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ABSTRACT 
This paper describes the conceptual and algorithmic evolutions 
of Memory Based Parametric Equalization (MPEQ) needed to 
exploit the potentialities of the method within the state-of-the-art 
Loquendo ASR. MPEQ is the memory-based evolution of 
Parametric Non-Linear Equalization (PEQ) introduced to 
overcome the problem of unreliable statistics estimation in 
presence of very limited acoustic information in the test 
utterance to be normalized. The main limitations of the method 
that prevented its practical application were the lack of online 
implementation, the unrealistic unimodal assumption about the 
training statistics, the unconditioned application of equalization, 
and the need for retraining the acoustic models.  
The paper describes how these limitations have been overcome 
and reports a large experimentation on many corpora that shows 
improvements in a variety of mismatched conditions, while 
preserving performances in matched conditions. 
 

1. INTRODUCTION
The intrinsic variability of speech is faced in state-of-the-art 
commercial ASR systems mainly with a data intensive 
approach, employing huge multi-style training sets to estimate 
the statistical acoustic models. 
A second more algorithmic approach is the use of some 
normalization method to reduce the distance between the test 
conditions and the training conditions [2]. 
Among these methods, Parametric Non-Linear Equalization 
(PEQ) was first introduced in [3] with the aim of improving the 
results of Histogram Equalization (HEQ) [1] as normalization 
algorithm for spectral derived features, like MFCC or RPLP. 
HEQ is very effective if the amount of speech material to be 
normalized is sufficient for a robust estimate of the histograms. 
Otherwise, the parametric Gaussian assumption of feature 
distributions at the bases of PEQ can provide more trustable 
statistics. However, if the acoustic material amounts only to a 
few seconds, also the parametric assumption can be insufficient 
for a robust estimate of test data feature distribution. The 
memory based evolution of PEQ, namely MPEQ, was 
introduced in [4] to overcome this problem, relying on the 
assumption of stationarity or slow variability of test conditions. 
Experimental evidence demonstrated the potentialities of 
MPEQ. Nevertheless, some drawbacks were still present to 
prevent the use of the method within a commercial ASR system. 
First MPEQ (like PEQ and HEQ) had no online 
implementability, i.e. it was not suited for real-time processing 
of audio input, but requested the prior acquisition of the entire 
test utterance before performing the normalization. Second, 
normalization was always performed, also in the case of well-
matching conditions between test and training data, introducing 

in that case some decrease of performances, due to the intrinsic 
distortion introduced by every normalization. Third, there was 
an implicit assumption of unimodality of the training data 
distribution that is simply not true in the huge multi-style 
training sets. Last, it required the re-training of ASR models 
applying the normalization algorithm also in training. This 
aspect is usually not considered, but has a dramatic impact on a 
commercial ASR production process. The purpose of this work 
is to overcome these drawbacks and propose algorithmic 
evolutions that make PEQ practically usable inside a high 
performance real-time ASR system. 
 

2. PARAMETRIC EQUALIZATION 
2.1 Standard PEQ 
PEQ reduces the mismatch between training and test conditions 
by transforming the statistics of each test utterance (local 
statistics) in order to match the statistics of the training set 
(reference statistics) [3]. The peculiarity of PEQ consists of 
assuming a bimodal Gaussian distribution for the probability 
density functions of the MFCC parameters. The reference 
statistics are therefore composed of the mean and standard 
deviation of the Gaussian describing the silence frames (μn,x and  

n,x) and mean and standard deviation of the Gaussian 
describing the voice frames (μs,x and  s,x).  The local statistics 
of the utterance to be normalized are defined as well with two 
Gaussian representing the silence frames (μn,y and  n,y) and the 
voice frames (μs,y and  s,y). 
The linear transformation produced by PEQ on a test vector y
originates a normalized vector x̂  with the following expression 
in case y is a silence frame: 
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For the case of y being a voice frame, the normalized vector is: 
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The normalized frame x̂ will be a weighted average considering 
both probabilities of the frame being silence or voice: 

ˆ ˆ| |n ˆsx P n y x P s y x (3)

The posterior probabilities P(n|y) and P(s|y) are obtained in 
standard PEQ using a simple two-class Gaussian classifier on 
the C0 cepstral coefficient. After initializing the silence and 
voice classes with frames below and above the C0 average, EM 
re-estimation is iterated until convergence. 

