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ABSTRACT

This work is mainly focused on showing experimental results us-
ing a combination of two methods for noise compensation which
are shown to be complementary: classical spectral subtraction al-
gorithm and histogram equalization. While spectral subtraction is
focused on the reduction of the additive noise in the spectral do-
main, histogram equalization is applied in the cepstral domain to
compensate the remaining non-linear effects associated to channel
distortion and additive noise. The estimation of the noise spec-
trum for the spectral subtraction method relies on a new algorithm
for speech / non-speech detection (SND) based on order statis-
tics. This SND classification is also used for dropping long speech
pauses. Results on Aurora 2 and Aurora 3 are reported.

1. INTRODUCTION

In previous works [1, 2, 3] we have shown that histogram equal-
ization (HE) is a very suitable tool for compensating the linear and
non-linear distortions introduced into the speech signal by the en-
vironment (noise and channel distortions) in the cepstral domain.
‘We have found that this technique can also be used in combination
with noise reduction techniques. For example, the combination of
Vector Tailor Series (VTS) (working in the filter-bank domain) [4]
and HE (performed in the cepstral domain) improves the recog-
nition performance with respect to each technique independently
applied [1].

In this work we show that it is possible to use histogram equal-
ization in combination with another classical noise reduction me-
thod like spectral subtraction (SS). The main advantage of using
SS instead of VTS is that SS does not need a model of the clean
speech signal. Additionally the computational complexity is re-
duced. The goal of applying HE after SS (or other noise reduction
techniques like VTS or Wiener filter) is to remove the mismatch
between the clean speech and the partially compensated speech;
that means that histogram equalization is applied to a signal with
a signal to noise ratio (SNR) higher than that of the original one
because the noise was partially removed.

Figure 1 shows a block diagram of the proposed feature ex-
traction algorithm. In the context of Distributed Speech Recog-
nition systems (DSR) the proposed techniques can be distributed
between the front-end and the back-end. At the front-end, spec-
tral subtraction is used to provide a noise-reduced speech signal.
A Speech / Non-speech Detector (SND) module using logarithmic
energy classifies frames as speech or non-speech for the estimation
of the noise spectrum (NS). This estimation is based on the mag-
nitude spectrum of those frames classified as non-speech by the
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Fig. 1. Block diagram of the proposed system.

SND algorithm, and it is used to perform classical spectral sub-
traction. Finally 12 MFCC coefficients and the logarithmic energy
are computed from the noise-reduced signal.

At the back-end, a second SND (SND2) is used by a frame-
dropping algorithm (FD) to remove long speech pauses. The goal
of this module is to reduce the insertion error rate. After that,
histogram equalization over the cepstrum coefficients is performed
to remove the remaining distortion in the speech representation.

For the design of the SND module we propose a new approach
based on order statistics (OS) [5, 6] to obtain an estimation of the
instantaneous SNR of the speech signal, that is used for the speech
/ non-speech detection.

This paper is organized as follows. Section 2 describes the
noise reduction algorithm including the new approach for speech /
non-speech detection. In section 3 we describe the implementation
used for histogram equalization. In section 4 the speech data bases
are described and the experimental results are discussed. Finally,
in section 5 the main conclusions are presented.

2. FRONT-END NOISE REDUCTION

2.1. Noise estimation and spectral subtraction

Noise reduction in the front-end is based on an implementation
of the traditional non linear spectral subtraction algorithm in the
magnitude spectrum domain [7]:

| X | = max{(|[Y'| — a|NT), 8|Y|} (1)

where |X | is the compensated magnitude spectrum,

Y| is the
magnitude spectrum of the noisy signal, | N| is the average magni-
tude spectrum of the noise, o = 1.1 is the over-subtraction factor
and 8 = 0.3 is the maximum attenuation.

To obtain an estimation of the noise spectrum, we use the in-
formation provided by the SND module. Only when the SND
classifies the current frame as non-speech the noise spectrum is
adapted using a first order IIR filter with a forgetting factor A =
0.95 as follows:



A|Ni—1] + (1 — N)|Yz|;  if frame ¢ is silence
|N:| = 2
|Ne—1]; if frame ¢ is speech

2.2. Speech / Non-speech Detection

The detection of speech pauses is a difficult task particularly when
the SNR is low. In this work we propose a new approach to speech
pause detection based on order statistics (OS) filters [6]. These are
a special class of nonlinear filters that can be viewed as a gener-
alization of the median filter. We apply this theory to obtain an
estimation of the local SNR of the speech signal. Two OS filters
are applied to the log energy of the signal. The first one is a median
filter used to track the background noise level (B). The other one
is used to track the signal level and it is defined as the 0.9 quantile
(Q(0.9)). The difference between the output of this filter and the
background noise level is used as a quantile-based estimation of
the instantaneous SNR (QSNR) of the signal.

