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Abstract

Recent research on Multiple Vector Quantization (MVQ) has
shown the suitability of such technique o Speech Recognition.
Basically, MVQ proposes the use of one separated VQ code-
book for each recognition unit. Thus, a MVQ HMM model is
composed of a VQ codebook and a discrete HMM model. This
technique allows the incorporation in the recognition dynam-
ics of the input sequence information wasted by discrete HMM
models in the VQ process. The use of distinct codebooks also
allows to train them in a discriminative manner. In this paper,

we propose a new VQ codebook design method for MVQ-based

systems that provides meaningful error reductions and is per-
formed independently from the estimation of the discrete HMM
part of the MVQ model. This codebook design uses a Minimum
Classification Emror scheme and have certain similarities with
the LVQ techniques proposed by Kohonen, but overcoming any
time alignment requisite.

1 Introduction

During the last years, Hidden Markov Models (HMM) have been
successfully applied to acoustic modeling for speechrecognition.
Two main variations of HMMs have been widely used: discrete
HMMs (DHMM) and continuous HMMs (CHMM). The main
problem of DHMMs is the loss of information about the in-
put signal during the VQ process. CHMMs avoid this problem
using probability density functions (pdfs). Thus, CHMM mod-
eling seems to be a more flexible and complete tool for speech
modeling. In spite of this, they are not always used for the im-
plementation of speech recognition systems. There are several
reasons for it. The main problem is the large number of parame-
ters to obtain. In order to obtain a good estimation of them, a big
amount of computation and a large database is required. These
requirements can not be always satisfied with the available re-
sources. These are strong restrictions that may make advisable
the use of the DHMM approach.

In order to avoid such problems of continuous modeling,
Huang et al [1] propose the use of Semicontinuous HMM mod-
els (SCHMM). Our research group has also proposed a new ap-
proach based on the use of Multiple Vector Quantization MVQ)

-for HMMs, that has been called MVQHMM or, simply, MVQ
modeling [2]. A MVQHMM model is composed of a VQ code-
book and a discrete HMM. These new models have been intro-
duced as a direct way to incorporate to the system dynamics
the information lost in the VQ process when using the discrete
approach. To do this, each MVQ model uses its own VQ code-
book to evaluate the average distortion of the input utterance
(the sequential information is evaluated by the discrete HMM
part). This type of modeling can be generalized, in the same
way as SCHMMs generalize DHMMs, using several quanti-

zation candidates. This way, the SCMVQ-HMM modeling is
obtained [3]. The training computational complexity of MVQs
and SCMVQs is lower than that of DHMMs and SCHMMs, re-
spectively. Besides, when the number of centroids per codebook
is high enough, MVQ and SCMVQ models have been shown to
be more accurate than DHMMs or SCHMMs [3]. However,
for a very small number of centroids the MVQ approach is not
able to correctly model the acoustic variety of the events being
modeled, and the performance degrades. In a previous work [4],
we have shown that the performance of a MVQ system with few
centers per codebook cdn be greatly improved applying a MMI
estimation to the estimation of the codebook parameters. This
VQ estimation can be performed independently from the dis-
crete HMM parameters, which are estimated via Baum-Welch,
since most of the discriminative information is in the VQ part.

Since the final goal of speech recognition is the minimization
of the error ralc, and taking into account the above discussion,
a great benefit could be obtained from the minimization of the
ervor rate obtaineéd recognizing only with VQ distortions using
MVQ models. In this work we propose a new method of esti-
mating the VQ parameters (of MVQHMM models) based on the
minimization of the classification error using the MCE (Mini-
mum Classification Error) criterion proposed by Juang et al [5].
The resulting estimation method have certain similarities with
the LVQ techniques proposed by Kohonen, but overcoming the
time alignment requisite of LVQ.

The rest of the paper is organized as follows. In the next
section, we briefly review the fundamentals of MVQ HMM
modeling and set the experimental conditions of the work. In
section 3 we propose the MCE-based VQ design procedure. -
Section 4 is devoted to our experimental results. The paper
finishes with the conclusions of the work.

2 MVQ Modeling

A continuous HMM model uses a mixture of pdfs to model the
output probabilities in the following form,

bi(x) = - Z

v EV(si )

P(xlvk,s;,/\)P(‘llkISi,/\) (1)

where each P(x|v, s:. A) is a log-concave or elliptically sym-
metric density [6] (gaussian along this work) with mean vector
#x and covariance matrix 3, and x is the input vector. Each
pdf is labelled by one index v, that varies in the set V' (s;, A)
defined for state s, in model A. Factors P(vi|s:, A) are the
mixture cocfficients (their sum extended over V' (s;, A) must be
one).

