 otherwise. For such limit, it can be easily verified
that |6,,,s — Ps| coincides with the empirical error, that is,
|6:m,s — Ps| tends to zero in the case of a correct classification,
and to one otherwise. We can conclude that the main effect
of the time normalization is the smoothing of |6,, s — Psl,
increasing its value for less probable models. In fact, the
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‘Fig. 5. Error rate evolution for 4, 8, 16, and 32 centers and 8 = 0.5,1.0, and 2.0 versus the number of iterations (MMI-MVQ method). (a) 4

centers. (b) 8 centers. (c) 16 centers. (d) 32 centers.

smoothing of the empirical error function is necessary to obtain
analytically tractable discriminative estimation methods, since
the empirical error is a nondifferentiable function.

The effect of the time normalization over probabilities
P, is shown in Fig. 4, where an eight-center codebook size
with and without time normalization (10 iterations) is used.
The training error rate is obtained using only quantization
probabilities, and the recognition one from the whole system
(including generation probabilities). No noticeable differences
are observed in the training stage, although the plot corre-
sponding to no normalization (NO-NORM) converges slightly
faster than the plot corresponding to the use of temporal
normalization (NORM). This is a logical behavior since NO-
NORM implies a more direct attack to the empirical training
error rate. However, the NORM plot shows that the temporal
normalization method is much more powerful in testing. This
result indicates that not only the errors are important to
perform corrections, but also that near-misses can be even
more effective to correct possible recognition errors. Both
experiments, NORM and NO-NORM, use the updating (8a).
It must be observed that a full time normalization should
include a division of (6,5 — Ps) by duration T in (8a).
Thus, although all the training utterances have the same
importance for the calculation of P, in experiment NORM,
each feature vector contributes to the gradient in the same
degree, without considering whether it belongs to a longer or a

shorter sequence. A full time normalization is also depicted in
Fig. 4 (experiment TOT-NORM). The error rates provided by
TOT-NORM in test are slightly worse that those form NORM.
The next experiments are performed with the normalization
applied in NORM.

A. Estimation of o3

In the proposed MMI-MVQ codebook design, o3 keeps the
meaning of average distortion, instead of being reestimated
by means of (8b). In order to justify this point, another
experience (labeled as VAR) has been plotted in Fig. 4, similar
to NORM but including the reestimation of 0% using (8b).
This reestimation makes training convergence slightly faster
than NORM. This could be expected, since there is now one
more parameter to be discriminatively trained. In the case of
recognition experiences, the behavior is the same as in training
for the first iterations. However, from the fifth iteration on, the
previous trend is inverted, and VAR works worse. The expla-
nation for this behavior is that o is a normalization factor
in score (4). If this parameter is discriminatively trained, then
the composition of quantization and generation probabilities
becomes suboptimal (as we pointed out in Section II-A).

B. MMI-MVQ Codebook Design Performance

In the expression of P, proposed in (10) we introduced a
factor . Its role is to control the approximation of |6, s —
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Fig. 6. Function Ps(us) for 3 = 0.5,1, and 2 and normalized histograms
of variable u for four (solid lines) and 16 (dotted lines) centers per codebook
and for correct (¢ four centers, (1 16 centers) and incorrect (4 four centers,
X 16 centers) utterances.

P;| to the empirical error. Note that with all the applied
modifications the resultant MMI-MVQ codebook design is not
an MMI estimation. However, we will keep the MMI-MVQ
abbreviation for the described procedure.

Fig. 5 shows the recognition error rate evolution plots as
a function of the number of iterations of the MMI-MVQ
procedure for four, eight, 16, and 32 center codebooks, and
for B = 0.5,1.0, and 2.0 in (10). Iteration zero denotes
the original MVQ system error rate. It is observed that the
value of factor § must be decreased when the codebook size
is increased. Thus, 8 = 2 is appropriate for four centers, § =1
for eight, and 8 = 0.5 for 16 and 32 centers. That is, |6 s —Fs|
must be smoothed when the codebook size is increased.