The implementation of these two OS filters is based on the
sequence of sorted values of log energy. Let Ey_r, --- Eyyr be
the log energy values of 2L + 1 frames around the frame ¢ to be
analyzed. Let E(,), where r = 1---2L + 1, be the corresponding
sorted values in ascending order. Then, E 1 1) is the output of the
median filter. For the other filter we use the general expression

r=2pL k=|r] f=(@r-—k)
Q) =1 - HEw + fEwi1) ©)

where Q(p) is the p sampling quantile and || denotes the great-
est integer smaller than . The algorithm can be summarized as
follows:

1. Log energy is computed for 20ms frames at a frame-rate of
100Hz.

2. Two OS filters of length 2L + 1 are used to obtain estima-
tions of the median and the quantile Q(0.9) of the logarith-
mic energy.

3. An approximation to the local SNR (QSNR) of the signal in
the working window is obtained as the difference between
Q(0.9) and the background noise level B.

4. The speech / non-speech detection is made by comparing
the estimated SNR with a threshold. If QSNR is greater
than the threshold the frame is classified as speech, and oth-
erwise it is classified as non-speech; in this last case the
background noise level is updated using the median value
obtained for this window.

For the initialization of the algorithm we consider the first L frames
as non-speech, and the median of this L frames is used as an initial
estimation of the background noise level. In this work we use a 21
frames window (L = 10) and a threshold value of 3dB.

Figure 2 shows how this algorithm works. The first picture
represents a speech signal and the output of the SND. The second
one shows the signals involved in the decision algorithm; at the top
the logarithmic energy, the quantile Q(0.9) and the background
noise level B; at the bottom the SNR estimate (QSNR) and the
decision threshold.

More traditional algorithms for speech / non-speech detection
based on energy values obtain an estimation of the instantaneous
SNR as the difference between the log energy for the current frame
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Fig. 2. (a) Speech signal and speech / non-speech detection. (b) At
the top the logE, the quantile QQ(0.9) and the noise level estimation
(B); at the bottom the SNR estimate (QSNR) and the threshold
value.

and an estimation of the log energy of the noise. Usually some type
of smoothing and hand-over is applied. In our approach, this is not
necessary. On the picture we can observe that QSNR is smooth
enough and performs an advanced detection of noise/speech tran-
sitions and a delayed detection of speech/noise transitions; this oc-
curs because of the difference delay behavior of non-symmetric
OS filters for non-increasing and non-decreasing sequences [6].

3. BACK-END FEATURE COMPENSATION

3.1. Frame-dropping

At the back-end, a second SND (SND2) is applied over the log
energy of the noise-reduced signal (after the SS is applied). The
output of this module is used in a frame-dropping algorithm with
the goal of removing long speech pauses. It removes every frame
in the middle of a window of 11 non-speech frames. Consequently,
the maximum length of speech pauses allowed after the frame-
dropping is 10 frames (100ms).

3.2. Histogram Equalization

Histogram equalization is used to compensate both, linear and
non-linear distortions of the feature vector. Using spectral subtrac-
tion, a reduction of the mismatch between noisy and clean speech
is obtained. Nevertheless, this compensation is not perfect and a
residual mismatch still remains. In addition, channel mismatch
distortion is not removed by spectral subtraction at all. The goal
of HE is to further reduce this two residual mismatches. In [1]
the nature of this residual noise was studied when VTS noise com-
pensation is applied. It was found that histogram equalization is a
good tool to deal with it.

Histogram equalization is a non linear technique originally de-
veloped for image processing [8] that has been applied with good
results to noise compensation in ASR systems [3]. The goal of
this technique is to provide a function z(y) which transforms the
probability distribution of the noisy speech py (y) into a reference



probability distribution corresponding to clean speech py(z). If
z(y) transforms py (y) into p, (x), then the cumulative histograms
verify that [8]

Cy(y) = Ca(z(y)) ©)
and therefore, the transformation x(y) providing an estimation of
the clean speech can be obtained from the cumulative histograms
of the noisy and clean speech

z(y) = C; ' [Cy(y)] (5)

where C * represents the inverse function of C..

