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ABSTRACT

The main goal of this work is the automatic speech recog-
nition using Artificial Neural Networks. We define a gen-
eralized type of neuron that, grouped in a Recurrent Neu-
ral Network (an Alphanet), implements a Semicontinu-
ous Hidden Markov Model (SCHMM). The neurons are
grouped in a single layer that generates the Alphanet in
such a way that some of its inputs come from the outputs.
The so-built network allows an interpretation according to
SCHMM models, evaluating symbol sequences that consti-
tute the second type inputs. The network is trained using
backpropagation algorithm, and has been applied to an
isolated word recognition task. Our experimental results
show recognition rates reaching multi-speaker recognition
rates of 97.81%.

1. INTRODUCTION

In the last years, some neural network approaches have
been proposed for speech recognition, nevertheless in most
cases the nets present a fixed number of inputs. This brings
out problems when dealing with the speech sequential na-
ture and durational variability of elements to be classified.
On the other hand, the standard neural networks are inde-
pendent of HMM-based recognizers, which are at present
the best systems for speech recognition.

A new approach has recently been proposed by Bridle [1]
and others [2,3] that solves the mentioned problem incor-
porating an appropriate system to manage the sequential
nature of speech. Therefore, this approach includes the
knowledge about the well-known and widely used HMM-
systems.

The proposed net is the so-called Alphanet that will be
described in brief in the following sections. This net uses a
generalized neuron model [3] that allows us to implement
a Discrete HMM (DHMM). In the present work we make
a higher level generalization of the neuron in order to im-
plement a Semicontinuous HMM (SCHMM) [4]. SCHMM
yields better results than DHMM when applied to speech
recognition.

*This work has been supported by Spanish CICYT under
project TIC92-0662.
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2. HMM: DISCRETE AND
SEMICONTINUOUS.

A HMM is a finite state automaton that can model the
production of temporary vector sequences. In the HMM
formalism, the temporary signal is supposed to be pro-
duced by one of this automatons built up from a set of
states @ = {q1,¢2,...,qv}. The evolution of the states
is governed by statistical laws and the observed signal is
obtained from symbols that the automaton emits in the
transitions between states according to a probability that
depends on the actual state.

An HMM-based recognizer is composed by a set of
HMM-s each one standing for a recognition unit. Given
an input vector sequence X = {I],IQ,...,IT} the recog-
nizer will evaluate the probabilities of this sequence being
emmited by the model A, Pr(X|A). The sequence will be
classified as belonging to the class whose model yields the
higher probability.

Given a model, the probability of a sequence can be
obtained from the so-called forward probability o;[5]

Pr(X|3) = ai(T) (1)

=1

The forward probability a:(t) is the probability that the
model were in state i at time ¢ given the input sequence.
This probability can be obtained in a recurrent way [5}

a;i(1) = m - Bi(ze)
N 2<tLT 2
i) = |3 ay(t=1) - w,, | Bilae) 1<i<nN @

j=1

where 7; is the probability that the initial state is state i,
Bi(z:) is the probability that vector z, was emmited while
the model is at state i (observation probability) and w;; is
the probability of a transition from state j to state 1.

The temporary signal that is to be classified (e.g. speech
signal) is divided into fixed length segments that are char-
acterized by a feature vector. The only difference between
the DHMM and SCHMM approaches consists in the way
the observation probabilities of those feature vectors are
estimated.

In discrete HMM, the vectors are quantized and the se-
quence of vectors X is replaced by a sequence of symbols
O = {01,0s,...,07}. A observation probability b;(v;) is
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Figure 1. Neuron model for Discrete Alphanet
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Figure 2. Net topology used for implementing a DHMM

estimated for every symbol v; during the training process.
Therefore the observation probability of a vector Bi(z.)
is obtained from a table lookup in which the vector is re-
placed by one of the centroids of the codebook (symbols).

Bi(z:) = bi(Or) (3)

In SCHMM the sequence of feature vectors is prepro-
cessed by a quantizer and each of them is replaced by
a vector composed by quantization density probabilities
f(zelvm) according to the given codebook centroids vy.
The observation probability is obtained by the linear com-
bination of these probabilities whose weights can be viewed
as the observation probabilities of the codebook vectors
bi(vm).

