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ABSTRACT

Although Continuous HMM (CHMM) technique seems to
be the most flexible and complete tool for speech model-
ing, it is not always used for the implementation of speech
recognition systems due to several problems related to train-
ing and computational complexity. Besides, it is not clear
the superiority of continuous models over other well-known
types of HMMs, such as Discrete (DHMM) or Semicontin-
uous (SCHMM) models, or Multiple Vector Quantization
(MVQ) models, a new type of HMM modeling recently in-
troduced by our group. In this paper, we propose a new
variant of HMM models, the SCMVQ HMM models (Semi-
continuous Multiple Vector Quantization HMM), that uses
one VQ codebook per recognition unit and several quantiza-
tion candidates. Formally, SCMVQ modeling is the closest
one to CHMM, although requiring less computation than
SCHMMs. Besides, we show that SCMVQs can obtain bet-
ter recognition results than DHMMs, SCHMMs or MVQs.

1. INTRODUCTION

During the last years, Hidden Markov Models (HMM) have
been successfully applied to acoustic modeling for speech
recogrition. Two main variations of HMMs have been wi-
dely used: discrete HMMs (DHMM) and continuous HMMs
(CHMM). The first ones use nonparametric discrete out-
put probability distributions, due to a previous VQ process.
CHMMs use parametric densities to model the output pro-
babilities, on the assumption that the observed signals have
been generated by a mixture gaussian process or an auto-
regressive process [1]. The main problem of DHMMs is
the loss of information about the input signal during the
VQ process. CHMMs avoid this problem using probability
density functions (pdfs). Thus, CHMM modeling seems to
be a more flexible and complete tool for speech modeling.
In spite of this, they are not always used for the imple-
mentation of speech recognition systems. There are several
reasons for it. The main problem is the large number of pa-
rameters to compute. In order to obtain a good estimation
of them, a big amount of computation and a large database
is required. These requirements can not be always satisfied
with the available resources. These are strong restrictions
that may make advisable the use of DHMM [2].

In order to avoid such problems of continucus modeling,
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Huang et al [2] propose the use of semicontinuous HMM
(SCHMM) models, a hybrid modeling that uses several VQ
candidates instead of only the best one, as in DHMMs.
Huang has shown that SCHMMs can achieve better results
than CHMMs. Besides, our group has recently proposed a
new approach based on the use of Multiple Vector Quanti-
zation for HMMs (MVQ HMM or, simply, MVQ modeling)
[3]. With the same amount of computation, the MVQ mo-
deling can clearly ontperform DHMMs and achieve similar
or better results than SCHMMs (with less computation).

In this paper, we propose a new variant of HMM mo-
deling based on the generalization of MVQ using several
candidates in the VQ process, extending the MVQ models
from a discrete to a semicontinuous approach, that we will
call SCMVQ HMM modeling (semicontinuous HMMs with
Multiple Vector Quantization).

In the next section, a generalized framework for HMM
modeling, from which MVQ modeling can be derived, will
be established. In section 3, we will look for a suita-
ble form of the pdfs of the MVQ models (to be used in
SCMVQs). Also, this models will be compared with DHMM
and SCHMM. SCMVQ models will be introduced and com-
pared in section 4. Finally, we will summarize the conclu-
sions of this work.

The different experiences, developed in this work, were
made on an isolated word task, with a vocabulary of 16
words (the 10 spanish digits and 6 keywords). The data-
base contains 1920 signals, uttered by 20 female and 20
male speakers (3 repetitions of each word of the vocabu-
lary by each speaker). The data were analyzed using 32 ms
frames, overlapped 16 ms. The feature vectors are made
up by 14 cepstral and 14 delta cepstral coefficients, plus
delta energy, and compared using an euclidean weighted dis-
tance measure [4]. The error rate values have been obtained
in speaker independent mode, using a leaving-one-out-like
technique, with 5 partitions of the database (32 speakers
for training and 8 for testing in each partition).