Although it is possible to use reference histograms estimated
from clean speech samples, the considered reference probability
density function in this work is a Gaussian with zero mean and
unity variance. We apply histogram equalization in the cepstrum
domain exactly in the same way that is described in [1].

4. EXPERIMENTAL RESULTS

4.1. Speech Databases and setup

Experiments were performed on 4 different databases: Aurora 2
[9] and Finnish [10], Spanish [11] and German [12] SpeechDat
Car databases.

Aurora 2 database is based on a subset of the TI-Digits data-
base. This database contains connected digits recorded in a clean
environment. Several types of noises (subway, babble, car, exhibi-
tion, etc.) at different SNR levels are added to the sentences. Three
sets of sentences for test (A, B and C), and two groups of recogni-
tion experiments, one using a recognizer trained with clean speech
(Clean-Condition) and other trained with sentences contaminated
with different kinds and levels of noise (Multi-condition) are de-
fined for this database [9].

The SpeechDat Car databases were recorded in a car environ-
ment in several driving conditions with two microphones (close
talking and hands free). Three sets of experiments with increas-
ing level of mismatch between training and test conditions were
defined: well matched (WM), medium mismatch (MM) and high
mismatch (HM). The three databases contain only digits utter-
ances.

These databases have been automatically end-pointed. We
have used the SND previously described to detect the beginning
and the end of each sentence using close talking microphone record-
ings. Then we have added 200ms of silence at the beginning and
at the end of each sentence, and we have used these endpoints also
for hands free microphone recordings.

The reference recognition system [9] is based on continuous
Hidden Markov models (one model for each digit) with 16 emit-
ting states and a mixture of 3 Gaussian pdf per state. Both, training
and recognition processes are performed using the HMM Tool Kit
(HTK) [13] software, as proposed in Aurora 2 and Aurora 3 docu-
mentation.

4.2. Results and discussion

In this work we present the speech recognition results obtained
with the baseline system based on MFCC and three different sets
of features: SS features (obtained using only the spectral sub-
traction noise reduction algorithm at the front-end), SS+HE fea-
tures (obtained after histogram equalization at the back-end) and
SS+FD+HE features (similar to SS+HE but including frame - drop-
ping before HE). In all cases, the feature vector (containing 12

TI-Digits Multi-condition Training

A B C Average
Baseline 88.07 | 87.22 | 84.56 87.03
SS 90.94 | 88.69 | 86.29 89.11
SS+HE 90.72 | 89.74 | 90.03 90.19
SS+FD+HE 90.89 | 89.80 | 90.11 90.30

SS+FD+HE (20mix) | 91.97 | 91.62 | 90.46 | 91.53
TI-Digits Clean-Condition Training

A B C Average
Baseline 58.74 | 53,40 | 66.00 58.06
SS 73.71 | 69.35 | 75.63 72.35
SS+HE 82.08 | 82.61 | 81.73 82.22
SS+FD+HE 82.51 | 82.78 | 81.87 82.49

SS+FD+HE (20mix) | 82.89 | 84.03 | 82.27 83.22

Table 1. Word accuracy results for TI-Digits

Finnish
WM MM HM | Average
Baseline 92.74 | 80.51 | 40.53 75.41
SS 95.09 | 78.80 | 69.19 82.91
SS+HE 94.58 | 86.53 | 74.20 86.67
SS+FD+HE | 94.58 | 86.73 | 73.11 86.46
Spanish
WM MM HM | Average
Baseline 92.94 | 83.31 | 51.55 79.22
SS 95.58 | 89.76 | 71.94 87.63
SS+HE 96.15 | 93.15 | 86.77 93.00
SS+FD+HE | 96.65 | 94.10 | 87.03 93.35
German
WM | MM HM | Average
Baseline 91.20 | 81.04 | 73.17 83.14
SS 93.41 | 86.60 | 84.32 88.75
SS+HE 94.79 | 88.58 | 89.32 91.25
SS+FD+HE | 94.57 | 88.07 | 88.95 90.89

Table 2. Word accuracy results for SpeechDat Car databases

MFCC and log energy) is augmented with its corresponding deriva-
tives and accelerations using regression lengths of 7 and 11 frames
respectively.

Tables 1 and 2 show the word accuracies for the different
databases and test conditions for the three types of features. For
TI-Digits, results for each test set are averaged over the SNR lev-
els between 20dB and OdB. Average values for SpeechDat Car
databases are weighted as 0.4-WM + 0.35-MM + 0.25-HM.

Tables 3, 4 and 5 show the relative performance improvements
over the proposed baseline. For the three systems, a relative im-
provement, in average, is obtained for all the databases, with the
exception in the Finnish database medium mismatched set when
only spectral subtraction is applied; in this case a degradation re-
spect to the baseline is observed.

