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Abstract

Recently, the first version of an ETSI standard for Distributed

. es

In this paper, we address the problem of mitigating channel
errors, studying the performance of mitigation algorithms based
on an MMSE (Minimum Mean Square Error) philosophy. In

Speech Recognition has been proposed. The main benefit of particular, we propose a new MMSE mitigation algorithm that

this approach is the possibility of maintaining a high recogni-
tion performance when accessing remote information systems.
The use of a digital channel for transmission of the encoded
speech parameters implies the introduction of several channel
distortions. Our paper deals with the mitigation of such dis-
tortions. We study the application of MMSE estimation to this
problem and propose a new MMSE procedure that obtains the
probabilities needed for MMSE from a forward-backward al-
gorithm. We show that MMSE estimation obtains better per-
formance than the mitigation algorithm described in the ETSI
standard under different channel conditions.

1. Introduction

Very recently, the problem of recognizing speech transmitted

over digital channels has been addressed and an ETSI standard

has been elaborated (ETSI-ES-201-108 [1]). The AURORA
working group was the responsible for developing this first s-
tandard and a Distributed Speech Recognition (DSR) approach,
that is, a local front-end and a remote back-end, was adopted.

utilizes correct frames received before and after the frame be-
ing estimated. The different proposed techniques are develope-
d using the AURORA ETSI standard front-end, although they
could be straightforwardly extended to other encoding schemes.
The proposed mitigation algorithms affect only to the decoding
stage of the ETSI standard. For the sake of simplicity, we will
assume a BPSK modulation and test two different data chan-
nels (AWGN and bursty). The recognition experiments are per-
formed on the Aurora-2 speech database.

The paper is organized as follows. First, we briefly summa-
rize the ETSI DSR standard and its error mitigation algorithm.
Sections 3 and 4 are devoted to the study of several mitigation
techniques over AWGN and bursty channels, respectively. Fi-
nally, the conclusions of this work are summarized.

2. Revision of the DSR ETSI standard and
Aurora framewor k

The standard ETSI ES 201 108 (v1.1.2) [1] describes the speech

There are clear advantages in this approach: voice features are Processing, transmission and quality aspects of a DSR system.
not affected by the speech coder, more robustness against chan-Although it allows 3 different sampling frequencies (8, 11 and

nel errors, and access from different networks with a guaranteed
performance.

An important issue being currently addressed is robustness
against adverse environments (in which the front-end of a D-

SR system must operate). Also, robustness against transmission

channel errors must be taken into account. This is not exclusive-
ly a channel coding problem. During the last years, several er-
ror mitigation (or concealment) techniques, that provide an im-

16 KHz), we will only use to 8 KHz, since this is the one
Aurora-2 uses. Frames are 25 ms long and shifted 10 ms. Each
frame is represented by a 14 dimension feature vector contain-
ing 13 MFCCs (including the Oth order one) plus log-Energy.
These features are quantized using a Split Vector Quantizer
(SVQ) that groups them into pairs (MFCCs 1 and 2, MFCCs
3 and 4, ..., MFCC 0 and log-Energy). Each pair has its own
codebook that is generated utilizing a weighted distance mea-

proved decoding, have been studied for speech or image coding SUre: All codebooks have a 64-center size (6 bits), except the

[2] [3]. These techniques usually exploit some kind of knowl-

edge about the encoded parameters which is embedded in a soft

one for MFCC-0 and log-Energy, that has 256 centers (8 bits).
The bitstream is organized into a sequence of multiframes.

decoding scheme. In the case of DSR, we find that the encoded Each multiframe contains a 2-octet synchronization sequence,

parameters (MFCCs in the current version of the standard) dif-
fer from those normally utilized in speech coding. Moreover,
the goal of DSR is completely different from subjective vision

a 4-octet header (containing different informations and a multi-
frame counter), and a 138-octet frame packet stream which con-
tains 24 frames grouped into pairs encoded with 88 information

or hearing, since at the back-end we find an automatic speech bits followed by a 4-bit CRC.

recognition system. Therefore, the development of specific mit-
igation algorithms for DSR is clearly justified. The ETSI DSR
standard already includes a basic mitigation algorithm that has
been shown quite effective for medium and good quality chan-
nels on TETRA and GSM environments [4]. Error mitigation
can be also interesting not only for DSR, but also for other ap-
plications such as speech reconstruction from the transmitted
DSR speech features.

