
HMM-BASED METHODS FOR CHANNEL ERROR
SPEECH RECOGNIT

Antonio M. Peinado, Victoria Sánchez, José L. Pérez-Cór
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ABSTRACT

Distributed Speech Recognition involves the development of tech-
niques to mitigate the degradations that the transmission channel
introduces in the speech features. This work proposes an HMM
framework from which different mitigation techniques oriented to
bursty channels can be derived. In particular, two MMSE-based
and a new Viterbi-based mitigation procedures are derived under
this framework. Several implementation issues such as the channel
SNR estimation or the application of hard decision on the received
signal vectors are dealt with. Also, different boundary conditions
suitable for the speech recognition application are studied for the
different mitigation procedures. The experimental results show
that the HMM-based techniques can effectively mitigate channel
errors, even in very poor channel conditions.

1. INTRODUCTION

The subject of Distributed Speech Recognition (DSR) has recently
arisen allowing an efficient translation of the Automatic Speech
Recognition technologies to mobile and IP network applications.
DSR is based on the utilization of a local front-end and a remote
back-end. This approach has clear advantages since voice features
are not affected by the speech coder, language portability is facili-
tated and a simple front-end is utilized. An ETSI standard for DSR
(ETSI-ES-201-108 v1.1.2) [1] has already been elaborated by the
Aurora working group.

DSR systems can be affected by several degradation sources
due to the acoustic environment and the digital channel. Although
the processing of all these degradations can be carried out at the
receiver, the distributed nature of the recognition process in DSR
makes it more convenient the treatment and reduction of acoustic
degradations in the local front-end, where the signal (speech plus
noise) is fully available. Thus, at the remote back-end, only the
errors introduced by the digital channel must be mitigated.

Several authors have already dealt with the problem of channel
error mitigation. In the case of wireless channels, exponential fea-
ture weighting has been recently proposed [2]. Also, techniques
based on Minimum Mean Square Error (MMSE) estimation [3, 4]
have been adapted to DSR [4]. In this case, mitigation is performed
before recognition at the back-end, modeling speech production as
a first order Markov process in order to introduce temporal corre-
lations in the MMSE-based mitigation. The present work makes a
generalization of this idea by using an HMM formalism to perform
mitigation. One of the advantages of this approach is that the large

Work supported by the Spanish CICYT project TIC-2001-3323

theoretic
In partic
of our p
procedu
aspects a
tion, the
the selec
recognit

The fron
standard
tor conta
Energy.
means o
have a 6
Energy,
by group
CRC.

At t
checking
can be su
is detect
frame be
after the
terance,
degraded
at the en

The
16-state
that hav
The train
base. T
is carrie
subsets)

3

Figure 1
the SVQ
� (� � �
bit mapp
� � � � ���
bit is as
is transm
MITIGATION IN DISTRIBUTED
ION
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al background associated with HMMs can be exploited.
ular, we present the MMSE-based mitigation procedures
revious work [4] under this framework and propose a new
re based on a Viterbi decoding. We also explore several
s the estimation of the channel SNR required for mitiga-
use of hard decision on the received signal vectors and

tion of a set of boundary conditions adapted to the speech
ion application.

2. AURORA FRAMEWORK

t-end used in this work is the one proposed in the ETSI
[1]. This front-end provides a 14-dimension feature vec-
ining 13 MFCCs (including the 0th order one) plus log-
These features are grouped into pairs and quantized by
f seven Split Vector Quantizers (SVQ). All codebooks
4-center size (6 bits), except the one for MFCC-0 and log-
which has 256 centers (8 bits). The bitstream is generated
ing frames into pairs (88 bits) that are protected by a 4-bit

he back-end, error bursts are detected by means of a CRC
and a consistency test. The Aurora mitigation algorithm
mmarized as follows: once a burst, containing 2B frames,
ed, the first B frames are substituted by the last correct
fore the burst and the last B ones by the first correct frame
burst. In the case of a burst at the beginning of the ut-
the first correct frame after the burst is repeated in the
frames. A similar solution is applied for corrupted data

d of the utterance.
recognizer is the one provided by Aurora and uses eleven
continuous HMM word models, (plus silence and pause,

e 3 and 1 states, respectively), with 3 gaussians per state.
ing and testing data are extracted from the Aurora-2 data-

raining is performed with 8440 clean sentences and test
d out over set A (4004 clean sentences distributed into 4
.