Note the important increment of the relative improvement ach-
ieved after combining spectral subtraction and histogram equal-
ization (from 23.57% and 30.54% to 35.51% and 45.79% for TI-
Digits and SpeechDat Car, respectively). This improvement is ob-
tained for all the different databases and test conditions.

Relative improvement is increased for TI-Digits and Spanish



Aurora 2 Relative Improvement

Set A Set B Set C Overall
Multi 13,14% 7,42% 6,04% 9,43%
Clean 38,58% | 39,65% | 32,08% | 37,711%
Average 25,86%| 23,53%| 19,06% | 23,57%

Aurora 3 Relative Improvement

Finnish | Spanish | German | Danish | Average
Well (x40%) | 32,37% | 37.39%| 25,11% ) 7 31,63%
Mid (x35%) | -8,77%| 38,65%| 29,32% | 19,713%
High (x25%) | 48,19% | 42,08%| 4156%1 | 43,94%
Overall 21,92%| 39,00%| 30,70%/ | 30,54%

Table 3. Results obtained applying SS

Aurora 2 Relative Improvement

Set A Set B Set C Overall
Multi 9,85% | 17,51% | 22,36% | 15,42%
Clean 50,15% | 64,27% | 49,13% | 55,59%
Average | 30,00%| 40,89% | 35,74%| 35,51%

Aurora 3 Relative Improvement

Finnish | Spanish | German | Danish | Average
Well (x40%) | 25,34% | 45,47% 37,20%
Mid (x35%) 30,89% | 58,96% 43,20%
High (x25%) | 56,62% | 72,69% 63,17%
Overall 35,10%| 57,00% 45,79%

Table 4. Results obtained combining SS and HE

SpeechDat Car after applying frame-dropping. This is mainly due
to the reduction of insertion errors caused by the long inter-word
speech pauses removed by the FD algorithm. Nevertheless includ-
ing frame-dropping does not improve performance in Finnish and
German databases. It is necessary to recall that SpeechDat Car
databases have been well delimited and for this reason the effect
of frame dropping is not very relevant. Experiments performed
without an a-priori delimitation of the databases have shown the
importance of the frame-dropping because it reduces considerably
the number of insertion error. Additionally, we have also per-
formed recognition experiments for TI-Digits increasing the num-
ber of Gaussians from 3 to 20. Table 6 shows the relative improve-
ments of the SS-FD-HE recognizer using 20 Gaussians with re-
spect to the 3 Gaussians baseline system. As expected, the perfor-
mance improvement is greater for Multi-Condition than for Clean-
Condition, yielding to an average relative improvement of 52.02%
over the baseline.

5. CONCLUSION

The recognition results on Aurora 2 and Aurora 3 show the effec-
tiveness of the combination of spectral subtraction and histogram
equalization. After applying spectral subtraction in the magni-
tude spectrum domain an important reduction of the mismatch
is obtained, yielding to a performance increment over the base-
line. Recognition accuracy can be further improved by applying
histogram equalization in the cepstral domain. This is due to the
ability of histogram equalization to compensate the linear channel
distortion and the residual non-linear distortions remaining after
spectral noise reduction. Frame-dropping is effective only in situ-
ations where long speech pauses occur in the utterances or when
the beginning or the end of the speech utterance is not accurately
delimited.

Aurora 2 Relative Improvement

Set A Set B Set C Overall
Multi 14,07%| 18,31% | 25,16% | 17,99%
Clean 51,98% | 64,20% | 49,89% | 56,45%
Average | 33,03%| 41,26%| 37,53%| 37,22%

Aurora 3 Relative Improvement

Finnish | Spanish | German | Danish | Average

Well (x40%) | 25,34%| 52,55%| 38,30% 38,73%

Mid (x35%) | 31,91%| 64,65%| 37,08%/ | 44,55%

High (x25%) | 54,78% | 73,23%| 58,81% ////// 62,28%
.

Overall 35,00%| 61,95%| 43,00% 46,65%
Table 5. Results obtained combining SS, FD and HE

Aurora 2 Relative Improvement

Set A Set B Set C Overall
Multi 38,95% | 43,35%| 42,30% | 41,38%
Clean 58,02% | 70,98% | 55,36% | 62,67%
Average 48,48%| 57,16% | 48,83%| 52,02%

Table 6. Results obtained combining SS, FD and HE for the 20
Gaussian mixture system
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