Improvements in HMM-based isolated word

recognition system

A.M. Peinado
J.M. Lopez

V.E. Sanchez
J.C. Segura

A.J. Rubio Ayuso

Indexing terms: Speech recognition, Mathematical techniques

Abstract: A speaker-independent isolated word
recognition system for voice-activated robots is
introduced. Since such an application requires a
fast and accurate recognition system, discrete
hidden Markov models and vector quantisation
techniques have been used. Different initialisations
for VQ and HMM training are tested to obtain
improvements over the other systems. The final
models can be evaluated using a temporal normal-
isation of the HMM scores. A threshold-based
rejector can also be established using this tempo-
ral normalisation.

1 Introduction

A speaker-independent isolated word recognition system
for use on a voice-activated robot is presented. This
application requires a fast and accurate recognition
system, so the well known discrete HMM technique,
along with VQ, is used. This method requires a sophisti-
cated training, but performs very efficiently in the
recognition task when compared with other well known
methods [1].

A traditional problem in engineering is to obtain a
model for a specific process. Models are useful in prob-
lems like prediction, recognition or identification. A
HMM probabilistically models the generation of a given
word, so as to recognise it. A HMM is a generator that
produces observation sequences according to a certain
probability distributions. These observations can belong
to a discrete or continuous vectorial space (discrete or
continuous HMMs). The continuous models are more
accurate in recognition than the discrete models. The
training is more complicated and the recognition requires
more computation for continuous models. Since the
vocabulary is relatively short, the digits and six
command-words) discrete HMMs are preferred. The
development of a HMM speech recognition system is
covered in detail in References 2—4.

The speech signal has to be coded as an observation
sequence for the discrete HMM. This coding is developed
by a vector quantisation (VQ) process. VQ is a well
known technique for bit rate reduction. VQ can be

Paper 79841 (E7, EB), first received 25th October 1989 and in revised
form 14th January 1991

The authors are with the Departmento de Electronica y Tecnologia de
Computadores, Universidad de Granada, Campus Fuentenueva s/n,
18071 Granada, Spain

IEE PROCEEDINGS-1, Vol. 138, No. 3, JUNE 1991

visualised as a two-step process as shown in Fig. 1 in the
spectral sense. The first step, called identification, consists
of finding a spectral model F’ which best models the
input speech frame spectrum F,. LPC analysis [5-7] is
applied at this step. The second step is quantisation in
which another spectral model F, belonging to a finite set
of spectral models (called a codebook), approaches F’' (F
can be used for transmission or storage). F is chosen to
minimise a defined spectral distortion measure d(F,, F),
or equivalently d(F’, F) [8]. The development of VQ tech-
nique is covered in detail in References 9-11.

F F' — F
¥—$dentificaMucntlsutlon l——»

Fig. 1

Block diagram of quantiser

The HMM and VQ training algorithms both converge
to a local optimum point. This convergence is very
dependent on the initialisation of these algorithms. Dif-
ferent initialisation methods are proposed and the con-
vergence and results studied. The performance of two
input sequence evaluation methods, forward-backward
and Viterbi, is studied for HMM recognition. A temporal
normalisation of the input sequence evaluation score is
introduced to obtain a model probability independent of
the duration of the spoken word. Once this normalisation
is established, it is possible to compare the probabilities
corresponding to several utterances and to fix a probabil-
ity threshold for utterance rejection. Temporal normal-
isation allows information to be obtained about the
quality of the models being constructed and the recogni-
tion performance.

VQ and related issues, type of feature vectors, distance
measures, training and initialisations, are first treated.
HMM issues, training and recognition, are then present-
ed. The problem of the initial models is posed, and the
temporal normalisation and the threshold-based rejection
are treated. Finally the parameters and conditions of the
system and the results of VQ, recognition, duration inclu-
sion and rejection are described, and a summary is given.

2 Vector quantisation

VQ is a data compression method, useful for data trans-
mission or storage [9, 10]. Each input frame vector, made
up with a set of features obtained in the analysis process,
is represented by a single symbol. This property allows
the discrete HMM to be used, since they are fed with
symbols from a finite codebook.

