
 Eurospeech 2001 - Scandinavia

Feature Extraction from Time-Frequency matrices
for Robust Speech Recognition
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Abstract

In this paper we present a study about time-frequency distribu-
tion of acoustic-phonetic information for the Spanish language.
This is based on a large Spanish database automatically labeled,
and we conclude that results are similar to those obtained for
hand-labeled english databases. We use bidimensional LDA [1]
to extract discriminant features in time-frequency domain (TF)
that are more robust in noise than the standard ones based on
MFCC and time derivatives. We show that TF domain and its
corresponding transformed domain (CTM) are equivalent from
the point of view of LDA analysis and use this fact to reduce the
dimensionality of the problem. Finally, cascade unidimensional
LDA (CLDA) is applied first in frequency and then in time. This
gives better estimates of projection vectors and better recogni-
tion performance. The proposed techniques are evaluated in a
connected digit recognition task. Utterances have been artifi-
cially corrupted with additive real noises.

1. Introduction
Most speech recognition systems use log filter bank energies
(FBE) from short frames (30 ms) for the acoustic representa-
tion of speech. The temporal sequence of log FBE St is usu-
ally modeled using continuous observations HMM with diag-
onal covariance matrices. As FBE’s are highly correlated, it
is necessary to use a decorrelation transform (usually DCT or
KLT). HMM modeling also assumes independent temporal ob-
servations, and this makes difficult to represent the parmeter
dynamics. To overcome this, it is common to augment the pa-
rameter vector with its time derivatives (delta parameters).

To improve the robustness of the speech parameterization,
frequency an time correlations have been used to define new
parameterization techniques. In this way, alternatives for the
frequency transform (DCT) and time representation (static plus
delta parameters) have been proposed that result in a more ro-
bust set of parameters. Several authors have proposed alterna-
tive transforms [2], [3], [4], [5] that offer better performance in
noisy conditions.

Yang et al [6] have used the concept of mutual information
to show the time-frequency distribution of mutual information
between log FBE and phonetic classes (acoustic-phonetic in-
formation) for the english language. The global time-frequency
correlation suggest the use of a joint technique to extract the
acoustic features.

The main objective of this work is the design of linear time-
frequency transforms that extract the maximum amount of pho-
netic information from acoustic observations. This will be done
by means of a bidimensional LDA analysis of TF domain. As

the resulting features will focus on most relevant parts of this
domain, a more robust behavior is expected.

The rest of this paper is organized as follows. In section
2 we show results on time-frequency distribution of acoustic-
phonetic information for the Spanish language. In section 3 we
present the bidimensional LDA analysis of TF domain and give
some comparative results on a noisy continuous digit recogni-
tion task. Section 4 is devoted to LDA analysis on CTM do-
main and we also present there some comparative results be-
tween CTM-LDA and column selection of CTM matrices. Cas-
caded LDA (CLDA) is evaluated in section 5 and in section 6
we summarize the results and conclusions of this work.

2. Distribution of acoustic-phonetic
information for the Spanish language

The distribution of acoustic-phonetic information for the En-
glish language is investigated in [6]. In this section we present
similar results for the Spanish language.

Time-frequency information distribution is represented by
the mutual information between log FBE and phonetic classes.
We have used a 8 KHz down sampled version of ALBAYZIN
[7], [8] database. The training partition is a phonetically bal-
anced1 recording of about 3 hours of speech. It contains 4.000
utterances from 160 speakers. This database was automatically
labeled using forced alignment with a set of 24 phonemes us-
ing HTK and HMM context independent phone models with
three emitting states. From this alignments, each speech frame
is labeled and associated with a time-frequency matrix S =
{S(n, τ )} containing log FBE from N = 15 mel frequency
spaced filters covering the entire frequency range (0-4 KHz)
and delays τ = −T

2
· · · T

2
with τ = 0 for the current labeled

frame. Considering a time-span of ±200ms around the current
frame, at a frame-rate of 100 Hz the resulting matrices are of
size 15 × 41 = 615. Using histograms like in [6], mutual in-
formation of time-frequency matrix components and phoneme
classes have been obtained and are depicted in figure 1(a) as
gray level images ranging from 0 (black) to 0.8 bits (white).
From this representation it can be observed that mutual infor-
mation reaches its maximum value for filter bank index n = 5
and time delay τ = 0, and is spread along both time and fre-
quency axes. Spread in time is almost symmetric in an interval
of about 250ms around the center frame (information out of this
interval is smaller than 0.04 bits). This domain will be referred
in the following as the TF domain.

