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Abstract—This paper describes a method of compensating for
nonlinear distortions in speech representation caused by noise.
The method described here is based on the histogram equaliza-
tion method often used in digital image processing. Histogram
equalization is applied to each component of the feature vector
in order to improve the robustness of speech recognition systems.
The paper describes how the proposed method can be applied to
robust speech recognition and it is compared with other compen-
sation techniques. The recognition experiments, including results
in the AURORA II framework, demonstrate the effectiveness
of histogram equalization when it is applied either alone or in
combination with other compensation techniques.

Index Terms—Cepstral mean normalization, histogram equal-
ization, mean and variance normalization, Mel frequency cepstral
coefficients, probability density function (pdf), robust speech
recognition, vector Taylor series approach.

I. INTRODUCTION

NOISE strongly degrades the performance of speech recog-
nition systems. For this reason, robust speech recognition

is one of the focus areas of speech research [1]–[5]. Noise has
two main effects on speech representation. First, it introduces
a distortion in the feature space. Secondly, due to its random
nature, it also causes a loss of information [6], [7]. The effect of
the distortion depends on the speech representation and the type
of noise, and it usually produces a nonlinear transformation of
the feature space. For example, in the case of cepstral-based rep-
resentations, additive noise causes a nonlinear transformation
that has no significant effect on high-energy frames but a strong
effect on those with energy levels in the same range or below
that of the noise [6]–[9]. This distortion causes a mismatch
between the training and recognition conditions. The acoustic
models trained with speech acquired under clean conditions do
not model speech acquired under noisy conditions accurately
and this degrades the performance of speech recognizers.
Compensation methods for robust speech recognition mainly
focus on minimizing this mismatch. Some methods try to adapt
the acoustic models to noisy conditions in order to allow them
to represent noisy speech properly, whereas other methods try
to determine the features of the clean speech from the observed
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noisy speech. In the former case, the noisy speech is recognized
using noisy models. In the latter case, a clean version of the
speech is recognized using the clean models. Finally, some
methods include operations in the feature extraction module
in order to minimize the effect of noise superimposed on the
speech representation [1], [10], [11].

Thus, for example, cepstral mean normalization (CMN) [12]
is usually applied as a part of the feature extraction in order to re-
move the global shift of the mean affecting the cepstral vectors.
This normalization compensates for the main effect of channel
distortion and some of the side effects of additive noise. How-
ever, the nonlinear effects of additive noise on cepstral-based
representations cannot be treated by CMN and this makes this
method effective only for moderate levels of additive noise.
This method is improved by mean and variance normalization
(MVN) [13] because normalization of the mean and the vari-
ance yields a better compensation of the mismatch caused by
additive noise.

Other methods, such as spectral subtraction [14] or the vector
Taylor series (VTS) approach [6], [8], [15]–[18] yield more
effective compensation of additive noise since they can deal
with the nonlinear effects of noise. Robust methods based on
the adaptation of acoustic models include Statistical Re-esti-
mation [6], [8], [19] and parallel model combination [9], [20],
which apply independent corrections to each Gaussian pdf in
the acoustic models. These are able to model nonlinear effects
of the distortion caused by noise correctly. Most compensation
methods are based on estimations of convolutional and additive
noise and a statistical or analytical formulation describing the
effect of noise superimposed on the speech representation.

This paper describes a method of compensating for the noise
affecting speech representation. The method is based on the
histogram equalization (HEQ) technique, which is often used
in digital image processing [21], [22]. This technique has been
adapted here for use with speech representation. This method
provides a transformation mapping the histogram of each
component of the feature vector onto a reference histogram.
This compensates for the effect of noise processes distorting
the feature space. The effectiveness of the method relies on
estimating the histograms of the speech to be compensated
correctly and the assumption that the effect of the noise dis-
tortion is a monotonic transformation of the representation
space. The first assumption makes the method more effective as
more speech frames are involved in estimating the histograms.
Generally, the second assumption cannot be verified due to
the random behavior of the noise process. The effect of the
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noise can be considered to be a random transformation of
the feature space. If both processes are considered separately,
the transformation causes a mismatch between training and
recognition conditions while the random behavior causes an
irreversible loss of information. HEQ is able to compensate
for the transformation causing the mismatch, but (like all other
compensation methods) it is not able to compensate for the
effect introduced by the random behavior of the noise. An
important difference between the HEQ method and most of
the other compensation methods is the fact that no analytic
assumptions are made about the noise process or the way the
noise affects the speech representation. Therefore, the HEQ
method would be able to compensate for a wide range of noise
processes affecting a wide variety of parameterizations of the
speech signal.