. TRANSMISSION AND CHANNEL MODEL

shows a block diagram of our transmission scheme. After
quantization, each feature pair is represented by a vector
�
���� � � �� � � � � �����) (�=6,8 in this work) that, after

ing, is represented by a bit sequence � � ������ ����� � � �

� ��� (� � ������ � � �� � � � � �� � ��), where each
sumed to be bipolar (���� � ������	). This sequence
itted, after channel encoding, through a digital channel.
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Fig. 1. Transmission scheme for a feature pair.

���� (dB) � (duration) ����� (%)
-3 657 10.90
-1 380 6.40
0 282 4.81
3 94 1.76
5 25 0.64

Table 1. Correspondences of average SNR, burst duration (length
in bits) and average Bit Error Rate.

In the case of Aurora, the systematic CRC code has a very small
error correction capability. Thus, we will work on the received
information bits as if no channel encoding was used (except for
error burst detection, as in Aurora).

As indicated above, the Aurora mitigation algorithm is suit-
able for bursty channels, and is tested in [5] under GSM error pat-
terns EP1, EP2 and EP3. In this work, we present experimental
results on these patterns, but, in order to experiment over a wider
range of channel conditions, we also consider a simplified bursty
channel model. In this channel, the received signal vector is ob-
tained as � � � � �, where the channel noise � is additive and
obtained as the superposition of a background additive white gaus-
sian noise (AWGN) (variance ����) plus a sequence of AWGN
noise bursts (variance ����� ����) of fixed duration � (in num-
ber of bits), with a separation given by a Poisson variable of mean
�� [4]. The average variance of the channel noise is,

��

�
�

��

�
�
��

�

�

��
(1)

and the average channel SNR can be computed as ����� (�� �
�). For our experiments, we consider ����� � � dB (BER=0.23
%), ����� � �� dB (BER=24.59%), and �� � ���� bits. Thus,
different values of the average SNR (�����) have the meaning
of different burst durations as it is detailed in table 1. Under
these conditions, the EP3 pattern roughly corresponds to an av-
erage SNR between �� and � dB.

4. DECODING AND MITIGATION USING HMMS

Since we are testing a bursty channel, a standard hard decoding is
performed during error-free periods, and the proposed techniques
are only applied during error bursts, replacing the Aurora mitiga-
tion algorithm. Thus, we consider a sequence of received obser-
vations � � ���	 
 
 
 	�� 	, where �� and �� are the last and
first correctly received vectors before and after a burst, respec-
tively. Isolated frame pairs with correct CRC are not allowed
and are considered as included into the burst. We model each
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represents an SVQ centroid �

��� (or, equivalently, code-
��). The transition probabilities ��� can be obtained from
le analysis of the training data. The observation probabil-
�	 � � �������	 can be computed from the instantaneous
probabilities ����	 (� � �	 
 
 
 	� � �) (corresponding

ard decoded bits 
���	 � ��������	�) as (considering a
less channel),
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����
���

� �������	�
���		 (2)

�������	�
���		 �

�
�� ����	 ������	 � 
���	

����	 ������	 �� 
���	
(3)

eneral, the computation of probabilities ����	 depends on
smission scheme. In the case of a fading channel with
n noise and BPSK modulation, this probability can be ob-
s [3],

�	 �
�

� � 
�����	���	�	
with �	 � ��

��

��
(4)

is a fading factor (� � � in this work).
MMSE estimation of the received parameter vector at time
onsiders the previous and subsequent received vectors) is
as,
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�����
���

�
�������	 �� � � � � 	 (5)
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���	 and ����	 are the forward and backward conditional
ities, respectively. These conditional probabilities can be
d from forward and backward recursions, respectively, as

d in [4]. We will refer to this approach as FBMMSE (For-
ckward MMSE) estimation.
ough the forward probabilities could be computed while

g data, the FBMMSE estimation necessarily introduces a
the decoding/estimation process, since it is required to

il the end of the error burst to obtain the backward prob-
. The delay is the same as the one introduced by the Au-
igation. A simplified alternative consists in the use of only
ard probabilities in the expected value computation [3, 4].
h clearly suboptimal, since only past received vectors are
is approach has the advantage of a reduced computational
ddition to delay suppression. This approach is referred to
SE (Forward MMSE) estimation.
proposed HMM framework leads us to the possibility of
nting a new mitigation procedure based on the use of the

algorithm. In this case, the estimated sequence of feature



pair vectors corresponds to the optimal state sequence ��, that max-
imizes � ���� �, where � � ���� � � � � �� � represents a given state
sequence. The Viterbi algorithm implies the recursive computation
of the joint probability Æ���� (later referred to as delta probability)
of the best state sequence ending at state �� at time � and the ob-
servation subsequence ���� � � � ���� [6]. Since we are obtaining a
Maximum A Posteriori estimation of the best state sequence, we
will refer to this approach as MAP estimation. This third approach
presents several attractive points such as efficient implementations
based on trellis and log-probabilities or the possibility of integra-
tion with the Viterbi word decoding applied for recognition, al-
though it introduces the same delay as FBMMSE or Aurora.

5. IMPLEMENTATION OF HMM-BASED MITIGATION

5.1. About SNR estimation

We have previously shown that the computation of the observa-
tion probabilities from reliability measures requires an estimation
of the channel SNR 	�
�� . This can be a simple task in the
case of channels for which the degradation is homogeneously dis-
tributed, such as AWGN or Rayleigh channels. In the case of a
bursty channel, the noise is concentrated into bursts. In particular,
the bursty channel model previously introduced can be viewed as
AWGN with an SNR variable in time. In this situation, two differ-
ent problems should be addressed. First, how to reliably estimate
the average SNR from (1) for such non-stationary noise, for which
error bursts can even have different durations and degradation lev-
els in a real situation. Also, although the estimation of the average
channel SNR could be carried out, this estimated value would be
clearly high during bursts, where mitigation is applied.

In order to put some light about these questions, we have car-
ried out an experiment consisting in testing the DSR performance
(as Word Accuracy, WAcc) when an incorrectly estimated SNR is
utilized for the probability computation of equation (4), transmit-
ting through an AWGN channel. The applied mitigation is the one
based on FMMSE estimation (FBMMSE is not suitable for this
study). The results are depicted in figure 2. Each plot is obtained
using a fixed value (-4, -2, 0, 2 and 4 dB) as estimated SNR for
the computation of ���
�, and testing each for channel SNRs from
-4 to 6 dB. Points labeled as ”SVQ” (WAcc=99.04 %) and ”Base”
(WAcc=99.02 %) correspond to the use of error free quantized and
original features, respectively.

These plots clearly show that a high value for the estimated
SNR is more detrimental than a lower one. In the case of the -4dB
plot, a very small degradation is obtained for high channel SNRs,
while, on the contrary, an estimated SNR of 4dB rapidly decreases
the performance when the channel conditions get worse. Thus,
the utilization of a low fixed value for the SNR can provide quite
an acceptable performance. A fixed SNR value equal to -2 dB is
chosen for error probability computation in the rest of this work,
thus avoiding the problem of SNR estimation.

5.2. A hard decision approach

When implementing a decoding stage, it is clear that the use of
hard decision on the received signal vector implies a much sim-
pler device. One possible solution [4], that allows the application
of the proposed HMM-based methods along with hard decision,
is to compute the observation probabilities as a function of the
Hamming distance between the hard decoded bit sequence �� and
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ds ���� as,
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� (6)

����� is the Hamming distance between codewords � and
� is the average BER (we use the AWGN channel BER).
ly an estimation of the channel SNR is required to obtain
therefore, �����. Our previous work [4] shows that this
ision approach provides WAcc results similar to those of
ision in the case of a bursty channel using a fixed SNR
-2 dB when applying an MMSE-based mitigation.

out boundary conditions

revious work [4], the forward and backward procedures
alized in a standard way, by means of the following ex-
s (later referred as boundary conditions A),

����� � ��������
�� �� � � � �� � (7)

�� ��� � �
�� �� � � � �� � (8)

