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Abstract: Although the continuous hidden Mar-
kov model (CHMM) technique seems to be the
most flexible and complete tool for speech model-
ling, it is not always used for the implementation
of speech recognition systems because of several
problems related to training and computational
complexity. Thus, other simpler types of HMMs,
such as discrete (DHMM) or semicontinuous
(SCHMM) models, are commonly utilised with
very acceptable results. Also, the superiority of
continuous models over these types of HMMs is
not clear. The authors’ group has recently intro-
duced the multiple vector quantisation (MVQ)
technique, the main feature of which is the use of
one separated VQ codebook for each recognition
unit. The MVQ technique applied to DHMM
models generates a new HMM modelling (basic
MVQ models) that allows incorporation into the
recognition dynamics of the input sequence infor-
mation wasted by the discrete models in the VQ
process. The authors propose a new variant of
HMM models that arises from the idea of apply-
ing MVQ to SCHMM models. These are
SCMVQ-HMM (semicontinuous multiple vector
quantisation HMM) models that use one VQ
codebook per recognition unit and several quant-
isation candidates for each input vector. It is
shown that SCMVQ modelling is formally the
closest one to CHMM, although requiring even
less computation than SCHMMs. After studying
several implementation issues of the MVQ tech-
nique, such as which type of probability density
function should be used, the authors show the
superiority of SCMVQ models over other types of
HMM models such as DHMMs, SCHMMs or the
basic MVQs.

1 Introduction

During the last few years, hidden Markov models
(HMM) have been successfully applied to acoustic mod-
elling for speech recognition. Two main variations of
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HMM have been widely used: discrete HMM (DHMM)
and continuous HMM (CHMM). The first use nonpara-
metric discrete output probability distributions, due to a
previous VQ process. CHMMs use parametric densities
to model the output probabilities, on the assumption that
the observed signals have been generated by a mixed
Gaussian process or an autoregressive process [1]. The
main problem with DHMMs is the loss of information
about the input signal during the VQ process. CHMMs
avoid this problem by using probability density functions
(PDFs). Thus, CHMM modelling appears to be a more
flexible and complete tool for speech modelling. In spite
of this, such models are not always used for the imple-
mentation of speech recognition systems. There are
several reasons for this. The main problem is the large
number of parameters to estimate. In order to obtain
good estimates, a large amount of computation and a
large database are required. These requirements cannot
always be satisfied with the available resources. These are
strong restrictions that may make the use of DHMM [2]
more attractive.

In order to avoid such problems of continuous model-
ling, Huang et al. [2] propose the use of semicontinuous
HMM (SCHMM) models, a hybrid modelling that uses
several VQ candidates instead of only the best one, as in
DHMMs. Huang has shown that SCHMMs can achieve
better results than CHMMs. Our group has recently pro-
posed a mew approach based on the use of multiple
vector quantisation (MVQ) for HMMs. The resultant
new modelling has been called MVQ-HMM (or simply
MVQ) models [3]. A MVQ model is composed of a VQ
codebook and a discrete HMM. These new models have
been introduced as a direct way to incorporate to the
system dynamics the information lost in the VQ process
when using the discrete approach. In order to do this,
each MVQ model uses its own VQ codebook to evaluate
the average distortion of the input utterance. With the
same amount of computation, the MVQ modelling can
clearly outperform DHMMs and achieve similar or
better results than SCHMMSs (with less computation).
Other advantage of MVQ modelling is the possibilities of
applying discriminative VQ training due to the use of one
specific codebook per recognition unit [4].

In this paper, we study several implementation issues
of MVQ models, such as the selection of the probability
density functions to model the representation space,
and the composition of the distortion and sequential
information for minimum error rate. From these pre-
liminary studies, we propose a new variant of HMM
modelling based on the application of the MVQ techique
to semicontinuous modelling. The new approach will be
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called SCMVQ-HMM modelling (semicontinuous
HMMs with multiple vector quantisation) or simply
SCMVQs. These new models can be also considered as
MVQHMM models using several quantisation candid-
ates. We show that SCMVQs can obtain the best
recognition performance in comparison to DHMMs,
SCHMMs and MVQs. Furthermore, we also show that if
the PDF utilised for SCMVQs is applied to SCHMMs,
this improves their performance.