This paper reviews the HEQ method and describes how it
can be adapted to compensate for the noise superimposed on
the speech representation. We have studied the relationship be-
tween HEQ and other compensation methods such as CMN and
MVN, and more complex methods such as VTS. We have also
proposed a combination of VTS and HEQ. The different noise
compensation methods were evaluated using automatic speech
recognition experiments performed under a variety of different
noise conditions. The experimental results reveal the usefulness
and limitations of HEQ for speech recognition in the presence
of noise.

II. HISTOGRAM EQUALIZATION FOR ROBUST

SPEECH RECOGNITION

A. Review of the Histogram Equalization Procedures

HEQ was originated as a technique for digital image pro-
cessing [21], [22]. Its aim is to provide a transformation

that converts the probability density function of
the original variable into a reference probability density function

. The transformation therefore converts the
histogram of the original variable into the reference histogram,
i.e., it equalizes the histogram. The formulation of the method
is described below.

Let be a unidimensional variable following a distribution
. A transformation modifies the probability

distribution according to the expression

(1)

where is the inverse transformation of . The rela-
tionship between the cumulative probabilities associated with
these probability distributions is given by

(2)

and therefore, the transformation , which converts
the distribution into the reference distribution

(and hence converts the cumulative probability
into ), is obtained from (2) as

(3)

where is the inverse function of the cumulative proba-
bility , providing the value that corresponds to a cer-
tain cumulative probability . For practical implementations, a
finite number of observations are considered and therefore cu-
mulative histograms are used instead of cumulative probabili-
ties. For this reason the procedure is referred to as histogram
equalization rather than probability distribution equalization.

The HEQ method is frequently applied in digital image pro-
cessing as a means of improving the brightness and contrast of
digital images and to optimize the dynamic range of the grey-
level scale. HEQ is a simple and effective method for automat-
ically correcting images that are either too bright or too dark or
that have a poor contrast.

B. Application of Histogram Equalization to the Speech
Representation

HEQ allows accurate compensation of the effect of any non-
linear transformation of the feature space provided that 1) the
transformation is monotonic (and hence does not cause an in-
formation loss) and 2) there are sufficient observations of the
signal being compensated to allow an accurate estimate of the
original probability distribution.

In the case of digital image processing, the brightness and
contrast alterations are mainly due to incorrect lighting or non-
linearities in the receptors. These usually correspond to mono-
tonic nonlinear transformations of the grey-level scale. On the
other hand, an image typically contains from several thousand
to several million pixels. All of them contribute to an accurate
estimation of the original probability distributions. This makes
HEQ very effective for image processing.

In the case of automatic speech recognition, the speech signal
is segmented into frames, with a frame period of about 10 ms,
and each frame is represented by a feature vector. The number
of observations for the estimation of the histograms is much
smaller than in the case of image processing (typically several
hundred frames per sentence) and also an independent HEQ pro-
cedure needs to be applied to each component of the feature
vector. If the method is applied for noise compensation, it should
be borne in mind that the more frames that are considered when
estimating histograms, the more accurate the transformation ob-
tained for the noise compensation will be. Additionally, HEQ is
intended to correct monotonic transformations but the random
behavior of the noise makes the transformation nonmonotonic,
resulting in a loss of information in addition to the mismatch.
Therefore, like other noise compensation methods, HEQ can
deal with the mismatch caused by the noise but not with the
loss of information caused by the random behavior of the noise.
This limits the effectiveness of HEQ based noise compensation.