2.2 Memory Based PEQ 
The main limitation of standard PEQ is the poor accuracy of the 
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local statistics provided by the test utterance. The problem is 
that often only few seconds of voice are available in the test 
utterance, sometimes even a single word. This makes impossible 
to compute accurate local statistics. A solution to this problem 
was proposed in [4] with the use of Memory PEQ (MPEQ). The 
method keeps track of the evolution of the local statistics with 
an iterative average across the past utterances. The memory 
term, named global statistics (gs) is computed as a recursive 
linear combination with the local statistics (ls) according to the 
following formula:  

gs(t+1) = ·gs(t) + (1- )·ls(t)  (4) 
where  determines the dynamicity of  gs. Typically  
Then the balanced local statistics (bls) are computed as a 
mixture of the global and local statistics according to the 
following rule: 

bls(t) =  ·gs(t) + (1- ) ·ls(t)   (5)
where  determines the balance between the memory term and 
test utterance statistics. Finally bls is used in MPEQ to 
normalize the test utterance, instead of the ls used by standard 
PEQ. Results reported in [4] show significant improvements in 
presence of short test sentences that make difficult a reliable 
estimation of the utterance statistics. 
 

3. NEW EVOLUTIONS 
Starting from the achievements presented in [4], we introduce in 
this work some new improvements of PEQ devoted to: 

1. apply it in real-time; 
2. deal with the multimodal training conditions of large 

training sets; 
3. limit PEQ application only when necessary. 

3.1 On-line MPEQ 
The standard implementation of PEQ can only be applied off-
line, i.e. the whole utterance must be acquired before applying 
the normalization. The proposed evolution makes PEQ suitable 
for on-line real-time application.
In standard PEQ there are two steps that are intrinsically 
performed off-line: 
1) The computation of local statistics (ls), that needs to 

analyze the whole sentence; 
2) The probabilistic C0 based VAD that is estimated with an 

iterative method that looks at all the utterance frames. 
On the contrary, the PEQ normalization itself (formula (3)) is 
suited for on-line processing, as it can be applied frame-by-
frame left-to-right without delays. 
To produce an on-line implementation of PEQ, points 1) and 2) 
must be changed.  
Two solutions could be devised to overcome point 1): 

The first one is to delay recognition a certain time window 
sufficient to estimate ls on that window (at least 1 sec from 
the start of speech should be needed). We discarded this 
solution because we cannot accept such a delay. 
 The second one is to implement PEQ normalization not 
using the test utterance local statistics (ls), but statistics 
computed on the previous utterances, i.e. global statistics 
(gs) as defined in equation (4). That can be done under the 
hypothesis of stability (or slow variability) of the speech 
conditions (channel, noise, speaker). This hypothesis is true 
in many applicative scenarios, like automotive interactions, 

air traffic control, etc. If the conditions change, such 
alteration should be detected and a reset of gs should take 
place. 

Point 2) is easier to be faced, as many ways exist to implement 
probabilistic VAD on-line. In this work we employ a neural 
network VAD, i.e. a recurrent MLP specifically designed and 
trained for voice presence probability estimation, as described in 
[5]. MLP VAD performances compares favorably with energy 
based VADs.  
 
3.2 Equalization to Multimodal Training Conditions 
PEQ normalization aims to reduce the mismatch between 
training and test conditions. Training conditions are usually 
represented by the reference statistics quadruple rs = (μn,x , μs,x , 

n,x, s,x). But this formulation assumes that the training set 
statistics are unimodal and can be represented by two multi-
variate Gaussians with diagonal covariance matrix (one for noise 
and one for voice). This assumption is acceptable for small 
corpora, but it is not true for state-of-the-art speech recognition 
systems that are characterized by huge multi-style training sets, 
composed by several different components, recorded in different 
conditions (different transmission channels: PSTN, GSM, VoIP; 
different environments: home, office, automotive, etc; different 
microphones and devices).  
Thus we extend the reference statistics concept formalizing it 
with a set of quadruples, one for each different training set 
component RS={rs1 ,rs2,…,rsk}.
The idea is to normalize the test utterance towards the 
nearest

jrs RS in order to reduce the normalization error. The 

distance between gs and the RS components is computed with a 
distance defined between probability distributions.  
Let us assume S1 = (( n,1, n,1), ( s,1, s,1)) and S2 = (( n,2, n,2), 
( s,2, s,2)). We can define the distance between them as: 
Dist(S1, S2) = ·D(( n,1,  n,1), ( n,2,  n,2)) + (1- )·D(( s,1,  s,1), 
( s,2,  s,2)), where  balances the noise and voice component of 
the distance.  
Some suitable distances are the following: 

1. Mahalanobis distance 
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3. Kullback-Leibler distance (KLD) 
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3.3 Distance activated equalization 
Provided that normalization always introduces an amount of 
distortion, it is advisable to apply it only if the distance between 
the global statistics (gs) and the nearest component of the 
reference statistics RS exceeds a given threshold. Otherwise it is 
better not applying the normalization, as the test utterance 
condition was already well represented in the training set. 