2 Generalised HMM framework

The difference between the different HMM variants is in
the computation of the output probabilities b{x) of a
vector x in state s;, given a model A. The most general
form corresponds to CHMM modelling, where b{x) is
modelled by a mixture of PDFs of the form

b{x)=P(x|s;, )= Y Plx|ve, s, APo,lsi, A) (1)

neV(si d)

where each P(x|v,, s;, 4) is a log-concave or elliptically
symmetric density [1] (Gaussian throughout this work)
with mean vector y, and covariance matrix X, and x is
the input vector. Each PDF is labelled by one symbol v,
(k =1, ..., M) that belongs to the set V(s;, ) defined for
state 5; in model A. Factors P(vy|s;, 4) are the mixture
coefficients (their sum extended over V(s;, 1) must be
one).

A first simplification can be made by forcing all the
states to share the same set of PDFs, V(s;, 4) = V (¥s;, 4),
which leads to the semicontinuous HMM approach. The
output probabilities are now computed as

P(x|s;, A) = ZVP(.\: [EAZCA) V)

The set ¥ can be obtained from the construction of a VQ
codebook. The sum of eqn. 2 is usually reduced only to
the best set of candidates (the most probable ones).

The DHMM approach is easily extracted from
SCHMM modelling considering only the best VQ
candidate (the nearest VQ centre)

P(x|s;, 2) = P(x|0)P(o]s;, 4) (3a)
o = min"~'[d(x, y,)] (3b)
xeV

where d(x, y) is the utilised distortion measure. In this
case, it can be casily derived that the probability of an
input sequence X =x,, ..., x; (With O =o0,,...,07 as a
quantised version) in model 4 is

P(X|1) = P(X|0)P(0] %) @

Thus, only P(O|4) (probability of generation) is useful for
recognition purposes, since P(X|O) (probability of
quantisation) does not depend on the considered model
A

The basic MVQ-HMM modelling is based on the use
of one codebook per model V(s;, 1) = V(4) for all s; in
model 1 and on the assumption of nonoverlapped PDFs.
Thus, the output probabilities can be expressed as

b{x) = P(x|0, A)bfo) (5a)
o= max”![P(x|v,, )] (5b)
neV(d)

In this case, it is also possible to obtain a decomposition
of the probability of a sequence X

log P(X | 2) = log P(X |0, 4) + log P(O|2) ©
392

The probability of generation can be estimated in the
same way as for DHMM models (each model using its
own VQ codebook). The main difference between
DHMM and MVQ models is that the probability of
quantisation cannot be removed now, since it is different
for each model. Thus, it can be considered that a MVQ
model is composed of a VQ codebook and a discrete
HMM, each of them providing its own score
(quantisation and generation scores).

If we consider that the parameter set of a MVQ model
can be decomposed as A = (6, ¢), where 6 is the param-
eter set of PDFs P(x|v;, 4) (related to the VQ codebook),
and ¢ = (A, B, II) (related to the associated discrete
HMM model), one possible training method [3] consists
of an independent estimation of parameters 6 and ¢. The
first ones can be estimated by applying the LBG algo-
rithm [5], and the second ones by means of the Baum—~
Weich algorithm [6] (once the quantised versions O of
the training sequences X have been obtained from the
VQ codebook trained in the first step). We will prove
later that this method is indeed a ML estimation.

3 Implementation of a MVQ-based system

Once MVQ modelling is defined, some restrictions must
be imposed in order to improve system performance. In
this section, we explore several types of diagonal covari-
ance matrices and the effect of modifying the weights of
quantisation and generation probabilities in (6).

For simplicity, the different techniques introduced in
this paper are tested and tuned on an isolated word
recognition system (due to the large number of experi-
ments performed). The vocabulary is made up of 16
words, the ten Spanish digits and six keywords, uttered
three times by 20 male and 20 female speakers, i.e. 1920
different signals in the database. The average SNR meas-
ured over this database is 24 dB, which corresponds to
the environment of a workroom with computer noise. In
order to increase the statistical significance of the results,
the speakers are separated into five disjoint groups con-
taining utterances from eight different speakers (four
male, four female), to be utilised for test (the rest for
training). The result is the realisation of five different
speaker-independent experiments, whose error results are
finally averaged. Thus, the whole database (1920
utterances) is used to estimate the error rate. This pro-
cedure is similar to the well-known leaving-one-out tech-
nique for error probability estimation. The data were
analysed using 32 ms frames, overlapped 16 ms, applying
10-order LPC analysis. The feature vectors incorporate
14 liftered cepstrum coefficients, 14 delta cepstrum coeffi-
cients and delta energy (delta features are computed with
+3 frame intervals), and are compared with a muiti-
feature weighted distance measure similar to that
described in Reference 7. The HMM topology is left-to-
right with ten states. No duration modelling is used
(unlike in Reference 3).