We applied HEQ to each component of the feature vector rep-
resenting each frame of the speech signal. In order to obtain the
transformation for each component, the cumulative histogram
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was estimated by considering 100 uniform intervals between
and , where and are the mean and the

standard deviation for the component of the feature vector,
respectively. The transformation was computed according to (3)
for the points in the center of each interval and was applied
to the parameters to be compensated as a linear interpolation
using the closest pair of points for which the transformation
was computed. Original histograms were estimated using the
frames of each utterance. Thus, the HEQ method was applied
on a sentence-by-sentence basis. The speech representation used
was based on the Mel Frequency Cesptral Coefficients (MFCC)
[23], [12], and included the logarithm of the energy, the cepstral
coefficients and the first and second associated regression co-
efficients. A Gaussian probability distribution with zero mean
and unity variance was used as the reference probability distri-
bution for each component. HEQ was applied as a part of the
speech signal parameterization process both during training of
the acoustic models and during the recognition process.

Fig. 1 shows how the HEQ method compensates bfor the ef-
fect of noise on the speech representation. In this case, We con-
taminated the speech signal with additive Gaussian white noise
at SNRs ranging from 60 dB to 5 dB. The figure shows the ef-
fect of the noise and HEQ on the energy coefficient and the 3rd
cepstral coefficient. The plots in the first row show the original
probability distributions1 for these components and for the dif-
ferent noise levels. As may bee seen, the noise severely affects
the probability distributions of the speech causing a consider-
able mismatch when the training and recognition SNRs differ.
The plots in the second row show how these coefficients change
over time. The speech signal corresponds to the pronunciation of
the Spanish digit string “8089.” Again, the mismatch caused by
noise can be observed. The plots in the third row show the trans-
formations obtained in each case in order to convert the original
histograms into the reference histogram, according to the proce-
dure described above. The histograms of the transformed speech
representation are shown in the following plots and, as may be
observed, they approximate to the reference Gaussian proba-
bility distribution. Finally, the last plots show how the equalized
components change over time. In this case, the mismatch caused
by the noise is significantly reduced. However, HEQ cannot re-
move completely the noise effect due to its randomness. Similar
plots would be observed for the other components.

C. Relationship Between Histogram Equalization and Other
Methods

HEQ can be considered an extension of other well known
methods, such as Cepstral Mean Normalization [12] or mean
and variance normalization (MVN) [13]. CMN is usually ap-
plied in MFCC-based parameterizations and compensates for
the global shift of the probability distributions caused by the
presence of noise. In order to apply CMN, the mean of the
variable is estimated, and the compensated variable is
computed as

(4)

1These probability distributions have been estimated by smoothing and nor-
malizing the histograms obtained from 30 s of speech.

CMN therefore makes the mean of the compensated variable
zero and so equalizes the first moment of its probability

distribution.
The MVN method equalizes the first two moments of the dis-

tribution (i.e., the mean and the variance) by applying the linear
transformation

(5)

where and are the mean and the standard deviation of the
variable , respectively. After applying MVN, the equalized
variable has zero mean and unity variance.

Both CMN and MVN are a useful means of compensating for
channel distortion and also for some effects of additive noise.
However, they only provide linear transformations of the orig-
inal variable. Due to the nonlinear nature of the distortion caused
by additive noise in the cepstral domain, they suffer from lim-
itations when are used to compensate for the effect of additive
noise.

The HEQ procedure described here equalizes all the moments
of the probability distribution to those of the reference proba-
bility distribution. Therefore, this procedure can be considered
to be an extension of CMN and MVN to all the moments of the
pdf. In addition, it allows the estimation of nonlinear transfor-
mations. This makes HEQ more appropriate than CMN or MVN
when dealing with additive noise.