M
Bi(z) = ), f(zdum) - bi(vm) )

m=1
3. DISCRETE ALPHANET.

A Discrete Alphanet is a Recurrent Neural Network (RNN)
with a topology suitable to evaluate the forward probabil-
ities defined in the HMM context. In this way, an equiv-
alence between HMM and RNN can be established using
the Alphanet topology.

The generalized neuron model used for the Alphanet and
net topology are shown in figures 1 and 2.

For the ith neuron, the () signals correspond to the
forward probabilities associated to the state (neuron) j at
time ¢, and the output signal a,(t + 1) is the probability
of state ¢ at time ¢t + 1. In order to evaluate such proba-
bilities, the external stimulus 8;(t + 1) is also involved, as
depicted in figure 1. This external stimulus corresponds
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Figure 3. New neuron model proposed for implementing a
SCHMM

to the observation probability of symbol O:41 in state i
(5:(O¢41) in HMM notation). The neuron equations are:

N
w(t+1) = > wi-a;(l) ()

ai(t+1) = g(8i(t+1), wi(t+1)) (6)

where N is the number of neurons (states). For the Al-
phanet case, the function g(), called activation function,
corresponds to the product of net input, u;(t + 1) by the
external stimulus.

In this approach, the observation probabilities of the
equivalent DHMM must be provided to the neuron as an
external stimulus. Therefore it is independent of the net-
work evaluation and must be obtained previously. These
observation probabilities are obtained from a matrix gen-
erated from the quantized feature vectors (figure 2).

4. SEMICONTINUOUS ALPHANET.

For Semicontinuous HMM (SCHMM), the observation
probabilities are obtained from a mixture of probability
density functions (eq. 4). Traditional neuron models can
not evaluate this mixture because they only accept a sin-
gle external stimulus. In order to solve this problem, we
need a neuron that accepts several external stimuli, each
one corresponding to one pdf.

In the present work, we propose a generalized model
of neuron, depicted in figure 3, that solves the above men-
tioned problem. This new neuron model obtains the obser-
vation probabilities internally from the quantization prob-
ability densities. These pdf’s are generated from a quanti-
zation codebook which centers are shaped with Gaussian
probability densities. The neuron processing equations for
the i-th neuron in the ¢ + 1 layer are:

N
uPE+1) =Y wis ()
1=1

M
w41 =D bi(t+1) f(t+1)

=1
ai(t+1) = g(ulV(t+ 1)« (1 + 1))
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Figure 4. Alphanet scheme using proposed neuron

where N is the number of neurons and M the number of
external inputs f;(¢+1) obtained from the observed vector,
and b;; is the weight of the j-th component of the mixture.

For the Semicontinuous Alphanet the selected activation
function g() is the product of the two net inputs ui-])(t +1)
and «{?(t +1).

Figure 4 shows the interconnection scheme of the neu-
rons making up a RNN (Alphanet) in which outputs are
connected to the inputs through a delay block.

5. NETWORK TRAINING.

The RNN training is performed (both Discrete and Semi-
continuous) by applying the backpropagation algorithm.
The backpropagation corrective signal is defined from the
measure used as [1]

2
50 = mm ®)
that can be recurrently computed!
N
§(1) = 8+1) -« (t+1) w, (9)

j=1

The selected error measure is the likelihood of the se-
quence

N
E =) a(T) (10)
=1

where T is the number of elements of the sequence. This
way the net will be trained to implement the Maximum
Likelihood Criterion (MLE) although it is possible to train
it according to other criterions, such as MMI or MDI [6].
The application of the backpropagation algorithm is
coarried out by using the multiplicative updating rules