3.1 Selection of covariance matrices
Each PDF (labelled with v, € V(1)) used for MVQ mod-
elling is assumed to be a multivariate Gaussian density,
with a mean vector y, (VQ centre) and a diagonal covari-
ance matrix X, .

We have tested three different forms for the covariance
matrices in three different experiments:

EXPI: Using a different covariance matrix for each pdf
v;. Thus, the elements of the main diagonal {d%, i =1,
..., p} are specific for the cell of centre y, .
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EXP2: Using only one covariance matrix X, shared by
all the PDFs in the codebook of model A, where each
element of the diagonal is the average distortion of the
corresponding feature in that codebook.

EXP3: Using only one covariance matrix X, = 621 for
all the PDFs in the codebook of A, where a2 is the
average distortion per feature in the codebook, and I is
the identity matrix. Each PDF can be written as

Plx|vy, A) = (2n07) "% exp {~ T:i fl*— .anz} ™

As we can see, there is a linear relation between the
logarithm of eqn. 7 and the distance ||x — y,||>.

Fig. 1 shows the results of these three experiments, using
4, 8, 16 and 32 centres per codebook. In general, EXP2

an

~

error rate, %

7
codebook size

Error rate versus codebook size for EXPI (), EXP2 (+)and
EXP3((0)

Fig. 1

obtains the worst results. Although EXP1 provides the
best result for four centres, EXP3 presents a better
behaviour for eight or more centres. We find two possible
reasons for this. First, EXP3 is the only experiment for
which the probability measure is coherent with the vQ
distance used in this work, that is, the nearest centre of
an input vector also correponds to the most probable
PDF. Second, EXP3 uses only one parameter, 62, to rep-
resent all the covariance matrices of all the PDFs in the
codebook, which implies a great reduction in the number
of parameters to train, lightening the problem of insuffi-
cient training. Therefore, the PDF given by eqn. 7 will be
adopted for MVQ models.

32 Composition of probabilities

We can see from eqns. 6 and 7 that the purpose of the
MVQ modelling described above is to add to the log-
score provided by the discrete HMM model (probability
of generation) a new score (probability of quantisation)
that is linearly related to the average distortion of the
input sequence X in the codebook of model i. The idea
of recognising without time alignment using several vQ
codebooks has been already proposed and successfully
applied by Burton et al. [8].

It must be pointed out that the composition of prob-
abilities in eqn. 6 may not be optimal because of the
assumption of diagonal Gaussian PDFs for the quantisa-
tion process. The optimisation of the composition can be
achieved experimentally, introducing a weighting factor «

log P(X|4) = a log P(X |0, A) + log P(O|4) ®)

with @ = p/(1 — u), where u is a composition factor that
takes values from 0 (only probability of generation) to 1
(only probability of quantisation). Fig. 2 shows how the
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error rate varies as a function of g, in the range 0.25-
0.75, for 8, 16 and 32 centres per codebook. Although
# =05 (z = 1) is not a bad selection, there is a minimum

error rate, %

1 1 1 1 ] L ]

1 1 1
0.3 0.4 . 0.6
composition factor

Fig. 2  Error rate versus composition factor p (& 8C; + 16C; OJ
320)

error rate around u=0.3, 0.35. We will use u=0.35
(o = 0.538) from now on. Fig. 2 also shows that the prob-
ability of quantisation is much more important in
recognition than the probability of generation, since for
#>03 the slopes of the plots are smaller than for
n<03.

4 Performance of MVQ modelling

We will show now a comparison of the designed MVQ
system with DHMM and SCHMM systems. The
DHMM-based system is implemented as described in
Reference 7. The SCHMM-based system has been imple-
mented following the description of Reference 2 (using
diagonal covariance matrices for each PDF as in EXP1),
although carrying out three different types of model
training.