� is the a priori probability of source symbol � and �� is a
zation factor. It must be noted that we have normalized the
d probabilities to the number of states �� . This fact only
the introduction of a constant that does not affect the re-
that will ease the comparison with the modified boundary

ns introduced later in this section. The standard Viterbi al-
can be initiated identically to the forward procedure and
ed by choosing the final state ��� as the one which maxi-
robabilities Æ� ���.
speech recognition application, the beginning and end of

rance to be recognized usually have specific characteris-
r example, silence or low energy segments can often ap-
his knowledge can be integrated in the model topology
ding starting and ending null states (� and � ) that can
when an error burst corrupts data at the beginning or end
terance. Otherwise, for bursts fully included in the utter-
can be taken into account that at times � � � and � � �
ived data is correct, in order to initiate and terminate the
on procedures (in a similar manner as Aurora mitigation
hese considerations involve several changes in the strate-
nitialization and termination of the mentioned procedures
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Fig. 3. DSR over a bursty channel for conditions A and B.

(boundary conditions B):

1) Initialization of forward and delta probabilities: in the case of
detecting an error burst at the beginning of the utterance, the a
priori probabilities �� of each state are substituted by the proba-
bilities of transition from state � . Otherwise, in the case of a burst
fully contained in the utterance, it is taken into account that �� is
the last correct vector received before the burst, so ������ is zero
for all states �� except the one corresponding to the hard decoded
codeword ���.

2) Initialization of the backward probabilities: in the case of a burst
at the end of the utterance, the uniform initialization of (8) is re-
placed by assigning to each �� ��� the probability of transition to
state � . Otherwise, the uniform initialization is maintained but
considering that ����� � is zero for all states �� except the one cor-
responding to the hard decoded codeword ��� .

3) Termination and backtracking of the Viterbi algorithm: in the
case of a burst at the end of the utterance, an additional transition
to state � is considered. Otherwise, the backtracking is initiated
in the state corresponding to the hard decoded codeword ��� .

6. EXPERIMENTAL RESULTS

Figure 3 shows the performance of the different proposed tech-
niques and the effect of boundary conditions A and B. First, it can
be observed that FBMMSE is clearly superior to FMMSE or MAP,
as it could be expected. A second aspect that is revealed is that, in
general, conditions B provide better performance than A. This im-
provement is drastic in the case of the MAP estimation, for which
boundary conditions A provides even worse results than the Au-
rora mitigation (the MAP results for conditions A do not appear in
figure 3). This is a consequence of the introduced approximations
(fixed SNR value and hard decision), for which MAP is clearly
more sensitive than the MMSE estimations. However, the MAP
results reach those of FMMSE with conditions B, showing that the
MAP approach can provide a good performance with an appropri-
ate set of boundary conditions.

We have also tested the FBMMSE, FMMSE and MAP tech-
niques over the EP GSM error patterns, using the boundary con-
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RORA 99.04 98.94 93.40
MSE 99.04 99.01 98.66

MSE 99.04 99.01 97.95
AP 99.04 99.01 98.13

Performance of the Aurora and HMM-based mitigation
over GSM Error Patterns EP1, EP2 and EP3.

t B. The results are shown in table 2. When the channel
ns correspond to patterns EP1 or EP2, the degradation is
le for all the tested techniques. However, when the EP3
s applied, the Aurora mitigation introduces more than 5
rd accuracy reduction, while, on the opposite side, the
E technique obtains less than half a point of degradation.
FMMSE and MAP techniques show quite a good behav-

e both introduce a degradation of less than 1 % of WAcc
ect to FBMMSE, providing the MAP procedure the sec-
results.

7. CONCLUSIONS

aper we have proposed an HMM framework from which
SE-based channel error mitigation schemes can be de-
bursty channels on a DSR application. Also, a MAP mit-
rocedure based on Viterbi decoding has been proposed.
mplementation aspects of these mitigation procedures have
died. Thus, we have shown that it is possible to obtain a
formance without the need of SNR estimation or soft de-
tilizing a fixed SNR value and hard decision, respectively.
also shown that an appropriate selection of the boundary

ns improves the performance, specially making the MAP
uite competitive for real implementations.
ledgement: we would like to thank David Pearce (from
a Labs) for providing us with the GSM EP patterns.
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