An appropriate value of 3 can be graphically determined
from the histograms of the probabilities p, = P(X6,)Y/7.
Fig. 6 shows the normalized histograms of the average values
of us = ps/>, i for the correct and the best incorrect class
for four and 16 centers per codebook (correct utterances are
concentrated near u; = 1 and incorrect ones are near ug, = 0).
These plots are superposed to those of the function

' I3
uS
Ps(U/s) uﬂ—(l—/u,s)’g

8

for 8 = 0.5,1.0, and 2.0, where (6m,s — Ps(u,)) would be
the correction factor in (8a) for an input sequence in a two
classes problem (we are only considering the correct and best
incorrect classes). For 3 = 2, it is observed that the most
contributing utterances to the gradient are those placed in the
center of the plot (us = 0.3 to 0.7). In fact, most of the error
minimization methods tend to take training vectors from the
boundaries between classes, that is, where an error can take
place. That is not a problem for the case of four centers, since
there are enough training utterances in that area, but when 16
centers are used this area is almost empty, and insufficient
training problems can arise. Thus, the value of S must be
decreased to include utterances from the side areas.

an

TABLE 1
RECOGNITION ERROR RATE FOR ML AND
MMI EstivaTiONS IN DHMM MODELING

Codebook | Error (%) Error (%)
Size DHMM-ML | DHMM-MMI
64 5.10 541
128 4.63 4,58
256 3.69 3.48
512 3.17 322
TABLE 1

ERROR RATE FOR DHMM, SCHMM AND MVQ MODELS WITH ML
ESTIMATION AND MvQ wWITH MMI-MVQ CopEBOOK DESIGN

# Centers | DHMM SCHMM MVQ MMI-MVQ
64/4 5.10 348 7.96 3.58
128/8 4.63 2.76 291 1.97

256/16 3.69 1.87 177 1.40
512/32 3.17 1.66 1.61 1.35

VI. CONCLUSIONS

We have proposed in this paper a new variant of the
MMI estimation method, thought for a proper test error rate
reduction. The results show that the discriminative codebook
design obtained from this MMI-based method can be very ef-
ficient for the pursued goal when using MVQ models. Table II
summarizes the obtained error rates and compares them with
those from ML estimations of DHMM, SCHMM and MVQ
models. It can be observed that the use of discriminative
codebooks can approximate the performance of a MVQ system
to that of a SCHMM system for four centers per codebook, and .
provides the best results for eight, 16, and 32 centers. It must
be taken into account that a MVQ system involves the same
computation as a DHMM-based system in recognition. Thus,
the computational saving of MVQ’s in relation to SCHMM’s is
the same as that obtained with DHMM’s. The proposed MMI-
MVQ codebook design is more effective for small codebook
sizes. This result agrees with the statement that establishes
the suitability of the MMI estimation in the case that the true
model is not known [11] (the model is more incorrect for
small codebook sizes). The similarity of the results for 16
and 32 centers can be exploited to reduce the computational
complexity of a high performance system. Furthermore, even
with only eight centers, an error rate value below 2% can be
reached. '

Although we have utilized here a MMI-based approach, the
proposed method is opened to other discriminative schemes
yielding center updating formulas of the form ’

T
U, =y +0f(X,A) Z (@t = Yi)bos,0i

t=1

(12)

where function f(X,A) is defined by the utilized estimation
method, and 7 is a small real positive number. For example,
a minimum classification error (MCE) estimation [12] can
be applied (for details of the implementation see reference
[13]), obtaining similar results, although it involves more
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experimental parameters to be fitted. It must be pointed
out the similarity between the proposed codebook designs,
summarized in (12), and the LVQ techniques proposed by
Kohonen [7]. The main difference is that (12) needs no
time alignment as other LVQ-based applications to speech
recognition [8]. In our system, the time alignment information
is processed by the discrete HMM part of the MVQ model.

Finally, we also think that the proposed techniques could be
very useful in a continuous speech recognition task, because
of the high degree of confusion among subword units.
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