SCI: Uses a LBG-trained codebook and the transition
and output matrices (4, B) of the discrete model are
obtained from a separate Baum-Welch training.

SC2: Uses the joint re-estimation of VQ codebook and
the (4, B) matrices described in Reference 2.

SC3: Similar to SC2 but without re-estimation of covari-
ance matrices. According to Huang’s work [9], this
method can improve the system performance. This result
indicates that the acoustic parameters are not correctly
modelled by the utilised PDF.

Table 1 shows the error rates obtained for the three types
of SCHMMs using 64, 128, 256 and 512 centres in the

Table 1: Error rates for SC1, SC2 and SC3 and several code-
book sizes

Number SC1 SC2 SC3
of centres

64/4 348 411 359
128/8 276 270 2.60
256/16 1.87 223 2.10
512/32 166 229 1.82

codebook, and four VQ candidates (the most probable
ones) to model each input vector. As suggested in Refer-
ence 9, the superiority of SC3 over SC2 indicates that the
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estimation of covariance matrices can degrade the per-
formance. It is also observed that SC1 provides similar
results to SC3 for 64 and 128 centres, but clearly superior
results for 256 and 512 centres. The explanation for this
behaviour can be found in two problems that have been
previously pointed out: the lack of coherence between
probability and distance measures, and the problem of
insufficient training when a large number of parameters
must be re-estimated (due to the use of one covariance
matrix per VQ centre). These results confirm the diffi-
culty, detected by Huang, of modelling the acoustic
parameters with multivariate Gaussian PDFs (as in
EXP1).

A comparison of the performance achieved by
DHMMs, SCHMMs (experiment SC1), and MVQs (as
described in the previous section) is shown in Fig. 3.

8

=)

»~

error rate, %%

2]

1 I J
128/8 256/16 512/32

codebook size

Fig. 3  Error rate versus codebook size for MVQ (&), DHMM (+)
and SCHMM ([J)

64/

Since the considered vocabulary contains 16 words, the
set of 16 N-centre codebooks for MVQ models is equiva-
lent to one (16 x N)-centre codebook for DHMM and
SCHMM. Thus, the results are compared when the same
total number of centres (4/64, 8/128, 16/256 and 32/512)
is used. For the same total number of centres, DHMMs
and MVQs require the same amount of computation for
recognition, but clearly less than SCHMMs. When using
4/64 centres, the superiority of DHMMs over MVQs is
evident, in spite of the loss of signal distortion informa-
tion during the VQ process. The explanation of this
behaviour is straightforward: a four-centre codebook
cannot correctly model the acoustic variety of the
vocabulary words. However, it is clear that MVQ mod-
elling out-performs DHMM models using eight or more
centres, with the same amount of computation in
recognition. It must also be pointed out that there is an
important computational saving in training, since the
computation involved with 16 N-centre codebooks is
very much smaller than that of a single (16 x N)-centre
codebook using the LBG training algorithm: if the total
number of training vectors is K, K x (N x 16) distance
computations per iteration would be required to train
one shared codebook and only K x N to train 16 MVQ
codebooks (assuming that each of them is trained by
K/16 training vectors). Also, MVQ models can even
achieve similar (8/128 centres) or better (from 16/256
centres) results than SCHMMs.

5 SCMVQ-HMM modelling

The results obtained with MVQ modelling suggest the
implementation of a new type of models that generalises
the MVQ modelling for several quantisation candidates,
in the same way as SCHMMs generalise DHMMs. This
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leads us to the SCMVQ-HMM modelling, for which the
output probabilities must be computed as

C
b9~ 3. Plxlog, Do) ©

where C is the number of VQ candidates (in V(1)).

This new variant seeks to be a generalisation of MVQ,
that is, the SCMVQ modelling must become a MVQ
modelling when only one quantisation candidate is uti-
lised. Thus, the PDF utilised must have an analogous
form to that in eqn. 7. However, the introduction of the
weighting factor a in eqn. 8 must also be taken into
account. These considerations lead to the following
expression

Px|o, 4) = (2nod) ™" exp {— 5ol —y.u’} (10
a

The PDF in eqn. 10 is a non-normalised density due to
the introduction of « = 0.538. This PDF seeks to keep
the advantages previously noted: (1) coherence with the
distance measure; and (2) reduction of the number of
parameters to re-estimate.