After decoding, an error mitigation algorithm is applied.
There are two tests for error detection: a CRC checking and
a data consistency test. This last test tries to determine whether
the frames in a frame pair have a minimal continuity. When
an incorrect CRC is detected, the corresponding frame pair is
classified as errored. Besides, if the previous frame pair is "in-
consistent” is also labelled as errored. From this point on, all
frame pairs are classified as errored until one is received that
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passes the CRC and consistency tests. In this way, we have an
effective procedure for detecting error bursts. Once a burst, con-

taining 2B frames, is detected, the first B frames are substituted

by the last correct frame before the burst and the last B ones by

the first correct frame after the burst.

This standard will be compared with the different tech-
niques introduced along the paper under different channel con-
ditions. It must be observed that our work is exclusively con-
cerned with error mitigation on the feature packet stream and
that headers are not used due to several reasons. First, the s-
tandard document does not specify how to decode them. Also,
they are not necessary to carry out our experiments (assuming
that the order of the received multiframes is perfectly known).
Besides, it must be considered that a reliable decoding can be
performed on them since the 16 header information bits are pro-
tected with other 16 parity bits.

The Aurora-2 database is based on the TI-Digits database
(connected digits) decimated to 8 KHz. The recognizer is the
one provided by Aurora and uses eleven 16-state continuous
word HMM models (except silence and pause, that have 3 and
1 states, respectively), with 6 gaussians per state. Training is
performed with 8440 clean sentences and test s carried out over
setA (4004 clean sentences distributed into 4 subsets).

3. Applying MM SE to DSR decoding

Let us consider a quantized parameter veet@e € {c;i =
0,...,2M —1}) (M=6,8 in this work) that, after bit mapping, is
represented by a bit sequence= (z(0), z(1),... ,z(M —1))

(x € {x;i=0,...,2™ — 1), where each bit is assumed
to be bipolar £(k) € [—1,+1]). This sequence is transmitted
(typically, after some type of channel encoding) through a digi-
tal channel, which can be degraded by noise and fading. At the
receiver, an MMSE estimatio#of the encoded parameteris
obtained from the received signal vecgoas [3],

oM _y
oM _q Z C(i>P(Y‘x(i))P

_ = Y PPy = i;(;_l
= 3 Plylx)P

j=0

()

whereP; is thea priori probability of symbok. This estimation

can be applied to the SVQ vectors of a DSR system, taking into
account that seven different SVQ codebooks must be managed.
An important point is the estimation of probabiliti&y |[x*).
Assuming that soft decisions are applied to the channel output
y, these probabilities could be obtained, for example, by ap-
plying the SOVA algorithm [5] to the 92 bits of a frame pair,
using a trellis as the one described in [6]. For each decoded bit
Z(k), SOVA provides a reliability valu¢L(k)| that allows the
computation of the instantaneous bit error probability as,

1

T exp(L(R)) @)

pe(k) =

Therefore, the probability that bit*) (k) was transmitted given
thatz (k) has been received is,
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Figure 1:DSR over an AWGN channel.

Considering a memoryless channel and tiidy|x") =
P(x|x), itis finally obtained that,

M-1

CHP O (k

where(C is a constant independent of subindex

The recognition performance (Word Accuracy) results of
such a decoding procedure over an AWGN channel are depict-
ed in figure 1 (MMSE plot). The performance of the Aurora
mitigation algorithm for the same channel is also shown. Al-
though Aurora is clearly inferior to the MMSE estimation, it
is difficult to establish any comparison, since the Aurora pro-
cedure is not optimized for this type of channel, but for bursty
channels. As references, the word accuracies of the recognition
system without channel errors are also depicted at SNR points
"Base” (original features) and "SVQ” (quantized features). It
is assumed that the channel SNR&, (No) can be reliably esti-
mated in order to obtain the bit error probabilitieg k).

The decoding method described above can be further im-
proved if the previously received vectors are considered in the
MMSE estimation as in [3]. In order to do so, the MMSE esti-
mation (at time) must be modified as,

P(y|x® (k) (4)

oM _1
& = Elelyr,...,yd= > <Va(i) ®)
i=0
where
ar(i) = P(xe = xV]y1, ... ,y) (6)

is the (a posteriori) probability of receiving bit sequend®

at time ¢ given thaty: is received at time and that vectors
yi,...,yt—1 have been previously received. This probability
can be computed by modeling speech as a first order Markov
source and by means of the following forward recursion:

1. Initialization:t = 1

a1(i) = PiP(y1[x")/K: (7
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2. Recursion2 <t<T

oM _q

Z ar—1(j)aji | P(yx™) /K,

Jj=0

8)

Oét(i)

where K, is the normalization factor at each timeanda;; is
the transition probability from source symbpto i.