201

In a pure vectorial sense, the VQ consists of finding
the nearest neighbour of an input frame vector, among
the centroids (codewords) of a codebook [12]. The input
vector can be represented only by the centroid index,
once the codebook is known. Suppose that the represen-
tation space is partitioned into cells S; (j=1, ..., N).
Each cell has a centroid ¢;. When an input vector ¢
arrives, it has to be classified in a cell

ceS;edc,c)<dc,c) i=1,...,N i#j
where d is a defined distance in the vectorial space V,
d:V x V> R (the number of dimensions of V is the
number of features). Then, the input frame vector ¢ is
coded by the nearest neighbour centroid index j.

The next problem, that has been widely studied, is the
choice of the distance measure. The distance measure
that best matches two acoustic events for the features
used is chosen. A weighted cepstral distance measure and
an Euclidean distance measure with liftered cepstrum
have been proposed and successfully applied in speech
recognition, but when different features are included in
the feature vectors, a multifeature weighted distance
measure (MWDM) is preferred [13]. The MWDM is
given by

Q Q
2 @0 = &0 + Y (AL) — AL ()

dMW — =1 i2= 1
o¢
L (FSI) _ F:_n)z

+Y @

=1 o

where ¢(i) and ACfi) are the liftered cepstral and delta
cepstral coefficients. Index ¢ denotes the test frame and r
the reference frame, Q is the number of cepstral coeffi-
cients. F{" and ¢}, denote other kinds of features (energy
and delta energy, in this case) and their variances. L is the
number of new features and o2 is the variance of the
cepstral terms.

A full search optimal vector quantiser that looks for
the nearest neighbour centroid in all the codebook has
been developed, using eqn. 1 with a feature vector com-
posed of the cepstral coefficients, the delta cepstral coeffi-
cients, the frame energy and the frame delta energy.
There also exists a fast suboptimal solution using a tree
search that is not considered in this work.

2.1 Codebook implementation

The main problem in VQ is the codebook generation.
The widely applied iterative algorithm for clustering
called k-means has been used for this purpose. Getting a
suitable codebook is very important to obtain a good
characterisation of the frames and, therefore, a good
recognition rate.

Consider a training set {¢} of vectors of a vectorial
space V, and a distance d: V x V — R. It is necessary to
assign each vector to one of the k clusters. The algorithm
consists on the following steps:

(a) Initialisation of k cluster centroids ¢,(0), ..., ¢,(0).

(b) At the Ith iteration, distribute the vectors {c}
among the k centroids

ceS(h ifde,c))<dlc,e(l) i#j

where S{I) denotes the set of vectors whose nearest neigh-
bour centroid is ¢(J).

(c) Tt is necessary to compute the new centroids from
these results. The centroid of S{I + 1) is that which mini-

202

mises the total distortion cell
D;= Y dc,cfl + 1)

ceS;j
The vector ¢! + 1) that minimises D; is the mean vector
of S{J). This is correct for the Euclidean distance and for
the MWDM, but, in general, ¢{l 4 1) must be found.
(d) If the new centroids match the previous ones the
algorithm has converged and the procedure ends. Other-
wise, go to step b.

The behaviour of the k-means algorithm is influenced by
the parameter k, and the initialisation and the geometri-
cal properties of the vector set {¢} [14]. So when an arbi-
trary initialisation is used, a bad and slow convergence
can be expected. For this reason two alternative methods
of initialisation are introduced.

2.2 |Initialising the k-means algorithm

2.2.1 k-means type initialisation: The procedure con-
sists of applying the k-means algorithm to a single train-
ing sequence {c'}. Each sequence consists of several
utterances of each word of the vocabulary from the same
speaker. An arbitrary set of vectors is used as the initial
codebook, ¢ =¢\.,, 5 =¢c5.,, h=¢c5.,, ..., &=
¢k.,» where p = ent (N/k), N is the number of training
vectors and k is the codebook size.

After this step, it is hoped that the algorithm con-
verges easily, because of the low density of training
vectors in the space. A meaningful initial codebook in
which all the words are represented is thus obtained.

