
SVM-based speech endpoint detection
using contextual speech features
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Shown is an effective speech endpoint detection algorithm using a

trained support vector machine (SVM) and a feature vector including

contextual information speech features. With this and other innova-

tions the proposed algorithm yields high discrimination and reports

significant improvements over standard methods and algorithms defin-

ing the decision rule in terms of averaged subband speech features.

Introduction: The deployment of new wireless speech communica-

tion services finds a serious implementation barrier in the harmful

effect of acoustic noise present in the operating environment. This

challenge has motivated continuous research and development in

robust speech processing and real-time performance. On the other

hand, since their introduction in the late 1970s, support vector

machines (SVMs) [1] marked the beginning of a new era in the

learning from examples paradigm. Enqing et al. [2] applied SVMs to

voice activity detection (VAD) showing promising results on the

ITU-T G.729 speech codec features. This Letter extends these ideas

and shows an improved speech endpoint detection algorithm enabling

an SVM to define a nonlinear decision rule involving contextual

speech features [3]. The proposed method’s results are more effective

than ITU-T and ETSI standards and methods that define the decision

rule in terms of averaged subband speech features [4–7].

SVM-based speech endpoint detection: Detecting the presence of

speech in a noisy signal is a two-class classification problem requiring

a rule, which, based on external observations, assigns an object to one

of the classes. A possible formalisation of this task is by means of

SVMs that enable building a function f : RN
! {�1} using training

data, that is N-dimensional patterns xi and class labels yi:

ðx1; y1Þ; ðx2; y2Þ; . . . ; ðx‘; y‘Þ 2 RN � f�1;þ1g ð1Þ

such that f will classify unseen examples (x, y) according to the

structural risk minimisation (SRM) principle [1]. An example x is

assigned to the class þ1 if f (x)� 1 and to the class �1 otherwise.

Statistical learning theory [1] shows that it is crucial to restrict the class

of functions that the learning machine can implement. Hyperplane

classifiers are defined by the class of decision functions f (x)¼

sign {(w � x)þ b}, where w and b are selected to define the maximal

margin hyperplane. Moreover, it can be shown that w can be expanded

in terms of a subset of the training patterns xi called support vectors that

lie on the margin. In addition, SVM enables to redefine the classifica-

tion problem into some other potentially much higher dimensional

feature space F via a nonlinear transformation F(x): RN
!F and

perform the above algorithm in F:

f ðxÞ ¼ sign
P‘
i¼1

niðFðxiÞ � FðxÞÞ þ b

� �
ð2Þ

where the dot product is efficiently computed according to Mercer’s

theorem by means of kernels defined to be k(x, y)¼F(x) � F(y), and the

weights ni are the solution of a dual optimisation problem [1].

In this work, the well-known radial basis function (RBF) kernel

k(x, y)¼ exp(�g � kx� yk2) is used instead of linear or polynomial

kernels since it yields better speech=pause classification results. Once

the SVM model is trained, the speech features x are classified

according to the SVM decision function f (x) defined by (2). Note

that b can be used as a detection threshold for the VAD in order to

tune its working point and meet the application requirements. This is

crucial for the application being considered since a miss of speech

strongly affects the performance of most speech communication

systems.

Feature extraction: The noisy speech signal is pre-processed and a

feature vector x is extracted for training and testing on a frame by frame

basis. A measure of the long-term spectral divergence between speech

and noise is used as a discriminative speech feature. The input signal

x(n) sampled at 8 kHz is decomposed into 25 ms overlapped frames

with a 10 ms window shift. The current frame l consisting of 200

samples is zero padded to N¼ 256 samples and the power spectral

magnitude Xl (om) is computed through the N-point discrete Fourier

transform (DFT), where om¼ 2pm=N and m¼ 0, 1, . . . , N=2. Then, the

long-term spectral envelope as defined in [7], that includes contextual

information of the speech signal, is computed as: X̂l(m) �

X̂l(om)¼max{Xj(om), j¼ l� L, . . . , l� 1, l, lþ 1, . . . , lþ L}, and

its dimensionality is reduced to a wide K-band spectral representation:

EBðk; lÞ ¼ 10 log10

2K

N

Pm¼mkþ1�1

m¼mk

X̂lðmÞ

 !
ð3Þ

where mk¼bNFFT � k=(2K)c and k¼ 0, 1, . . . , K� 1. Finally, the

feature vector x for classification consists of the K subband SNRs

defined to be SNR(k, l)¼EB(k, l)�NB(k, l), where the spectral repre-

sentation of the noise, NB(k, l), is estimated during a short initialisation

period at the beginning of the process and constantly updated during

non-speech periods according to:

NBðk; lÞ ¼
NBðk; l � 1Þ

VAD flag for

the lth frame ¼ 0
aNBðk; l � 1Þ þ ð1� aÞEBðk; lÞ otherwise

8<
:

Fig. 1 clarifies the motivations for using contextual speech features. The

2-D feature space defined for K¼ 2 is represented for 12 speech

utterances of the AURORA 3 Spanish SpeechDat-Car database. This

database contains 4914 recordings using close-talking and distant

microphones from more than 160 speakers. The files are categorised

into three noisy conditions defined by different driving conditions with

average SNR ranging from 25 to 5 dB. It is clearly shown that

increasing the size of the analysis window from L¼ 0 to 8 frames

leads to a better separability of the data in the feature space and enables

a better defined SVM-based classifier.

L = 0 L = 3

L = 5 L = 8
40

20

0

-20up
pe

r 
ba

nd
 S

N
R

lower band SNR
-20 0 20 40

lower band SNR
-20 0 20 40

40

20

0

-20up
pe

r 
ba

nd
 S

N
R

Fig. 1 Separation of speech features in input space when increasing
window size L

Analysis and results: This Section analyses the proposed VAD and

compares its performance to standard and recently published algo-

rithms. The analysis is based on the receiver operating characteristics

(ROC) curves [5], a frequently used methodology to completely

describe the VAD error rate as the decision threshold b varies. The

non-speech hit rate (HR0) and speech hit rate (HR1) are used to assess

the performance of the VAD. They are defined as the ratio of the

detected non-speech or speech frames to the total number of non-

speech or speech frames, respectively. Complementary to these values

are the false alarm rates defined by FAR1¼ 1�HR0 and

FAR0¼ 1�HR1. For the analysis, the actual speech frames and

actual speech pauses were determined by hand-labelling the database

on the close-talking microphone.

Before showing comparative results, the selection of the optimal

number of subbands (K) is considered. Fig. 2 shows the influence of the

number of subbands on the ROC curves in high noisy conditions (high

speed over good road, 5 dB) for L¼ 8. The working points of the ITU-T

G.729, ETSI AMR and ETSI AFE VADs are also included as well as

ROC curves of other VAD methods. Increasing the number of subbands

improves the performance of the proposed VAD by shifting the ROC
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curves in the ROC space. For more than four subbands, the VAD

reports no additional improvements. Thus, K¼ 4 subbands yields the

best trade-off between computational cost and performance.

Fig. 2 ROC curves of proposed VAD for different number of subbands K
(high speed, good road, 5 dB average SNR)

Fig. 3 shows the ROC curves of the proposed VAD against L and

K¼ 4. It is shown that increasing L from 1 to 8 frames also leads to a

shift-up and to the left of the ROC curve. These results are consistent

with Fig. 1 that predicted a better data separability for L¼ 8. The optimal

parameters for the proposed VAD are then K¼ 4 subbands and L¼ 8

frames. It can be also concluded that the proposed method yields

significant improvements in speech=non-speech discrimination over

ITU-T G.729 and ETSI AMR and ETSI AFE standards as well as over

a representative set of VAD algorithms [4–7]. These improvements are

mainly achieved by: (i) including contextual information in the feature

vector, and (ii) defining an SVM-based classifier that is able to learn how

the speech signal is masked by the acoustic noise present in the

environment.

Fig. 3 Influence of size of analysis window (L) on ROC curves; compari-
son to ITU-T and ETSI standards and recently published VAD methods
(high speed, good road, 5 dB average SNR)

Conclusion: We have shown the effectiveness of SVM learning

concepts for robust speech endpoint detection. The proposed

method defines a nonlinear decision rule in terms of a feature

vector including contextual information speech features. The analysis

conducted on well-known speech databases unveils significant

improvements over ITU-T G.729, ETSI AMR and ETSI AFE stan-

dards as well as over VADs that define the decision rule in terms of

averaged subband speech features.
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