2. GENERALIZED FRAMEWORK

The difference among the different HMM techniques is in
the computation of the output probabilities b;(x} of a vector
x in state s,, given a model A. The most general form
corresponds to CHMM modeling, where b;(x) is modeled
by a mixture of pdfs of the form,

Z p(x|vk, 5i, A)p{vi|s,, A) (1)

vk €EV(s,,A)

by(x) = p(x|s.. A) =
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where V(s,.A) is the set of pdfs of the mixture of state s,
and model A, and vy is an index representing pdf number k.
The probabilities p(x|v, 3,, A) are usually calculated atili-
zing gaussian or autoregressive processes.

A first simplification can be made forcing all states to
share the same set of pdfs, V{3, ) =V V¥s,, A, which leads
to the semicontinuous HMM approack. The output proba-
bilities are now computed as.

p(xlsi A) = Y Plxlocbi(en) (

€V

[}

The set V' can be obtained from the construction of a VQ
codebook, and the sum of equation {2) is usnally reduced
only to the best set of candidates.

The DHMM approach is easily obtained from SCHMM
modeling keeping only the best VQ candidate (the nearest
VQ center). In this case, only P(O|A) (probability of ge-
neration) is computed for an input sequence X = x; +-- X7
(with O = o1 ---0r as quantized version}, since P(.X|0}
{probability of quantization) does not depend on the model
(the global probability P(X]|A) is the product of both).

The MVQ HMM modeling is based on the use of one
codebook per model, V(s,, A} = V(A) for all s, in model A,
with,

P(x}si, A) = P(x]o.A)bi(0) (3a)
o= max ~'[P(x|ex,\)] (3b)
v EVIA)

In this case. it is also possible a decomposition of the pro-
bability of a sequence X,

P(X[A) = P(X]O, 1) P(O]A) (4)

The probability of generation can be estimated in the same
way as for DHMM models (using each model its own VQ
codebook). The main difference between DHMM and MVQ
models is that the probability of quantization cannot be re-
moved now, since it is different for each model. It can be
considered that a MVQ model is made up by a VQ code-
book and a discrete HMM. Tt has been proven that the ML
estimation of MVQ models can be performed independently
for the VQ parameters (LBG algorithm) and for the discrete
HMM parameters {Baum-Welch algorithm) [5].

3. IMPLEMENTATION OF A MVQ-BASED

SYSTEM

Each pdf vi € V(A) used for MVQ modeling is assumed
to be a multivariate gaussian density, with a mean veclor
ux (VQ center) and a diagonal covariance matrix X,
{a’,‘,,1= 1,~.4,p}.

We have tested 3 different forms for the covariance ma-
trices in 3 different experiments:

EXP1 Using a different covariance matrix for each pdf.

EXP2 Using only one covariance matrix £y for all the pdfs
in the codebook of model A, where each element of the
diagonal is the average distortion of the corresponding
feature in that codebook.

o
—

EXP3 Using only one covariance matrix ¥, = o3/ for all
the pdfs in the codebook of A, where o3 is the average
distortion per feature in the codebook. and [ is the

identity matrix.
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Figure 1. Error rate
and EXP3.

vs. the codebook size for EXP1, EXP2

Figure 1 shows the results of these 3 experiments, using
4, 8, 16 and 32 centers per codebook. The best results
are obtained with EXP3. Two reasons may explain this
behavior. First, EXP3 is the only experience for which the
probability measure is coherent with the VQ distance used
in this work, that is, the nearest center of an input vector
represents also the most probable pdf. Second, EXP3 uses
only one parameter 0% to represent all the covariance ma-
trices of all the pdfs in the codebook, which implies a great
reduction in the number of parameters to train, lightening
the problem of insufficient training. Each pdfcan be written
(using EXP3) as,

L Pl 1
P(x|ox, \) = (2701 p“exp{—ﬁllx - uk\lz} (6
<Y

There is a linear relation between the logarithm of (5) and
the distance ||x — ux||*. Applying logarithms to (4), we can
see that the purpose of the MVQ modeling described here
is to add to the log-score provided by the discrete HMM
model (probability of generation} a new score (probability
of quantization) that is linearly related to the average dis-
tortion of the input sequence X in the codebook of model
A. The idea of recognizing without time alignment using
several VQ codebooks has been already proposed and suc-
cessfully applied by Burton et al [6].