The simplification of expression (1) leads to different HMM
approaches. For example, doing V(5i,A) =V (Vsi, A), we
obtain a SCHMM. Furthermore, if we assume non-overlapped
pdfs, a SCHMM becomes a DHMM. A third simplification can
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be derived by assuming a different sct of pdfs V() (shared by
all the states of the model) for each model A, and considering
non-overlapped densities. Thus,

bi(x) = P(x|o, A)P(o|si, A} (2a)
0= vjrgngA)"’ [P(x]e;, )] (2b)

We have just defined a MVQ HMM model. It can be proved
that, for an input sequence X = x; - - - X, the density P(.\'{))
can be expressed as,

P(X|\) = P(X]0,X)P(O|A) G)

where O = 01 - - - o7 is the sequence of symbols obtained by
(2b) corresponding to X for the model A\. We shall refer 1o
P(X|0; X) and P(O|)) as quantization and generation proba-
bilities, respectively. . _

If we consider that the MVQ model parameter set can be
decomposed as A = (8, ¢), where § represents the parameter set
of densities P(x|vj, M) and ¢ is the parameter set of the discrete
HMM model, it can be proved that the ML estimation of A is
oblained from a separated ML estimation of  and ¢ [3]. The
first parameter set (mean vectors and covariance matrices) can
be obtained from a VQ codebook {y;,7 =1,..., M} (rained
using the LBG algorithm, for example). The second one is
estimated applying the Baum-Welch algorithm, as for DHMM
models. )

A convenient form for the densities P(x|o, X) in expression
(2a) is gaussian with covariance matrix £, = o?\l, where [ is
the identity matrix and o3 is the average distorlion per center
and per feature of the codebook ¢ associated 1o model A [3].
Thus, the quantization probability for an input sequence .\ is
written as,

T
P(X10,2) =[] P(xifor, ) = @)

t=1

-p/2 1 2
=[J )™ exp{—;,—§|lxz—ytll°}

t=1

where p is the number of features and y. is the nearest center to
the input vector X¢.
For sequence evaluation, the following score is utilized,

log P(X|A) = alog P(X|O, ) +log P(O}X}  (5)

where a is a tuning factor to optimize the composition of quan-
tization and generation probabilities (o = 0.5 in this work) [3].
It can be observed in (4) that the log-probability of quan-
~ tization has a linear relation with the average distortion of the
input sequence .X in the codebook #. In fact, this is the original
motivation of the MVQHMM modeling: it incorporates to the
decision criterion the distortion information generatedin the VQ
process and wasted when using DHMM models.

For simplicity, the different techniques introduced in this pa-
per are tested and tuned on an isolated word recognition sysiem
(due to the large number of realized experiments and the com-
putation required by some of them). The vocabulary is made
up of 16 words, the 10 Spanish digits and 6 keywords, uttered 3
times by 20 male and 20 female speakers, what means 1920 dif-
ferent signals in the database. The average SNR measured over
this database is 24 dB, that corresponds o the environment of a
work room with computer noise. The speakers are separated in
5 disjoint groups containing utterances from 8 different speakers
(4 male, 4 female), to be utilized for test (the rest for training).
The result is the realization of 5 different speaker-independent
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Figure 1: Error Rate vs. number of VQ centersfor MVQ, DHMM
and SCHMM.

experiments, whose error results are finally averaged. Feature
vectors incorporate lifiered cepstrum, delta cepstrum and delta
energy, and are compared with an euclidean weighted distance
measure.

For comparison of MVQ with DHMM models in the recog-
nition slage, it must be taken into account that with a 16-word
vocabulary, the usc of 16 N-center codebooks in a MVQ system
is equivalent to the use of a single (16*N)-center codebook in a
DHMM system, in order 1o obtain the same computational com-
plexity. However, for the training stage, the MVQ procedure is
always less time-consuming since the exponential complexity of
the LBG algorithm grows exponentially with the codebook size.
Besides, the MVQ models are always simpler than SCHMMs in
both recognition and training.

Figure 1 shows that MVQ modeling clearly outperforms
DHMM modeling (when more than 4 centers per codebook are
used) with the same computational cost in recognition. Besides,
MVQ models can achieve similar (8 centers) or even better
results than SCHMMs with a meaningful computational saving.
SCHMMs have been designed using gaussian multivariate pdfs
with diagonal covariance matrices [1]. The objective of this
work is to improve the performance of the MVQ for 4 to 8
centers per codebook, that is, maintaining a low computational
complexity.

3 MCE estimation of MV(Q) parameters

The MCE estimation is bascd on the minimization of a cost
function. Let us suppose a set of classes W = {W;,..., W}.
For an input sequence X belonging to the mth class, the cost
function has a sigmoid shape,

1
I (dn) = 4 (6)
1 c m
where,

di{ X, Ay = —gi (X, M) + Q)

1/8

1 B XA '

<]
J#k

(X, Ax) = log P(X|0, Xs) ®
The classifier parameter setis A = {A1,...,Ar}. When the

error measure d,, > 0, then the input sequence is incorrectly




classified, and l,, = 1. On the other hand, when dy, < 0,

Im = 0. For a multiple training sequence, we can sum the par-
ticular cost functions (of each training sequence) to obtain an
Empirical Average Cost (EAC), that is an approximation o the
total number of training errors. It can be also derived an expres-
sion for the Expected Cost (EC). The MCE estimation is based
on the minimization of one of these total costs. The EAC canbe
minimized by means of 2 common gradient descent (GD), mean-
while the EC necds a Generalized Probability Descent (GPD)
[5], quite similar to a GD but using the training data "on linc".