3.4 Context Switch Detection 
If a change in channel, noise condition or speaker happens 
(context switch) it has to be detected to avoid using global
statistics no more coherent with the new conditions. The context 
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switch detection is performed monitoring the distance between 
gs and a short term average of local statistics (lsa).  

lsa(t+1) = ·gs(t) + (1- )·ls(t)   (5) 
with  
If lsa exceed a sieve, then gs is reset to the initial condition. 
 

4. NORMALIZATION SCHEME 
Based on the improvements proposed in the former section, the 
normalization algorithm employed in the experimental activity 
is characterized by performing: 

Online MPEQ, i.e. global statistics of time t-1 are used to 
normalize test utterance at time t. Voice presence 
probability is estimated by an MLP VAD. 
Multimodal normalization: reference statistics do not 
have a single component rs = (μn,x , μs,x , n,x, s,x) but a set 
of components RS={rs1 ,rs2,…,rsk} and the test utterance is 
normalized towards the nearest component. KLD is used 
with  = 0.5 . 
Distance controlled normalization: normalization is 
applied only if the global statistics are sufficiently distant 
from each of the reference statistics components. 
Switch context detection: distance between global
statistics and a short-term average of local statistics is used 
to detect a context switch (change of channel, noise, 
speaker), causing a reset of global statistics. 

 
The algorithm implementation is given by the following steps:  

1. Initialization: RS is initialized with the statistics of the 
main components within the training set, and gs with 
the element of RS with higher prior probability. 

2. Distance computation:  
 let arg min ,m

i
rs m D gs rsi

be the RS 

component nearest to gs according to distance D. 
3. Equalization: if , m DD gs rs SN , perform on-line 

MPEQ normalization of each frame y of test utterance 
by applying equation (3) and computing voice 
presence probability P(s, y) with MLP VAD.  

4. Statistics update 
a. Compute ls(y)  
b. Update gs following equation (4); 
c. If , DD gs lsa SC , perform context switch, 

resetting gs value to the element of RS with highest 
prior probability. SCD stands for the threshold that 
controls context switch. Distance employed is KLD.  

 
5. EXPERIMENTAL RESULTS 

Experimental activity has been devoted to test the proposed 
normalization scheme. The recognition system used is the 
commercial Loquendo ASR system which uses acoustic models 
based on a hybrid combination of Hidden Markov Models and 
Multi Layer Perceptron. Phonetic units are stationary-
transitional units made up by phonemes plus diphone transitions 
between them [6].  Normalization is not applied in training but 
only in test. Three models, characterized by multimodal training 
conditions, have been used in the experiments: 
1. Loquendo American English 16kHz microphone (micro): 

the reference statistics set RS contains 5 different 
components, estimated on the five main components of the 
training set.  

2. Loquendo American English 16kHz Automotive (auto): 
smaller model, optimized for embedded hw and automotive 
noise: the reference statistics set RS contains 4 different 
components. 

3. Loquendo American English 8kHz Telephonic (telephone): 
4 reference statistics components. 

 
5.1 Test corpora 
The following test corpora have been employed in the 
experiments:
WSJ0 5K: 
Standard SI_ET_05 test set with 8 speakers and 40 sentences per 
speaker has been used.   Two channels are evaluated:  WV1, 
Senheiser microphone (matched condition) and WV2, other 
microphones (mismatched condition).  Vocabulary:  5K words, 
with standard trigram LM from Lincoln labs. The ASR model 
used is micro. 
Safesound
It is a subset of the corpus collected inside the EU project 
Safesound that studied the possibilities of improving safety for 
ground and flight operations by the application of enhanced 
audio functions in the cockpit of an airplane. The corpus is 
described in [7]. The recognition task is a small vocabulary (240 
words) command and control task. Commands include page 
selections, display changes and parameter settings. 
A rule-based grammar is used to model the command structure. 
Our subset includes the 8 Italian pilots, speaking English as non-
native speakers. Each of them uttered about 200 sentences for a 
total of 1624 utterances.  The ASR models used are micro and 
auto. 
HIWIRE cockpit database 
It is a noisy and non native English speech corpus for cockpit 
communications [8].  It includes short vocal sentences in 
English, corresponding to aeronautic commands. It includes 81 
non-native speakers from 4 countries.   
Four noise conditions are tested: Clean, Low Noise 
(SNR=10dB), Medium Noise (SNR=5dB) and High Noise 
(SNR=-5 dB). The test set has 4049 utterances for each 
condition.   The mismatch condition present in this test set is 
additive (aircraft) noise.  
An additional problem is the presence of short sentences that 
makes difficult a reliable estimation of statistics for 
normalization purposes. The ASR model used is micro. 
SpeechDatCar Italian (CH0) with artificial mismatch: 
It is a subset of SpeechDatCar Italian (CH0) with artificial 
generated mismatch conditions. Four mismatch conditions have 
been generated with Sox to simulate typical problems: 
1. Attenuation: volume has been reduced to 15% of the 

original one. It is still perceivable, but creates problems to 
ASR; 

2. Saturation: the signal has been saturated. Still perfectly 
understandable; no problems for humans, but degraded 
performances for ASR. 