It is clear that the approach introduced by EXP3 is su-
boptimal. This means that the composition of probabilities
in (4) may be upgraded using a weighting factor a,

log P(X|A) = log P(X|O,)) + alog P(O|A)

(6)

where o = p/(1—), and p takes values from 0 (only proba-
bility of generation) to 1 {only probability of quantization).
Figure 2 shows how the error rate varies as a function of
#, in the range 0.25-0.75, for 8, 16 and 32 centers per co-
debook. Although g = 0.5 (o = 1) is not a bad selection,
there is a minimum error rate around p = 0.3,0.35. We will
use g = 0.35 (o = 0.538) from now on. Figure 2 also shows
that the probability of quantization is much more important
in recognition than the probability of generation, since for
i > 0.3 the slopes of the plots are smaller than for g < 0.3.
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Figure 2. Error rate vs. weighting factor p.
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Figure 3. Error rate versus codebook size MVQ, DHMM and
SCHMM.

A comparison of the designed MVQ) system with standard
DHMM and SCHMM systems is shown in figure 3. Since
we use a 16-word vocabulary, the set of 16 N-center code-
books for MVQ models is equivalent to a (16*N)-center co-
debook for DHMM and SCHMM. Thus, the results are com-
pared when the same total number of centers (4/64, 8/128,
16/256 and 32/512) is used. The SCHMM were construc-
ted using gaussian pdfs and 4 VQ candidates, and trained
by means of the joint reestimation proposed by Huang [7]
(covariance matrices are not reestimated). It is clear than
MVQ modeling outperforms DHMM models (using more
than & centers) with the same amonnt of computation in
recognition. Besides, there is an important computational
saving in training, since the computation involved by 16 N-
center codebooks is drastically smaller than that of a single
(16*N)-center codebook (due to the exponential complexity
of the VQ training algorithm). Also, MVQ models can even
achieve similar or better results than SCHMMs.

4. SCMVQ HMM MODELING

The results obtamed with MVQ modeling suggest the
implementation of a new type of models that generalize
MVQ for several quantization candidates, in the same way
as SCHMM generalizes DHMM. Tlus yields the SCMVQ
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HMM modeling, for which the output probabilities must be
computed as,

c
b(x) = Y P(xok, Abi(ve) )
k=1
where C is the number of VQ candidates (in V(A)). The
SCMVQ modeling is formally the closest one to CHMMs.
The only difference is that all the states share the same set
V(A) of pdfs. In spite of this similarity to CHMM models,
it is easy to understand that the computational complexity
is smaller than that of SCHMM due to the reduction of
the number of parameters in the covariance matrices. This
computational saving is drastic in the training stage if a
joint reestimation is performed.
The pdf of equation (5) must be modified, due to the
iutroduction of the weighting factor o (see eqn. (6)), as,

P(x|e,,A) = (’.Zvrai)_pa/l exp {—%”X — [L]||2} (8)
735

obtaining a non-normalized pdf. In this way, SCMVQ mo-
dels are completely equivalent to MVQ models for the case
of only 1 candidate.

The mechanisms of these new models, for training and
recognition, are mostly similar to those of SCHMM models
described in [2], in the same way as MVQs are similar to
DHMMs. In a ML estimation of SCMVQs, the VQ pa-
rameters can be jointly estimated along with the discrete
HMM parameters (A, B and Il matrices). The reestima-
tion formulas for these parameters in a SCMVQ model are,

s T

> Sik)ai()

pete) = == (99)
> sick)
=1 t=1
s 7
S5 stwllst — wll’
~2 1i=1 =1
A= - (9b)
DD sk
=1 t=1
where (see [2]),
Se(k) = Plo. = v X, A) (10)

and S is the number of training sequences.
Two diflerent experiments have been carried out with the
SCMVQ models described above:

EXP4 Ouly the A and B matrices are reestimated, using
the same codebooks as for MVQ models.

EXP5 All the model parameters are reestimated, using
formulas (9) (overall ML estimation).