The results of this concealment technique are also depicted
in figure 1, labelled as FMMSE (Forward MMSE). It can be ob-
served that at a channel SNR of -3 dB, the DSR system still has
areasonably behavior (more than 80% of recognition accuracy),
meanwhile a simple MMSE estimation is severely degraded.

3.1. A hard decision variant

Both, the simple MMSE and the FMMSE estimations are based
on soft decisions on the received bits that allow the estimation
of instantaneous bit error probabilities. But they can also be ap-
plied in the case of hard decisions. Since the channel code is
systematic, the information bits are directly available from the
input bitstream performing hard decision, and, then, it is pos-
sible to assign them the average error probability of an AWGN

channel, thatis,
%e*rfc ( %)

In this case, the reliability of the different possible SVQ vectors
¢@ is related to the hamming distance of the corresponding
codex® to the code of the optimal (hard-decided) vector
Utilizing estimation (9) in (3) (instead of (2)), it is possible to
perform an FMMSE estimation using the same expressions de-
tailed above. The results for an AWGN channel are also depict-
ed in figure 1 (labelled as H-FMMSE, Hard decision FMMSE).
As it could be expected, the performance is inferior to that of
soft decision using source time correlation although meaning-
fully better than a simple MMSE estimation.

pe(k) ©)

4. Bursty channelsand Forward-Backward
MM SE

Very often, transmission systems must work over channels in
which errors are grouped into bursts. This fact must be tak-
en into account when designing mitigation algorithms. This is
clearly the case of the Aurora mitigation algorithm, which in
[4] is tested with 3 different GSM bit error patterns (EP1, EP2
and EP3) representing 3 different channel conditions (from ac-
ceptable to very poor quality). The FMMSE estimation can also
be easily adapted to bursty channels. As it can be seen in Au-
rora, a key point is to detect the beginning and end of bursts.
In our MMSE-based algorithms, it is considered that a burst s-
tarts when an erroneous CRC is received, and finishes when at
least two consecutive correct CRCs are received. Once the burst
end is detected, the mitigation procedure is initialized with the
last correct frame received before the burst and it is performed
during all the burst. While no bursts are received, a standard
hard-decision decoding is performed.

We consider a simplified bursty channel model that intro-
duces an additive noise consisting of a background AWGN
noise of varianceV, /2 plus a sequence of bursts of fixed du-
ration d with a separation given by a Poisson variable of mean
Ty [7]. Inside a burst, the noise is also gaussian distributed with
varianceN, /2. Of course, it is expected thaf, > N,. The

100

95 |-

90K

WACcc (%)

85

80 AURORA —+— |
FMMSE --X--
FBMMSE -- - -
| H-FBMMSE -
75 | | | | | | | | | |
3 2 -1 0 1 2 3 4 5 6 SVQBase
Eb/Nt (dB)

Figure 2:DSR over a bursty channel.

average energy of the channel noise can be computed as,

N: Ny  Nyd
2 2 2 Ty, (10)
For our experiments, we consideSNR, = 6 dB

(BER=0.23%),SN R}, —6 dB (BER=24.59%), and’;,
1500 bits. Figure 2 shows the performance of Aurora and the
modified FMMSE techniques versus the total SNI V). It
must be pointed out that the SNR values from -3 dB to 5 dB
have the meaning of different burst durations (from 657 to 25
bits, respectively). In order to have a point of reference, the
EP3 condition can be roughly considered as equivalent to this
bursty channel with a total SNR between -1 and 0 dB (with the
proposed channel parameters). It must be taken into account
that the modified FMMSE technique also requires an estima-
tion of the channel SNR in order to compute bit error proba-
bilities. This can be a difficult task for a bursty channel (the
total SNR does not correctly describe the amount of noise at
each time) and, besides, it is not the goal of this work. There-
fore, we have utilized a fixed SNR (-2 dB), since preliminary
experiments have shown that it is much better to provide SNR
values closer to worst channel condition. This SNR value is uti-
lized in all MMSE-based techniques along the rest of this work.
Although it is clear that Aurora reaches a much better perfor-
mance under this type of channel than with an AWGN channel,
the FMMSE mitigation still provides better results.