Fig. 2 shows the effect of the CMN and MVN procedures
when they are applied to compensate for additive noise. These
plots correspond to the same speech signal as in Fig. 1. The
transformations and histograms of the normalized variable and
the time course of the normalized variable are shown for the en-
ergy coefficient. On the left side, the effect of CMN is shown.
The effect of MVN is shown on the right. We can observe that
both CMN and MVN methods provide a limited compensa-
tion of the mismatch caused by additive noise. Compared with
these linear methods, HEQ provides more appropriate transfor-
mations to reduce the noise mismatch.

III. COMBINATION OF HISTOGRAM EQUALIZATION

WITH OTHER METHODS

One of the particularities of HEQ is that its formulation does
not rest on any assumptions about the speech representation
or the process causing the distortion. Other methods for robust
speech recognition are formulated taking into account the nature
of the noise and the mechanisms affecting the speech represen-
tation in a given domain. One could expect that such methods
provide a compensation of the noise effects that is more accu-
rate than that provided by HEQ. This absence of assumptions
could be considered a drawback of the proposed HEQ method.

However, because of this absence of assumptions, HEQ is
able to deal with distortions coming from different processes.
In particular, one could expect a compensation of the residual
noise after applying other methods such as spectral subtraction,
Wiener filtering or VTS. An additional improvement could be
expected from compensation of this residual noise provided by
HEQ.
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Fig. 1. Effect of HEQ over the speech representation for the energy coefficient (plots in the left side) and the third cepstral coefficient (in the right side).
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In this paper we have considered the combination of HEQ
with VTS. In the following sections we will review the VTS
approach and propose a combination of VTS and HEQ as a way
of improving the compensation provided by VTS.

A. Vector Taylor Series Approach

The VTS approach [6], [15], [8], [16]–[18] is a noise com-
pensation method providing a clean speech representation by
removing the additive and/or the convolutional noise. This noise
compensation is performed in the logarithmically scaled filter-
bank energy (log-FBE) domain. The method assumes a model
describing the statistics of clean speech, and that the effect of
the noise can be described as an additive term in the log-FBE
domain

(6)

where and are vectors in the log-FBE domain representing
the clean and noisy speech respectively, for a given frame, and
and represent the additive noise and the channel distortion af-
fecting this speech frame, respectively. For simplicity, we shall
ignore channel distortion (more details can be found in the refer-
ences concerning VTS). For the channel, the relationship be-
tween the noisy speech, the clean speech and the additive noise
can be written as

(7)

where

(8)

and is a constant whose value depends on the logarithmic
compression applied to convert the filter-bank energies
into in the log-FBE domain (if then

; if then
).

Two auxiliary functions and can be defined as

(9)

(10)

verifying that

(11)

(12)

where is the Kronecker’s delta. The noisy speech can
be approached using a Taylor series around the values and

. The second-order approach is

(13)

where , and are the functions , and
evaluated at and .

We can describe how a Gaussian pdf in the log-FBE domain
is affected by additive noise using this Taylor series approach.
Let us consider a Gaussian pdf representing clean speech, with
mean and covariance matrix and let us assume a
Gaussian noise process with mean and covariance matrix

. We can expand the Taylor series around
and . The mean and the covariance matrix of the
pdf describing the noisy speech can be obtained as the expected
values

(14)

(15)

and can be estimated as a function of , , and
as

(16)

(17)

where , and are evaluated for
and . Thus, the Taylor series approach gives a
Gaussian pdf describing the noisy speech from the Gaussian pdf
describing the clean speech and the Gaussian pdf describing the
noise.

If the clean speech is modeled as a mixture of Gaussian
pdfs, the Vector Taylor Series approach provides an estimate of
the clean speech given the observed noisy speech and the
statistics of the noise ( and ) as

(18)

where is the mean of the clean Gaussian pdf and
is the probability of the noisy Gaussian generating the noisy

observation , given by

(19)

where is the a-priori probability of the Gaussian and
is the noisy Gaussian pdf (with mean

and covariance matrix ) evaluated at . The mean and co-
variance matrix of the noisy Gaussian pdf can be estimated
from the noise statistics ( and ) and the clean Gaussian
pdf ( and ) using (16) and (17). In the experiments de-
scribed here we have considered a first-order Taylor series. Only
additive noise has been compensated for and no compensation
of channel distortion has been considered.