2.2.2 Splitting initialisation: Unlike the above method,
all the training sequences are used for initialisation. The
procedure consists of four steps [9]

(a) The absolute training set centroid has to be com-
puted. This is an initial codebook {c,} with N, =1 cen-
troids.

(b) At the Ith step, the number of centroids of the code-
book is duplicated by perturbing the first coefficient of
each centroid, and a new codebook {¢;,i=1,..., N4y},
with N,,, = 2N, is obtained.

(c) Apply the k-means algorithm to the codebook
obtained in the previous step.

(d) If N,,, is the required number of centroids, the
process ends. Otherwise, go to step b for a new iteration.

3 Hidden Markov models

3.1 Concept overview

A HMM is a model of speech generation, although it is
used for recognition purposes. A HMM is characterised
by five elements [4]

(i) A state set S with N states S = {S,, ..
the current state at time t as ¢q,.

(i) A symbol set ¥ with M different symbols V = {V;,
..-> Viy}. Denote the current symbol at time ¢ as O, .

(i) A transition probability distribution A = {a;},
where a;; is the transition probability from state s; to
state ;.

(ivy A symbol probability distribution B = {bfk)},
where bk) is the production probability of symbol v, at
state s;.

(v) An initial state distribution IT = {r;}, where =; is
the probability that the symbol sequence generation
begins at state s;.

., Sy}. Denote

In Fig. 2 it can be seen how a HMM generates a symbol
sequence O = Oy, ..., Or. This process also generates a

IEE PROCEEDINGS-1, Vol. 138, No. 3, JUNE 1991

state sequence Q =g,, ..., ¢r. This state sequence is
hidden (from which the adjective hidden comes). Funda-
mentals of HMMs can be seen in References 2—4 and 15.

start

I

Qy=—s;
according to

t -1

Oy<—v
according to b;(k)

Y

Q417 —S;
according to aj;

Fig. 2
HMM

Flow chart of generation of sequence O =0,, 0,, O, by

3.2 Speech recognition by HMM

For a vocabulary with L words {V}, ..., V;}, the recogni-
tion system is a set with L HMMs {4,, ..., 4.}, where
each model 4; is associated to one word V; of the vocabu-
lary. Given an input symbol sequence, the generation
probability p(O| 4;) is computed for every model 4;. The
model giving the highest probability corresponds to the
recognised word. More than one model per word can be
used.

For speech recognition, it is suitable to use the left-to-
right model, because it matches the sequential nature of
the speech generation process. A scheme of a five-state
left-to-right model is shown in Fig. 3. A structure in

oo de

Fig. 3 Lefi-to-right model

which an initial and a final state (I and F) are added is
used. They have no production probabilities. These
models are defined as follows:

_ 1 i=1I
=0 i1
Note A = 1 in this work.

The recognition process fundamentally consists of

computing the p(O|A) probabilities. The general pro-
cedure of computation is

pO]4) = ;anlb'“(ol)aqﬂll qu(OZ)

a;=0 (j<ij>i+A)

T bllT—l(OT l)aqr—xqrbqr(OT) (2)

But eqn. 2 requires a very high number of computations.
Both the forward—backward and the Viterbi algorithms
have been used because they are much more efficient for
this task. The Viterbi algorithm provides an approximate
solution. Both algorithms are treated in detail in Refer-
ences 3 and 4.

IEE PROCEEDINGS-I, Vol. 138, No. 3, JUNE 1991

3.3 HMM training

The training of the models is the more complicated
problem relating to HMMs. Several solutions have been
proposed. Rabiner et al. [4] proposed an algorithm
called the Baum—Welch re-estimation algorithm. Boite et
al. [16] used an iterative procedure for model training
based on the Viterbi algorithm or Viterbi re-estimation.

The Baum-Welch algorithm is the optimal solution to
this problem, since it is based on a standard Lagrange
maximum search. Experience indicates that when the
Baum—-Welch algorithm is used the resulting models are
very dependent on the initial models. This dependence is
not so strong when a Viterbi re-estimation is used.
Taking into account the above points, the following pro-
cedure has been used for training:

(a) Some initial models are computed by a linear or
manual segmentation of training sequences.