The mechanisms of these new models, for training and
recognition, are similar to those of the SCHMM models
described in Reference 2, in the same way as MVQs are
similar to DHMMs. In a ML estimation of SCMVQs,
the VQ parameters can be jointly estimated along with
the discrete HMM parameters (4, B and IT matrices).
The latter are re-estimated via Baum-Welch, and the VQ
parameters (centres and average distortion) of the code-
book of model A by the following re-estimation formulas

S T

Y X Sl
A i1=11=1
Ve =T5@ 17
Y Y&k
I=11=1
S(A) TT M
NN UL e AR
I=1¢=1 k=1
S T M
Y Y Yok

1=11¢=1 k=1

where (see Reference 2)
S k) = Plo, = v, | X, 3) (12)

and S(4) is the number of training sequences correspond-
ing to model A. This procedure can be initialised with the
LBG codebooks used in the MVQ approach.

It is easy to prove that in the case of using only one
quantisation candidate then ¥ (k) = 6, ,, (6 is the Kro-
necker delta function), that is, &(k) is different from 0
only in the case that v, is the symbol at time ¢. In this
case, the dependence of eqn. 11 on the discrete HMM
parameters is removed and these equations become the
centroid estimation formulas of the LBG algorithm. This
is a proof that the estimation previously performed for
MVQ models was ML.

The SCMVQ modelling is formally the closest to
CHMMs. The only difference is that all the states share
the same set V(1) of PDFs. In spite of this similarity to
CHMM models, it is easy to understand that the compu-
tational complexity of SCMVQ is even smaller than that
of SCHMM in both training and recognition, due to the
reduction in the number of parameters in the covariance
matrices. This computational saving is very significant in
the training stage if a joint re-estimation is performed,
since the training 16 N-centre codebooks does not

(11a)

(11b)

s
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require as much computation as a single (16 x N)-centre
codebook (as discussed in Section 4).

5.1 Experimental results
Two different experiments have been carried out with the
SCMVQ models described above:

EXP4: Only the A and B matrices are re-estimated,
using the same codebooks as for MVQ models.

EXP5: All the model parameters are re-estimated, using
formulas 11 (global ML estimation).

These experiments were carried out for 8, 16 and 32
centres per codebook, using from two to eight quantisa-
tion candidates (one candidate corresponds to MVQ
modelling). The results are shown in Table 2. The effect

fabl- 2: Error rate values for SCMVQ modelling with 1-8
candidates, for 8 (8C). 16 (16C) and 32 (32C) centres per
codebook. Experiments EXP4 and EXP5

Numberof 1 2 3 4 5 6 7 8
candidates
8C EXP4 291 302 333 3.07 317 322 322 322
8CEXP5 — 270 296 281 281 281 281 281

16C EXP4 177 156 145 151 156 161 1.61 1.56
1§C EXP5 — 145 151 156 161 166 161 1.61
32CEXP4 161 125 140 135 140 140 145 1.45
32C EXP5 — 125 114 109 109 1.09 119 114

of including a higher number of candidates depends on
the codebook size:

(1) In the case of eight centres (8C), introducing more
candidates clearly degrades the system performance when
using EXP4. If EXPS5 is used, a slight improvement of
0.2% can be achieved with two candidates, although the
performance degrades or becomes stable for more
candidates.

(2) For 16 centres (16C), EXP4 and EXP5 present
similar behaviours, reducing the error rate for two to four
candidates.

(3) When using 32 centres (32C), EXP4 reduces again
the error rate, although the best results are obtained with
EXPS, obtaining an error reduction of 32% (using four to
six candidates) (Fig. 4).

169
B
g l4-
g
o
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o
<
%
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\+\\ // ~
- \___+___+/
1‘0 1 1 1 1 1 1 J

1 2 3 4 S 6 7 8
number of candidates

Fig. 4  Error rate versus number of quantisation candidates for 32-
centre codebooks (O EXP4; + EXPS5)

Two main conclusions can be extracted:
(a) The density of centres must be large enough, in
order to improve the recognition results. This means that
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a given input vector is correctly represented by several
VQ candidates only when there is more than one close
centre. Thus, it is also very important to select the appro-
priate number of quantisation candidates depending on
the codebook size.