These experiments were carried out for 8, 16 and 32 cen-
ters per codebook, using from 2 to 6 quantization candi-
dates (1 candidate corresponds to MVQ modeling). The
results are shown in table 1. Two main conclusions can be
extracted:



[ #Cands. 1 2 3 4 5 6 |
8C EXP4 291 3.02 333 307 3.17 3.22
8C EXP5 - 270 296 2.81 281 2.81
16C EXP4 1.77 1.56 145 1.51 1.56 1.61
16C EXP5 - 145 151 1.56 1.61 1.66
32C EXP4 161 1.25 140 135 1.40 1.40
32C EXP5 - 1.25 1.14 1.09 1.09 1.09

Table 1. Error rate values for SCMVQ modeling with 1-8

candidates, for 8, 16 and 32 centers per codebook. Experiences
EXP4 and EXP5.

#Cents. D SC M SCM SC1
64/4 5.10 3.59 7.96 - 4.01
128/8 4.63 260 291 270 234

256/16 | 3.69 210 1.77 145 1.87
512/32 | 3.17 1.82 1.61 109 140

Table 2. Error rate for DHMM, SCHMM, MVQ, SCMVQ and
SCHMM1.

a) The density of centers must be high enough, in order to
obtain better results of recognition. This means that
only when there exist more than one close center to an
input vector, this is well represented by those centers.
Thus, it will be very important to select the appro-
priate number of quantization candidates depending
on the codebook size.

b) It is important to ”"teach” the system that other cen-
ters, different from the nearest one, can represent a
given input vector. This is performed by the joint rees-
timation of EXP5. Thus, it possible to avoid the degra-
dation of the 8-center system in EXP4, and to obtain
meaningful improvements in the case of a high density
of centers, as for 32 centers.

Finally, table 2 shows a comparison of the error rates
achieved by DHMM (D), SCHMM (SC), MVQ (M) and
SCMVQ (SCM) (as in EXP5). For SCMVQ, 2 quantization
candidates are used for 8 and 16 centers, and 4 candidates
for 32 centers. In relation to SCHMM, the computational
complexity of SCMVQs is always smaller, due to the use of
simplified covariance matrices. This computational reduc-
tion is more considerable in the cases of 8 and 16 centers, for
which only 2 candidates are used (4 for SCHMMs). It can
be observed that MVQs and SCMVQs are always superior
for 16 and 32 centers. Also, an experience (labelled SCI)
with SCHMM models, using a joint reestimation and the
same pdfs as in (8), has been performed. It is interesting to
observe that SC1 can obtain the same or better results than
standard SCHMM, although only superior to SCMVQs for
8/128 centers. This new variation consumes the same com-
putation as SCMVQ in recognition, but, again, more in
training. This result ratifies the suitability of the pdf given
by (8) for speech recognition.

5. SUMMARY

We have introduced in this paper a new type of HMM,
called SCMVQ HMM. It is a generalization of MVQ mode-

ling that has been recently introduced to enhance discrete
HMMs with the spectral information lost in the VQ pro-
cess. We looked first for an optimal form for the pdfs in
a MVQ system. The chosen pdf has 3 main features: a)
it reduces the needed number of parameters, b) it is cohe-
rent with the used distance measure, and c) it is weighted
for an optimal composition with discrete HMM probabili-
ties. The comparison of the obtained MVQ system with
standard DHMMs and SCHMMs has shown the potential
of this approach. The SCMVQ modeling generalizes MVQ
using several quantization candidates. In the same way as
for SCHMM models, the ML estimation of SCMVQs allows
the joint reestimation of the VQ and the discrete HMM pa-
rameters. The results with SCMVQ models show that it
is very important to have a codebook size high enough to
correctly model an input vector with several quantization
candidates, and that an appropriate selection of the number
of candidates must be made. It is also important to train
the system to use several candidates by means of a joint
reestimation. The SCMVQs outperforms all the types of
HMMs previously tested (DHMMs, SCHMMs and MVQs)
using less computation than SCHMMs in recognition (due
to the parameter reduction). This decrease in computation
is much more important in the training stage.
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