(b) A Viterbi re-estimation is performed up to con-
vergence. In each iteration, the segmentation properties
of the Viterbi algorithm are used for computing the new
model parameters as occurrence frequencies.

(¢) The Baum—Welch algorithm is applied to the
models obtained at step b. In each iteration, the re-
estimation formulas [4] are applied for computing the
new model. As result, the models obtained at step b are
optimised.

These algorithms keep the probability of the events that
are not represented in the training data equal to zero.
This can be considered an effect of an insufficient amount
of training data, and it can be avoided by setting these
probabilities equal to a certain small value e.

4 Initial models

Both Viterbi and Baum-Welch re-estimations are very
dependent on the initial models. They only guarantee
convergence to a local maximum of likelihood. Several
methods of initialisation must be posed before the re-
estimation to look for a better local likelihood maximum.
Two initialisation methods have been tested based on the
segmentation of the training utterances, in which seg-
ments are associated with states.

From a segmentation, the transition and the pro-
duction probabilities can be computed as occurrence fre-
quencies just by dividing the number of occurrences of a
partial event (part of a certain global event) by the
number of occurrences of the global event. These global
events are the transitions from a certain state to any
other state, or the production of any symbol in a certain
state.

A test with two alternative segmentations has been
carried out: a manual and a linear segmentation:

(i) The manual segmentation is performed over a few
sequences of the training set. In this case, segments are
approximately associated to phonemes, so as many states
as phonemes in the word are obtained. A certain degree
of cohesion in the states is thus guaranteed. An appropri-
ate number of states for each model is also achieved.

(ii) With the linear segmentation, each training utter-
ance is divided into a fixed number of states, with equal
length for all the segments in a given training utterance.

In the case of manual segmentation, a different insuffi-
cient training method is used in the initialisation step.
The problem is that when manual segmentation is used, a
smaller number of training sequences is taken for initial-
isation, and symbols that do not appear in the initial-
isation sequences could appear in other training ones.

203

For symbols that do not appear in the training
sequences, they are considered to have a probability F
times smaller than that of the least probable symbol that
appears in the training data. F is called the acceptance
factor.

5 Score temporal normalisation

It would be interesting to be able to match probabilities
from different sequences. The probability p(O] 1) strongly
depends on the sequence duration T. That is the reason
why it is necessary to do a temporal normalisation of the
log-score log p(O | A).

In any of the two proposed algorithms, p(O| 4) is com-
puted as addition of products of 2T probabilities

T-1 T
n‘il l—ll aqsqs+|]._Ilb‘ls(os)
5= s=

The temporal normalisation consists of computing an
average probability (geometric average)

p012) = (PO)'2T 3
The meaning of the normalised score is a mean probabil-
ity per symbol of the utterance. Applying logarithms to
eqn. 3, a mean normalised log-score is obtained
log p(O14)

4
T @

The factor of 2 can be ignored in eqn. 4.

log p(0]4) =

6 Including duration information:
threshold-based rejection

The main problems in recognition are similar to those of
training. In recognition, it is usual to use some additional
information such as energy and duration, in a postpro-
cessing stage. Energy information is already used in the
feature vectors, so the postprocessing is developed only
with duration.

State duration and word duration can be included in
the postprocessing as two new scores, P, and P,,,
respectively, where

N
Pu= 3. log (p(d)) 5)
P..a = l0g (p.(T)) (©)

where p{(d,) is the duration distribution of state i, T is the
utterance duration, and p(T) is a Gaussian distribution
of word duration. Three ways of calculating the state
duration distribution are considered:

(a) Histograms (SD1)

(b) Histograms with normalised duration d, - T/T (T is
the mean word duration) (SD2)

(c) Gaussian distributions with normalised duration
(SD3)

Word duration is easily modelled by a Gaussian density,
considering that the word duration process is a Gaussian
process (what is basically true). P, and P, are incorpo-
rated to the word log-score using experimental weights.

It is also possible to incorporate the state duration
densities into the HMM algorithms (forwardbackward,
Viterbi and Baum-Welch formulas). This considerably
increases the amount of computation [4]. It is preferable
to include the duration information in a postprocessing.