(b) It is important to ‘teach’ the system that other
centres, different from the nearest one, can represent a
given input vector. This is performed by the joint re-
estimation of EXPS5. Thus, it possible to avoid the
degradation of the eight-centre system, and to obtain
meaningful improvements in the case of a high density of
centres, as for 32 centres.

Finally, Table 3 shows a comparison of the error rates
achieved by DHMM (D), SCHMM (as in SC1), MVQ

Table 3: Error rate for DHMM(D), SCHMM(SC1), MVQ(M),
SCMVQ(SCM) and experiment SCN

Number of D SC1 M SCM SCN
centres
64/4 510 348 796 — 4.01

128/8 463 276 291 270 234
256/16 369 187 177 145 1.87
512/32 317 166 161 109 140

(M) and SCMVQ (SCM) (as in EXP5). For SCMVQ, two
quantisation candidates are used for 8 and 16 centres,
and four candidates for 32 centres. In relation to
SCHMM, the computational complexity of SCMVQs is
always less, due to the use of simplified covariance
matrices. This computational reduction is more consider-
able in the cases of 8 and 16 centres, for which only two
candidates are used (four for SCHMMs). It can be
observed that MVQs and SCMVQs are always superior
for 16/256 and 32/512 centres, the best performance cor-
responding to SCMVQ (SCMVQ also provides the best
result for 8/128). Also, a new experiment (labelled SCN)
with SCHMM models has been carried out using joint
re-estimation and the same PDFs as in eqn. 10 (¢7 is
substituted by the average distortion per feature of the
shared codebook). It is interesting to observe that SCN
can obtain the same or better results than standard
SCHMM (using more than 64 centres), although it is
only superior to SCMVQs for 8/128 centres. This new
variation uses the same amount of computation as
SCMYVQ in recognition, but, again, more in training. This
result ratifies the suitability of the PDF given by eqn. 10
for speech recognition.

6 Summary and future work

We have introduced in this paper a new type of HMM,
called SCMVQ-HMM. 1t is a generalisation of the MVQ
modelling recently introduced to enhance discrete
HMMs with the spectral information lost in the VQ
process. We looked first for an appropriate form for the
PDFs in a MVQ system. The chosen PDF has three
main features:

(@) it reduces the required number of model param-
eters, lightening the insufficient training problem

(b) it is coherent with the utilised distance measure

(c) it is weighted for an optimal composition with dis-
crete HMM probabilities.
Comparison of the MVQ system with standard DHMMs
and SCHMMs has shown the potential of this approach.

The SCMVQ modelling generalises MVQ using several
quantisation candidates. In the same way as for
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SCHMM models, the ML estimation of SCMVQs allows
the joint re-estimation of the VQ and the discrete HMM
parameters. The results with SCMVQ models show that
it is very important to have a codebook size large enough
to correctly model an input vector with several quantisa-
tion candidates, and that an appropriate selection of the
number of candidates must be made. It is also important
to train the system to use several candidates by means of
the joint re-estimation. SCMVQ modelling can obtain an
error-rate reduction of 32% with respect to MVQ. The
SCMVQs outperforms all the types of HMMs previously
tested (DHMMs, SCHMMs and MVQs) using less com-
putation than SCHMMs in both training and recogni-
tion, due to the parameter reduction in the PDFs utilised.
There is also an additional decrease of computation (by a
factor equal to the number of recognition units) in the
training stage due to the management of smaller code-
books (assuming that the global number of centres is
kept the same).

We believe that the application of the techniques
introduced in this paper to a CSR task can be carried out
straightforwardly, associating different codebooks to dif-
ferent subword units. For example, assuming phoneme-
like units and that each of our 16 words contains
different phonemes, we estimate that an appropriate
phoneme codebook size could vary between four and
eight (this is roughly equivalent to the use of word code-
books with 16-32 centres), just enough to model the
transition/stable—part/transition sequence corresponding
to a certain phoneme (several transitions could be taken
into account with different codebook centres) and to
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accomplish the ‘high density’ requirement of SCMVQ. In
fact, our research group is currently working on the
application of basic MVQ models to CSR, and the pre-
liminary results are encouraging.
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