' OF
G = Wiy 11
Wiy = Wiy N aws, (11)
/ , dF
b,j=b,]-nw (12)
1

1In the Discrete Alphanet, 'u('n(t + 1) corresponds to the
external stimulus 8;(t + 1), while b, is the probability b;(v;).
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where ’ stands for the reestimated values of net parameters.
If as usual we express the derivatives of the error measure
with respect to the parameter to be updated in function of
the derivative with respect to the outputs of the neurons
we will obtain the updating equations
Discrete Alphanet

T-1
w'iy = wigny Y 6t + Dbi( Ocer)arj (1) (13)

t=1
T

Viloe) =n'; D 8i(8)ai(t) - ke (Or, v) (14)
t=1

Semicontinuous Alphanet

T-1
w'i; = wigemy Y 8t + 1)ul? (¢ + (1) (15)
N L 6i()ailt)
b’,’j =b(} .n’);w)__fj(t) (16)

The HMM interpretation of the Alphanets imposes a
normalization constrain to the weights

N M
Zwu:l; Zb.‘, =1 (17)
i=1 j=1

This constrains can be introduced in the net reestimation
equations by fixing the learning rates, n and %’

1 ’ 1
s
KD ) T T e

(18)

The reestimation algorithm described yields the same

expressions for updating as the Baum-Welch for a maxi-
mum likelihood estimation [4,7].

6. EXPERIMENTAL RESULTS.

The experimental results of the above explained Alphanet,
in an isolated word recognition task, are shown in table 1;
the results from DHMM and SCHMM implemented with
the proposed neurons are compared in this table. The
database has a 16-word vocabulary, 40 speakers and 3 ut-
terances per speaker (a total of 1920 utterances). All the
experiments have been carried out in multi-speaker mode,
the test set has 640 utterances (one per word and speaker)
and the training set 1280. Each frame was caracterized by
a vector composed by Cepstrum, ACepstrum, Energy and
AEnergy, these vectors were quantized by using a weighted
Euclidean distance [7] and a codebook with 64 centroids.
The vocabulary used is composed by the Spanish digits
and the words (/cuerpo/, /hombro/, /codo/, /muiieca/,
/mano/, /dedos/) thought to control the motors of a robot.
The experimental results show an increase in the error
rate for the training set when comparing the Semicontin-
uous Alphanet with the Discrete one. Nevertheless the
error rate for the test set decreases about 30% (from 3.12
to 2.19) when using the Semicontinuous Alphanet. This is
an important qualitative improvement because this implies



DHMM SCHMM
N | Train | Test | Train | Test
2 4.84 | 7.97 6.48 | 6.25
3 3.91 6.09 6.02 | 5.00
4 3.67 | 6.09 4.45 | 4.38
5 3.12 | 5.62 4.14 | 4.22
6 2.81 | 5.78 3.75 | 3.28
7 2.03 | 5.16 3.05 | 2.97
8 2.03 | 4.06 3.28 | 3.59
9 1.80 | 4.38 2.89 | 2.66
10 1.48 | 3.12 2.66 | 2.50
11 1.25 | 3.44 2.27 | 2.81
12 0.94 | 3.44 242 | 2.19

Table 1. Error rates for training and evaluation sets

better generalization properties for the Semicontinuous Al-
phanet than for the Discrete one.

The number of iterations needed to train the nets is small
(50-100) in both cases because of the multiplicative up-
date rule selected. In any case it has been observed that
the number of iterations needed in the Semicontinuous Al-
phanet is almost twice that of Discrete Alphanet. This is
due to the increase in complexity introduced by the lineal
combination of eq (4).

7. CONCLUDING REMARKS.

We have proposed a new neuron model in order to im-
plement a Semicontinuous Alphanet. This new model has
the advantage of integrating the observation probabilities
as part of the RNN evaluation, so the parameter reesti-
mation can be obtained applying directly backpropagation
techniques, as all the parameters correspond to connection
weights between neurons or between neurons and input
nodes.

In addition, with the proposed neuron, the pdf’s can be
obtained by using the outputs of a neural based VQ. In this
way, the two processes involved (quantization and recogni-
tion) can be simultaneously optimized applying backpropa-
gation algorithm to the whole network composed by these
two blocks. This approach is currently under study and
promising results are expected.
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