204

In the postprocessing stage, one possibility to diminish
the error rate is to reject those utterances that are not
clearly recognised. The best way to include temporal
information in a threshold-based rejection technique is
sought in a later section.

The rejection method consists of defining a score
threshold for each HMM of the vocabulary. This is pos-
sible because of the temporal normalisation, explained
above, that extracts the temporal dependence of the
score. This threshold is about X — ag,, where x is the
log-score obtained from a given HMM, and x and o, are
the log-score mean and the log-score standard deviation,
obtained from the training data. Moving this threshold,
by the factor a, it is possible to obtain several rejection
percentages. Several experiments were performed to find
the best rejection.

7 Experimental results

7.1 System parameters and conditions

The data were sampled at 8.091 KHz, and pre-
emphasized with a pre-emphasis factor x = 0.95.
Hamming windows were applied to blocks of 256
samples, with an overlapping of 64 samples. Liftered
cesptrum was computed for each frame (with Q = 10 and
length 12 for the liftering window) and delta cepstrum
was approximated by linear regression on a +3 frame
environment. Frame energy was normalised to the peak
of energy in the word and expressed in the decibel scale.
Delta energy was computed from the normalised decibel-
scaled values of energy. An average of all of these param-
eters was performed at every other consecutive frame.
The final result is as if 256 sample frames overlapped 128
samples.

All the utterances were isolated by an explicit endpoint
detector [17], which was modified in Reference 12. These
utterances were coded with a 64-centroid codebook in all
the experiences. One model was used per word, and when
linear segmentation is used for HMM initialisation there
were seven states per model.

The vocabulary consists of the ten Spanish digits and
the Spanish words {cuerpo, hombro, codo, muneca,
mano, dedos}, for controlling each motor of a robot.

The database consists of 40 speakers and three utter-
ances per speaker per word (1920 words). It was recorded
under the normal conditions of work rooms, so certain
level of noise, such as computer noise, is included. The
conditions of recording (echo and noise conditions) were
variable along the time, from the first speaker up to the
last speaker. Two subsets of this database were con-
sidered for the experiments:

(a) the first 20 speakers (DB1) for training

(b) the last 20 speakers (DB2) for testing.

With this choice, the error rate is not near 0%, because of
the variable conditions of the recording. The variations of
error rates and rejections in our experiments can be
observed, and a real situation of environment change of
the recognition system can be simulated.

7.2 k-means convergence

The convergence curves for the k-means algorithm are
shown in Fig. 4, using DB1. The convergence curve for
k-means type initialisation is represented by the contin-
uous line. The dotted line represents the splitting initial-
isation. The total distortion D against the iteration

IEE PROCEEDINGS-I, Vol. 138, No. 3, JUNE 1991

number is shown, where

D= 624 3 dle, ¢)

i=1 ceSi

and where S; is the cluster corresponding to the centroid
<.
No important differences between the two con-

vergences can be observed from Fig. 4.

37
-
=4
>
535
c
R
t
S
B
©33
x
©
Q
o
] —
he)
<]
o
31 1 1 1)
0 20 40 60 80
iteration number
Fig. 4 Total distortion against iteration number of k-means con-
vergence

— - —— Splitting initialisation
———— k-means initialisation

7.3 Recognition results

The error rates, using splitting and k-means type initial-
isations for the k-means algorithm and manual and linear
segmentations for HMM training, are shown in Table 1,
for both Viterbi and forward-backward score evaluation
algorithms. DB1 and DB2 are used for training and
testing, respectively. In Table 1 only the results of the
optimal F acceptance factor are shown in each case when
manual segmentation is used.

Table 1: Error rates table

k-means HMM Forward— Viterbi
initialisation initialisation backward
splitting manual 7.70% 7.81%
segmentation
linear 5.62% 5.52%
segmentation
k-means type manual 8.75% 8.33%
segmentation
linear 7.9 % 8.12%

segmentation

From Table 1, it can be seen that the best result corre-
sponds to the splitting initialisation for k-means and
linear segmentation for HMM initialisation. Despite
there being no significant differences between the splitting
and k-means type convergence, the former clearly works
better in recognition. No meaningful differences between
the performance of the Viterbi and the forward-
backward algorithms can be found. In general, splitting
and linear segmentation works better than k-means type
initialisation and manual segmentation.