In spite of the fact that Aurora still yields the worst result,
it has an interesting property: it utilizes the correctly received
frames that delimit a burst to rebuild the degraded frames. This
idea can be translated to the MMSE estimation if it is carried
out as,

oM _y
e =Elely]= Y yu(i) 1<t<T) (11)
=0
with
(i) = P(x{"|Y) (12)
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EP1 EP2 EP3
BER~0% BER=1.76% BER=3.489
AURORA | 99.04 98.94 93.40
H-FBMMSE | 99.04 99.02 98.58

Table 1: Performance of Aurora and H-FBMMSE over GSM
Error Patterns 1,2 and 3.

whereY = (y1,...,yr) (y1 andyr are the last and first cor-
rectly received vectors before and after the considered burst, re-
spectively). The a posteriori probabilities(i) can be obtained

as,

o (1) Be (%)

V(1) = T (1<t<T) (13)
Z Oét(j)/gt(j)
=0
where,
Be(j) = P(yts1s- - yrlxe = xP) (14)

These probabilities can be obtained by means of the following
backward recursion:

1. Initialization:t =T

Br(i) =1 (15)
2. Recursiont =T —-1,T—2,...,2
oM _g
Beli) = > aiyP(yera|x)Brs1 () (16)
j=0

In the same way as with the forward probabilities, it is con-
venient to apply at each step in the recursion a normalization
factor in order to avoid underflows.

This proposed Forward-Backward MMSE estimation (FB-
MMSE) is also depicted in figure 2, and provides the best results
obtained so far. A hard decision version (H-FBMMSE) is also
depicted. In this case, hard decision does not imply any perfor-
mance degradation of Forward-Backward MMSE. This fact can
be due to several reasons as the power of the Forward-Backward
MMSE technique and the short duration of the bursts (no more
than 8 frames).

Since the H-FBMMSE technique makes hard decisions
over the input bits, we also compare its performance with that
of Aurora when applying the EP error masks. Word accuracy
results are shown in table 1. The corresponding bit error rates
are also shown. The H-FBMMSE technique also obtains bet-
ter performance than Aurora (more than 5%) and only suffers
a very slight degradation inferior to 0.5% (with respect to the
baseline no-errored system) when applying the EP3 mask.

5. Summary

This paper is devoted to the application of MMSE to DSR chan-
nel error mitigation. This has been carried out by means of per-
forming an MMSE estimation of the received parameters. In all
cases, MMSE estimation has provided better results than those
provided by the mitigation procedure of the Aurora standard.
First, we have studied the behavior of a simple MMSE estima-
tion, based on soft decisions on the channel outputs, over an
AWGN channel. In order to obtain the a posteriori probabilities

required by the MMSE estimation, it is necessary to have a re-
liability measure of the received information bits (in our case,
by means of SOVA). A much larger improvement can be ob-
tained on the same channel if the previously received signal vec-
tors are considered in those a posteriori probabilities (FMMSE
technique). This can be carried out by considering a first order
Markov model of the speech source, and the a priori probabil-
ities are obtained from a forward algorithm. The results make
clear that a large amount of information can be extracted from
time correlations of the utilized speech features (MFCCs and
log-Energy).We also show that even in the case of performing
hard decisions on the channel outputs, FMMSE provides an ex-
cellent result.

In order to test the behavior of MMSE under more realis-
tic conditions, we have also checked the utilization of a bursty
channel model. In this case, the MMSE technique requires
some adaptation to this type of channel. First, we have im-
plemented an easy mechanism to detect bursts. Besides, the
idea of Aurora of utilizing the correct frames before and af-
ter the burst to carry out the mitigation is also incorporated to
the MMSE estimation, which it is performed by means of a
forward-backward procedure (FBMMSE technique). This new
method obtains the best results over a bursty channel, and it-
s hard decision version (H-FBMMSE) does not imply any loss
of accuracy. Finally, this H-FBMMSE mitigation is compared
with Aurora applying the GSM error patterns EP1, EP2 and EP3
to the coder output. The most noticeable difference is observed
with the EP3 pattern, for which our technique obtains an word
accuracy improvement of 5% over Aurora.
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