In any case (using GD or GPD), the codebook centers are
be iteratively updated using the following gradient,

T

Z (»X, - Yj) 6’-‘(.0:,-

alnl(‘\—v A) - F(.\'.A) t=1 _ (9)
ays o3,

where y is the jth center of the codebook of model A, 6,, .,
is a Kronecker delta equal to 1 when the nearest center 1o x, is
y; (0 otherwise), and,

AUV A — ~vm(A.A) s =1n
FGA) = { im(X, Mbom(X,8) s#m (O
Van (X, A) = @l (XA [T = o (X, A)] (1)
- Hos(X,A0)
Pem(X,A) = W (12)
{#£m

The MVQ system training can be summarized in the three
following steps:

1) Construction of one codebook per recognition unit using
the LBG algorithm.

2) Reestimation of codebook centers using derivative (9) (for
both, GD or GPD). Parameters o3 maintain the average
distorlion sense..

3) Estimation of the discrete HMM part (matrices II, A and
B) using the Baum-Welch algorithm.

4 MCE codebook design performance

In this section, we present some results obtained applying MCE
to the codebook parameter estimation for MVQ models. As we
discussed in the Introduction scction, we are specially interested
on small codebook sizes. Thus, we will develop experiments for
4 and 8 centers per codebook. We have {irst considered 2 GPD
implementation. Since the resultant GPD procedure is an “on
line" process, the compulation of o3 as an average distortion
(as in the MMI-MVQ method) would be very time-consuming.
" Thus, as a first approximation, no reestimation will be performed
for this parameter (the original LBG valuc is kept constant).
The correction factors », and @, are obtained from the lime-
normalized discriminant functions (lo remove the influence of
sequence length),
. 1 o s
ge (X Ag) = ;flog P(X|O.A) (13)
The results of using g = 2.0.4.6,8.0 (in eqn. (7)) are
depicted in figure 2 (¢ = 1 in sigmoid (6)). Each iteration
means one presentation of the whole training data. The best
results are obtained with 3 = 4.0,8.0. 3 = 4.0 will be used
from now on.
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Figure 2: Error rate evolution for 4 and 8 centers versus the
number of iterations for 3 = 2.0,4.0, 8.0.

Figure 3 shows the previous experiment (for 3 = 4.0) (la-
belled as GPD) along with two new ones. The experiment
labelled with GD corresponds to a gradient descent minimizing
the EAC (o7 is updated in cach iteration). Experiment GPDR is
the same as GPD, but updating o3 at the end of each iteration.
As observed, no noticeable differences are detected with respect
1o the initial GPD design. Two conclusions can be extracted:

1) There are no meaningful differences between the min-
imization of the empirical average cost (GD) and the
expected cost (GPD and GPDR) for codebook design
purposes.

2) The MCE method does not produce noticeable deviations
in the optimal composition of quantization and generation
probabilities (sce eqn. (5)), as it is extracted from the
fact that GPD, GD and GPDR obtain similar results and
estimate o3 in dilferent ways.

Also, the influence of the sigmoid transition parameter o
must be studied, since it controls the elfective number of ut-
terances and their weights for training, as we can see in figure
4, where vy, = vm(dwm) (see equation (11)) is depicted. The
experiments for that are ongoing at the moment of writing this
paper, and the resulis will be shown at the conference.
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Figure 3: Error rate. evolution for 4 and 8 centers versus the
number of iterations for experiments GPD, GD and GPDR.

5 Conclusions

We have proved that the MCE parameter estimation method
suits quite well to the codebook design of MVQ models and
have proposed a procedure to train MVQ HMM models using
this codebook design. Table 1 shows the best results obtained
with the MCE-based VQ design for 4, 8, 16 and 32 centers per
codebook compared with those obtained for DHMMs, SCHMMs
and basic MVQs. Itcan be observed that the use of discriminative
codebooks can approximate the performance of a MVQ system
to that of a SCHMM system for 4 centers per codebook, and
provides the best results for 8, 16 and 32 centers. The similarity
of the results for 16 and 32 centers can be exploited to reduce
the computational complexity of a high performance system.
Furthermore, even with only 8 centers, an error rate value below
2% can be reached. The computational cost of the proposed
procedure estimation is not too high, since it is only applied to
VQ codebooks, and not to the discrete HMM parts.
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