7.4 Duration and threshold-based rejection
performance

The next experiments were developed on a system of the
same type as the best found in the previous section, i.e.
using linear segmentation and splitting as initialisation
algorithms for the HMM training and the codebook
training. DB1 and DB2 were used for training and
testing, respectively.

IEE PROCEEDINGS-1, Vol. 138, No. 3, JUNE 1991

Four experiments were developed with four types of
score. The inclusion of duration information with a
threshold-based rejection is performed in two steps: first,
only state duration is included (experiments 1 and 2), and
second, state and word durations are included
(experiments 3 and 4). These experiments are:

(a) Experiment 1: The log-score used for the utterance
O in model 4 is

x=10g (P(OH;))'*' asdPsd (7)

In this case, the mean log-score per symbol includes the
state duration log-score. State duration is included by the
experimental weight «,. The optimal error rates for the
different p{(d,) distributions are: SD1 = 4.58% (x, = 0.7),
SD2 = 4.68% (a,, = 0.7), and SD3 = 5.20% (azy = 1.7).

(b) Experiment 2: The duration information is simply
added to the mean symbol score

= los GOL)

The optimal error rates for the different p{d,) distribu-
tions are: SD1 = 4.79% (xtyy = 0.03), SD2 = 4.79% (a,y =
0.03), and SD3 = 5.20% (s = 0.03).

(¢) Experiment 3: The same as experiment 1, but
including word duration information

x = log (p(O| D) + a5y Pya + %y Pra
B T

+ 24 Py @®

()]

Word duration information is included as state duration
in eqn. 1, using an experimental weight «,,. An experi-
ment (using SD1) was developed, obtaining that the error
rate is an increasing function of «,,,.

(d) Experiment 4: The same as experiment 2, but
including word duration

‘= log (p;OM))

The optimal error rate is 4.58% for «,, = 0.05 (using
SD1).

These results show that it is better to include the state
duration as in experiment 1 than as in experiment 2. The
word duration is slightly useful in experiment 4 but not
in experiment 3. In general, it does not imply any signifi-
cant improvement. There are no important differences
between SD1 and SD2, but SD3 yields the worst results
in all the cases. This can be easily understood since it is
not a Gaussian process (Fig. 5).

+ oy Py + g Pra (10

0.25
0.20
0.15

0.10

I i
30

1 20
normalised state duration d/T

Fig. 5 Histogram and Gaussian model of state duration
State = 0, word = ‘muneca’.
——— - histogram

— Gaussian model

205

The rejection results of experiments 1 and 2 are
depicted in Fig. 6, along with a rejection curve using a
non-normalised log-score

x =log (P(O|4) + oy Py (1

The best rejection is obtained when the duration infor-
mation is included in the mean symbol log-score (eqn. 7),
and the threshold-based rejection works better for low
rejections (where the curve slope is higher). The necessity
of the temporal normalisation for the threshold-based
rejection is also observed from the figure.

wl
1

¥
¥

!

P —{»\

g \+\ *

2 3+ W N

5 \ *~
t

[

/

1 1 1 L J

30 40

o
—
o
N

rejection, %

Fig. 6
SD1

+ experiment 1

* experiment 2

@ non-normalised log score

Error rate against rejection for log-scores

8 Summary

A recognition system based on both vector quantisation
and hidden Markov models was proposed. A vocabulary
(the digits and six command words) specially thought for
robot control applications was used. The objective was to
obtain some improvements in this system performance,
rather than to obtain a high performance, which is easily
available using more centroids in the codebook, more
models per word, etc.

Two initialisation methods for the k-means algorithm
were presented: splitting and k-means type initialisations.
Despite no important differences being found in the con-
vergences of both methods, splitting clearly works better
in recognition.