B. Combination of Histogram Equalization With VTS

Taking into account the fact that HEQ and VTS compensation
methods are based on different formulations one could expect
that different noise effects could be compensated by the appli-
cation of each. For this reason, we have also carried out exper-
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Fig. 2. Effect of CMN (left side) and MVN (right side) over the representation of speech for the energy coefficient.

iments where both compensation methods are combined. The
VTS approach provides an appropriate compensation of addi-
tive noise provided that (A) the combination of the speech and
the noise is additive in the FBE domain and (B) the standard
deviation of the noise process is small for the different compo-
nents in the log-FBE domain. However, the noise compensation
yielded by VTS is limited for several reasons:

• noise transforms each Gaussian pdf into
a non-Gaussian pdf;

• even for a high order in the VTS expansion, (18) is no
more than an approximation;

• a limited order in the VTS expansion assumes that stan-
dard deviations in the clean speech Gaussian pdfs and the
noisy Gaussian pdf are small.

These facts mean that the VTS-based estimation of the clean
speech is affected by residual noise [24]. Modeling the residual
noise is difficult in the log-FBE domain or in the cepstral do-
main, because it is not stationary (as it depends on the local
signal to noise ratio) and because of its spectral distribution.

HEQ can be used in order to reduce this residual noise.
After VTS is applied in the log-FBE domain and the feature
vectors (including the logarithmic Energy, the cepstrum and
the regression coefficients) are obtained, HEQ can be applied
to each component of the feature vector. The experiments
in which both compensation methods have been applied are
labeled VTS+HEQ. As in the case of other compensation
methods, VTS+HEQ is applied sentence-by-sentence during
both training and recognition.

IV. EXPERIMENTS AND RESULTS

The proposed HEQ method was evaluated with two different
groups of continuous speech recognition experiments. In the
first group, stationary noise processes were considered and
recognition experiments were carried out with two Spanish
speech databases. The second group of experiments was per-
formed within the AURORA II framework. In this case, the
speech was contaminated with several kinds of noise recorded
in real conditions.
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A. Experiments With Stationary Noise

Two different recognition tasks, based on two Spanish speech
databases were used to test HEQ with stationary noise. The
task labeled MGEO consisted of recognizing of sentences in
a geographical context, with a vocabulary of 203 words. For
this task we used the MINIGEO Spanish database [25], [26],
which contains 600 sentences and 5655 words. The task la-
beled CONN-DIG consisted of recognizing connected digits (10
words in the vocabulary) and for these recognition experiments
a Spanish connected digits database was used. This database
contains 600 sentences and 4800 words. For the MGEO task,
an appropriate bigrammar (estimated from the set of sentences
allowed in this recognition task) was used as the language model
[26]. The perplexity estimated for MGEO task using this bi-
grammar is 5.9. A connected-digit language model was used for
the CONN-DIG task (ten word vocabulary; unrestricted length
of sentences; after each digit, all digits are equally probable).

A Semi-Continuous Hidden Markov Model (SCHMM)
recognition system [27], [28] was trained for both tasks. This
recognizer used 256 Gaussian pdfs common to all the states
in all the models. Each of the 24 main Spanish phonemes was
modeled as a 3-state left-to-right HMM. A special HMM with
1 state was included in order to model silence. The acoustic
models were trained with the EUROM1 database [29] (con-
taining 803 sentences and 8648 words). For both training and
recognition, versions of the cited databases decimated to 8 kHz
were used. The speech representation includes pre-emphasis
and segmentation of the signal into frames, with a frame length
of 30 ms and a frame period of 10 ms. Each frame is represented
as a feature vector including a logarithmic energy coefficient,
14 MFCC coefficients and the associated delta and acceleration
coefficients, thus totaling 45 components.