3. Filtering: A microphone mismatch has been simulated by a 
band-pass filter that has attenuated low (< 500 Hz) and 
high (> 2200 Hz) frequencies;  

The ASR model used is telephone. 
 
5.2 Test Results 
Results are collected in the following tables: 
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WSJ0 5K NO PEQ Online MPEQ 
microphone SND = 0.1 SND = 3.0
Sennheiser 92.4 91.8 92.4
2nd microphone 73.9 76.4 75.9

Table 1. Word Accuracy results for WSJ0

Safesound NO PEQ Online
MPEQ
SND = 3.0

Err.
Red. 

Model: micro 84.0 91.3 45.62% 
Model: auto 72.9 84.4 42.40% 

Table 2. Word Accuracy results for Safesound subset

HIWIRE Cockpit non-native corpus
Model: auto NO PEQ Online MPEQ 

SND = 3.0
Err. Red.

Clean 91.1 92.4 14.6% 
Low Noise 79.0 81.4 11.4% 
Mean Noise 67.6 70.6 9.3% 
High Noise 28.0 30.0 2.7% 
Average 66.4 68.7 6.8% 
Table 3. Word Accuracy results for Hiwire cockpit non-native 
noisy corpus

SpeechDatCar 
Ch0 

with artificial 
mismatch

NO
PEQ

Online
MPEQ

Retrained 
model

Online
MPEQ

Not retrained 
model

SND = 3.0
original 97.1 97.0 96.8 

attenuated 84.1 90.4 88.6 
saturated 78.9 87.6 85.6 
filtered 84.5 89.7 88.9
Average 82.5 89.2 87.7

Average E.R. - 49.0 40.2 
Table 4. Word Accuracy results for SpeechDatCar Italian CH0 
with artificial mismatch conditions

5.3 Discussion 
WSJ0: Results show that Online MPEQ compensates channel 
mismatches: in fact it does not operate on the matching 
condition (a component of Sennheiser data from wsj0-1 is 
present in the training set) but operates on the other microphones 
data, with a 10% Error Reduction (E.R.). Two SND sieves are 
tested: with SND = 0.1 normalization is always performed, and 
the result on the 2nd microphone is better, but degradation on 
Sennheiser appears; with SND = 3.0 Sennheiser performance is 
maintained and improvement on 2nd microphone is only slightly 
inferior. 
Safesound: It is the database for which the best results are 
obtained. In fact this corpus presents an important degree of 
microphone and channel mismatch with respect to the training 
set conditions. In particular some speakers appear much 
attenuated. Online MPEQ compensates well these problems 
obtaining a large E.R. of more than 42%. 
HIWIRE cockpit database: This corpus is not well suited 
to be treated by Online MPEQ as the problems here are mainly 

non-native speakers and additive noise. Notwithstanding this, 
significant improvements are obtained especially in clean and 
low noise conditions.
SpeechDatCar Italian (CH0) with artificial mismatch: 
This corpus has been appositely designed to test Online MPEQ 
capabilities to deal with different kinds of channel mismatch. 
This test compares two Online MPEQ cases: the case where a 
retraining of ASR model has been done, using Online MPEQ 
also on the training set, and the more realistic case where the 
models cannot be retrained and Online MPEQ is applied only in 
test. Although the first case performances are better, as well 
known from previous literature [3][4],  the second case still 
provides a large improvement (E.R. = 40.2%). In practice only 
the second kind of normalization can be deployed, as the models 
of a commercial ASR cannot be easily retrained. 
 

6. CONCLUSIONS 
An evolution of Memory PEQ normalization has been proposed. 
The evolution has the following desirable features: 
a) It works online in real-time without introducing a delay in the 
recognition process; 
b) It does not require a retraining of the ASR models; 
c) It is not intrusive on utterances that already match well the 
conditions present in the training set; 
d) It keeps explicitly into account the multiplicity of conditions 
present in the huge training sets that characterize modern ASR 
systems. 
The presented results show good improvements in a variety of 
mismatched conditions, while performances in matched 
conditions are preserved. 
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