Two initialisation methods for the HMM training
were also introduced, based on manual and linear seg-
mentations. Using manual segmentation, the states have
a physical meaning, since they roughly correspond to
phonemes or other sound units, so the number of states is
optimised in that sense. But it does not perform as well as
linear segmentation. It seems clear that the amount of
data that can be managed in a manual segmentation
process can be enough for a speaker dependent system

206

[12], but not for a speaker independent recognition
system initialisation, for which it is preferable to use
other initialisation procedures that involve all the train-
ing data.

Several HMM log-scores, including temporal nor-
malisation and duration information, for utterance evalu-
ation were tested. The best result was obtained using
only state duration, including it in the mean log-score per
symbol (eqn. 7). No significant differences were found
between using normalised or non-normalised duration.

A threshold-based rejector (using the proposed log-
scores) was used to diminish the error rate. It was shown
that the temporal normalisation of score is basic for this
rejection.

9 References

CLASS, F., KALTENMEIER, A., and KATTERFELDT, H.: ‘Com-

parison of two continuous connected word recognition principles:

hidden Markov modelling and dynamic time warping’. Proc.

EUSIPCO-86, September 1986, 1, pp. 553-556

LEVINSON, S.E, RABINER, LR, and SONDHI, M.M.: ‘An

introduction to the application of the theory of probabilistic func-

tions of a Markov process to automatic speech recognition’, Bell

Syst. Tech. J., 1983, 62, (4), pp. 1035-1074

RABINER, L.R, and JUANG, B.H.: ‘An introduction to hidden

Markov models’, [EEE ASSP Mag., January 1986, pp. 4-16

RABINER, L.R.: ‘A tutorial on hidden Markov models and selected

applications in speech recognition’, Proc. IEEE, 1989, 77, (2), pp.

257-286

MAKHOUL, J.: ‘Linear prediction: a tutorial review (IEEE

PRESS, 1979), pp. 124-145

RABINER, LR, and SCHAFER, R.W.: ‘Digital processing of

speech signals’ (Prentice-Hall, Englewood Cliffs, 1978)

MARKEL, J.D, and GRAY, AH.: ‘Linear prediction of speech’

(Springer-Verlag, Berlin, 1976)

GRAY, RM.,, BUZO, A, GRAY, AH, and MATSUYAMA, Y..

‘Distortion measured for speech processing’, IEEE Trans., 1980,

ASSP-28, (4), pp. 367-376

GRAY, RM.: “Vector quantisation’, [EEE ASSP Mag., April 1984,

pp. 4-29

10 BUZO, A, GRAY, AH., GRAY, RM, and MARKEL, 1D.:
‘Speech coding based upon vector quantization’, IEEE Trans., 1980,
ASSP-28, (5), pp. 562-574

11 MAKHOUL, J., ROUCOS, S., and GISH, H.: ‘Vector quantization
in speech coding’, Proc. IEEE, 1985, 73, (11), pp. 15511588

12 PEINADO, A M, RUBIO, AJ,, and LLORIS, A.: ‘Reconocimiento
de voz mediante modelos discretos de Markov’. Monografias del
Departmento de Electronica, 13, May 1989

13 PEINADO, A M., RAMESH, P., and ROE, D.B.: ‘On the use of
energy information for speech recognition using HMM’. Proc.
EUSIPCO-90, September 1990, 2, pp. 1243-1246

14 TOU, J.T., and GONZALEZ, R.C.: ‘Pattern recognition principles’
(Addison-Wesley, 1974)

15 RABINER, L.R., LEVINSON, S., and SONDHI, M.: ‘On the appli-
cations of VQ and HMM to speaker-independent isolated recogni-
tion’, Bell Syst. Tech. J., 1983, 62, (4), pp. 1075-1105

16 BOITE, R.,, LEICH, H., and ZANELLATO, G.: ‘Isolated word
recognition by hidden Marokov models’. Proc. EUSIPCO-86, Sep-
tember 1986, 1, pp. 541-544

17 RABINER, LR, and SAMBUR, M.R.: ‘An algorithm for detecting

the endpoints of isolated utterances’, Bell Syst. Tech. J., 1975, 54,

pp. 297-315

8]

(%)

N

w

(=}

~

o0

o

IEE PROCEEDINGS-1, Vol. 138, No. 3, JUNE 1991