In these experiments the speech signal was contaminated with
2 different kinds of additive noise. The first was recorded near
a computer and included stationary sound from several sources,
the most important of which came from the spinning of the hard
disk. The second was Additive Gaussian White Noise (AGWN).
The spectrum of both noise sources is represented in Fig. 3.
These noise signals were used to artificially contaminate the
speech signals. In order to reduce the mismatch between the
training and the recognition conditions, the recognition system
was trained with speech contaminated with AGWN at a SNR
of 30 dB. The recognition experiments were performed for both
recognition tasks and by contaminating the speech signals with
both kinds of noise with SNRs ranging between 30 and 0 dB.

For each recognition condition we carried out 5 different ex-
periments: CMN, MVN, HEQ, VTS, and VTS+HEQ. CMN
and MVN were extended to all the components of the feature
vector and used as a reference to compare the HEQ compen-
sation method. The HEQ results correspond to the application
of the histogram equalization method to each component of the
feature vector. CMN, MVN and HEQ were applied to each sen-
tence independently, i.e., the estimation of the mean, variance
or the histograms are based on the observations corresponding
to the sentence to be compensated. VTS was also implemented
as a sentence-by-sentence compensation method. The noise af-
fecting each band of the filter bank was estimated from the

Fig. 3. Power spectrum of the noise signals used to contaminate the speech
signals.

frames labeled as silence by a speech activity detector. The esti-
mation of clean speech was based on a first-order VTS develop-
ment (including terms associated with the speech and the noise)
and made use of a 128 Gaussian mixture in the log-FBE domain
estimated using the training data-base. Finally, VTS+HEQ was
a combination of the last two methods. In this case, compen-
sation of additive noise was first performed by applying VTS
in the log-FBE domain. HEQ was then applied to the resulting
speech representation in the MFCC domain. In all the cases,
the compensation method was applied during both training and
recognition.

As a reference for the upper limit of performance that can be
achieved by the compensation methods, we also included the
results labeled Retrain. In this case the recognition system was
trained with speech contaminated with noise under the same
conditions as those in which recognition was performed. This
minimizes the mismatch between the training and the recogni-
tion conditions.

The plots in Fig. 4 show the recognition performance (Word
Error Rate) as a function of the SNR for both tasks and both
kinds of noise when each of the different compensation methods
was used. These plots show how, for a given SNR, the effect
of the computer noise is less important than the effect of the
AGWN, because the latter produces a degradation of all the
spectral components while the former degrades a few spectral
components more severely but leaves the others only slightly
affected. The information loss caused by noise can be seen in
the degradation of the performance in the case of the retrained
recognizer. In this case, the mismatch is minimized and the per-
formance is degraded mainly because of the random behavior
of the noise and the loss of information it causes.

The results given by MVN are better than those of CMN.
This is due to the equalization of more moments in the pdf of
the noisy speech, which provides a better compensation of the
mismatch caused by noise. Similarly, a significant improvement
was given by HEQ compared with CMN and MVN. The linear
transformations provided by CMN and MVN were not enough
to compensate for the nonlinear effects of additive noise, while
HEQ was able to deal with them.
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Fig. 4. Recognition results under stationary additive noise. Word error rate as a function of the SNR obtained by applying the different noise compensation
methods.

The VTS compensation method provides more accurate com-
pensation of the noise than HEQ since 1) it is based on an esti-
mate of the noise statistics; 2) it makes use of information about
the distribution of the vectors representing clean speech; and 3)
it also makes use of an analytical description of the process by
which the speech signal and the noise are combined in the rep-
resentation. When the VTS and HEQ methods are combined,
the results are better than those achieved using each technique
in isolation. This fact shows that each compensation method is
able to exploit some independent information. When both com-
pensation methods are combined, considerable improvements
are achieved under noisy conditions and the recognition results
are close to those obtained when the recognizer is retrained.

B. Experiments With the AURORA II Database

The different noise compensation methods were evalu-
ated within the AURORA II experimental framework [30].
According to the recommendations suggested during the
AURORA session at the ICSLP-2002 conference, a re-end-
pointed version of the database was used. The database was

accurately endpointed leaving 200 ms of silence at the be-
ginning and at the end of each sentence. The AURORA II
database is a subset of the TI-DIGITS, and contains connected
digits spoken in English and recorded in a clean environment.
Utterances were contaminated by adding several noise types at
different SNR levels. Three test sets were defined. Set A and
Set B contained only additive noise, whereas set C included
additive noise and a simulated channel mismatch.

For this task, continuous density left-to-right HMMs were
used as acoustic models. Each digit was modeled with 16 emit-
ting states and a three-Gaussian mixture per state. Two addi-
tional models are defined for the silence. The first one models
the silence at the beginning and at the end of each utterance. It
consists of three states with a six Gaussian mixture per state.
The other one models the inter-digit pauses and has only one
state tied to the central state of the silence model. The recog-
nizer is based on HTK and it uses a 39 component feature vector
including 12 MFCCs, the logarithm of the energy and the corre-
sponding delta and acceleration coefficients. Feature vectors are
extracted at a frame rate of 100 Hz (more details can be found
in [30]).
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TABLE I
RECOGNITION RESULTS (WER %) OF MGEO AND CONN-DIGIT TASKS, AVERAGED ACROSS THE SNR BETWEEN 3 AND 21 dB,

AND FOR AURORA II TASK, AVERAGED FOR SNR BETWEEN 0 AND 20 dB

For each noise type and each SNR, we have carried out 6 dif-
ferent recognition experiments: Baseline, CMN, MVN, HEQ,
VTS and VTS+HEQ. In all these experiments, the recognizer is
trained using clean speech. An additional experiment, labeled
Multicondition, was also included. In this case the baseline rep-
resentation was used and the recognizer was trained with sen-
tences contaminated with different kinds and levels of noise, as
defined in the AURORA II framework.

As in the previous experiments, the different compensation
methods were used during both training and recognition. The
estimates of the means and variances (for CMN and MVN) or
the estimates of the histograms (for HEQ and VTS+HEQ) were
obtained from the sentence to be recognized. VTS was also
applied on a sentence-by-sentence basis. The statistics of the
noise affecting each band of the filter-bank were estimated from
the silence at the beginning of each utterance. The estimate of
the clean speech was based on a first-order VTS approach (in-
cluding the terms associated with the speech and noise) and used
a 128 Gaussian mixture in the log-FBE domain obtained from
the training database.

Fig. 5 shows the recognition performance (Word Error Rate)
as a function of the SNR for the AURORA II experiments. These
results are the average for sets A, B and C, i.e., average results
for all the types of noise considered. In the figure, successive
improvements may be observed as more moments are equal-
ized in the pdfs. Thus, CMN improves on the Baseline results,
MVN improves on CMN and HEQ improves on MVN. Again,
the linear transformations provided by CMN or MVN seem to
be insufficient to compensate for the nonlinear effects caused by
the noise.

If we compare the results provided by HEQ and VTS, the
behavior is different from that observed in the MGEO and
CONN-DIG tasks. With AURORA II, the plots are significantly
closer, and HEQ outperforms VTS at SNR levels below 5 dB.
This difference could be associated with the nonstationarity
of the noise used for AURORA II experiments, which makes
it harder to estimate the noise statistics and also increases
the values of the covariance matrix of the noise. Both effects

Fig. 5. AURORA II recognition results. Word error rate as a function of the
SNR obtained by applying the different noise compensation methods.

make VTS less effective than HEQ. When VTS and HEQ
methods are combined, significant improvements are observed
compared with using each method independently. This shows
again that HEQ compensated for some distortions that VTS did
not, and vice-versa. The results obtained for VTS+HEQ are
very close to those obtained with the baseline system trained in
Multicondition mode.

Table I shows the results of each recognition experiment, av-
eraged across the different SNR levels. For tasks MGEO and
CONN-DIG, the results are averaged between 3 and 21 dB.
AURORA II results are averaged between 0 and 20 dB. In this
table it is easy to compare the performance of the different com-
pensation methods.
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For the first two tasks, the quality of the results increases in
the following order: CMN, MVN, HEQ, VTS, VTS+HEQ, and
Retrain. All the improvements are statistically significant: the
probability of each method being better than that preceding it
was greater than 99.99% in all the experiments. In the AURORA
II task, the order in which the quality of the results increases
is: Baseline, CMN, MVN, VTS, HEQ, VTS+HEQ and Multi-
condition. Even though HEQ outperforms VTS, the difference
in the performance is slight and it is not statistically significant
(the probability of HEQ being better than VTS is 84.4%). In the
average results, all the other differences are significant (with a
probability of improvement greater than 99.99%).

The small difference between VTS and HEQ in AURORA II
experiments may be partly explained by the fact that Set C in-
volved some channel distortion in addition to additive noise. The
VTS implemented did not include compensation of the channel
distortion while HEQ was able to compensate for it. This could
explain why HEQ improves on the results of VTS for the Set
C experiments. However, the results of HEQ and VTS are also
very close for Set A and Set B. Since sets A and B only involve
additive noise, the small difference between VTS and HEQ can
be attributed to the nonstationarity of the noise added in the
AURORA II task. In all the sets in the AURORA II, there was a
significant improvement of VTS+HEQ with respect to VTS and
HEQ. This improvement was greater in this case than in that of
the MGEO and CONN-DIG tasks.

V. SUMMARY AND CONCLUSIONS

This paper describes an adaptation of the HEQ method to
robust speech recognition. Based on an estimation of the his-
tograms for the different components of the feature vectors in
the sentence to be recognized, the method provides the trans-
formations (one for each component) that convert the original
histograms into a reference one. This method is able to compen-
sate for the nonlinear distortions caused by noise. HEQ compen-
sates for the effect of noise without relying on any prior assump-
tions about the nature of the components in the feature vector or
the effect that the different noise processes affecting the speech
signal produce on those components.

The compensation technique put forward here has been eval-
uated with continuous speech recognition experiments in which
the signal has been contaminated at different SNRs with dif-
ferent types of noise. The HEQ method has yielded significant
improvements in recognition performance under noisy condi-
tions with respect to the baseline recognizer and with respect to
linear methods such as CMN and MVN. HEQ can be consid-
ered as an extension of CMN and MVN to all the moments of
the pdf. This way, HEQ provides appropriate transformations
to compensate for the nonlinear effects caused by noise. The
HEQ method has also been compared with the VTS compensa-
tion method, the formulation of which is based on an estimate
of the noise statistics and an analytical description of the ef-
fect of the noise superimposed on the speech representation. In
the case of stationary noise, VTS-based compensation improves
the results given by HEQ due to its more accurate description of

the contamination mechanism. In the AURORA II recognition
experiments, HEQ and VTS provide very similar results. Both
methods were also combined in order to obtain a more pow-
erful technique. When VTS and HEQ methods were combined,
significant improvements were achieved with respect to the in-
dependent application of each method. Thus, the compensation
method based on HEQ is able to recover some information that
VTS cannot and vice-versa. This is mainly due to the fact that
each of the procedures is based on different assumptions. The
experimental results show the utility of the method described
in compensating for the effect of noise. One of the advantages
of HEQ compared with other compensation methods is that it
is not based on explicit models describing the contamination
process and does not make any assumptions about the compo-
nents in the feature vector or how these components are affected
by noise. Therefore, the method can be applied to different kinds
of speech parameterizations and be effective in the presence of
different noise processes.

In the experiments described here, a sentence-by-sentence
compensation for the noise was performed. Since the method we
used relies on an accurate estimate of the original histograms, a
sufficient number of observations is necessary for correct com-
pensation. This fact needs to be taken into account for practical
implementations, for example, in order to apply it in dialog sys-
tems. In the case of a very short sentence (including just a few
frames) HEQ would not be able to compensate for the noise
accurately. In this case, the use of several sentences when esti-
mating the histograms should be considered (if the application
or the dialog system allow it), in order to improve the efficiency
of HEQ method. On the other hand, in the case of nonstationary
noise, a segmental implementation of HEQ could be considered.
This way, the compensation procedure could be adapted to a
changing environment.
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