Several others domains have been alternatively proposed as

1Statistical distribution of allophones is close to that of Spanish lan-
guage
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Figure 1: Acoustic-phonetic information distribution.

the two dimensional modulation spectrum (2D-MS) [2] or Cep-
stral Time Matrix (CTM) [9]. In both cases frequency axis is
linearly transformed into cepstral domain with a DCT and time
axis is transformed into modulation frequency domain by a DFT
or a DCT respectively. As both domains are similar we only
present here results about CTM. CTM is obtained from TF with
a two dimensional DCT transform. Information distribution in
this domain is obtained in a way similar of that used for TF and
is showed in figure 1(b). Only modulation frequencies up to 25
Hz and cepstral coefficients up to 12 are used in this analysis.

In CTM domain, the mutual information appears concen-
trated in a few number of lower index rows (low quefrency)
and a few number of lower index columns (low modulation fre-
quency) of CTM matrix. In fact, columns with associated mod-
ulation frequency out of 2-16 Hz range have very little infor-
mation content. This suggest that time filtering cepstral coeffi-
cients to enhance this modulation frequency range could help to
reduce the mismatch in noisy conditions. It is also evident from
the information distribution that the adequate frequency range
is different for each cepstral coefficient. Lower order ones have
a broader useful modulation frequency range than higher order
ones. This is due to the fact that lower order cepstral coefficients
are smoother by the low pass filtering effect of the frequency
axis transform.

This interaction of transforms in time and frequency has
also been pointed by Nadeu et al [2] and supported with ex-
perimental results. As a consequence, optimal transforms must
jointly consider time and frequency. Although it is possible to
search for general transforms, in this work we restrict ourselves
to linear ones based on LDA.

3. Feature extraction
The main objective of the desired feature extraction technique
must be to emphasize the region of maximum mutual informa-
tion, reducing the influence of low information parts. This way
the mismatch in noisy conditions will be reduced. A direct ap-
proach based on CTM domain has been proposed by Milner
and Vaseghi [9], [10] and correspond to retain a subset of adja-
cent columns of CTM excluding the first one that corresponds
to zero modulation frequency. Nadeu et al [2] have proposed
the use of frequency and time filters (tiffing) to emphasize the
most robust part of the 2D-MS. Hermansky [3], Avendano [4],
van Vuuren [5] and others have proposed to use LDA for both
time and frequency. In this section we explore the performance

of a direct bidimensional LDA analysis to perform the feature
extraction.

3.1. LDA in TF domain

Denoting by S = {S(n, τ )} a matrix in the TF domain, a lin-
ear transform H = {H(k, n, τ )} which maps it into a vector
F = {F (k)} in the feature space (FS) of dimension K whose
components can be written as

F (k) =
N∑

n=1

T/2∑

τ=−T/2

H(k, n, τ )S(n, τ ) ∀k = 1..K (1)

Without loss of generality, we can convert the two dimensional
TF space in a one dimensional one by means of and adequate
index remapping

F (k) =

(T+1)N∑

v=1

H(k, v)S(v) ∀k = 1..K (2)

S(v) = S(n, τ ) (3)

H(k, v) = H(k, n, τ ) / v = (τ + T/2)N + n (4)

or in matrix notation F = HS. With this definitions, bidi-
mensional analysis of S can be done by means of unidimen-
sional LDA of an augmented vector S. The optimization crite-
rion used is to maximize tr

{
V−1

w Vb

}
, where Vw and Vb are

the within and between class covariance matrices [1] of the ele-
ments of S. The transform matrix H have as rows the solutions
of the generalized eigenvalue problem VwΦ = VbΦΛ

Following this approach, an LDA analysis of TF domain
has been performed on ALBAYZIN phonetic training partition.
Spectral vectors have been derived as indicated in section 2. We
have considered 72 classes corresponding to the three states2 of
each phone model (excluding the silence model). As a result we
obtain a set of 71 eigenvectors. The first 6 of them with greater
associated eigenvalue are shown in figure 2 once rearranged into
matrix form. We also show the associated eigenvalue and mu-
tual information obtained as described in section 2 for log FBE.
Effectiveness of LDA analysis is demonstrated considering the
information extracted by each eigenvector. The best TF-LDA
feature extracts 0.89 bits of information while only 0.70 bits are
extracted by the best MFCC D A.

2Preliminary experiments have shown that state segmentation per-
forms better than phone segmentation.
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TF−LDA 1 (λ=3.068)
(MI=0.891 bits)

TF−LDA 2 (λ=1.958)
(MI=0.821 bits)

TF−LDA 3 (λ=1.647)
(MI=0.747 bits)

TF−LDA 4 (λ=1.325)
(MI=0.647 bits)

TF−LDA 5 (λ=0.659)
(MI=0.418 bits)

TF−LDA 6 (λ=0.466)
(MI=0.303 bits)

Figure 2: First 6 eigenvectors in TF domain.

3.2. Performance in additive noise

To test the proposed technique, a set of recognition experiments
have been carried out in a continuous digit recognition task. The
database used for this purpose consist of 600 strings contain-
ing 4800 Spanish digits uttered by 20 adult speakers (10 male
and 10 female). This database is split into two partitions of 300
strings for training and 300 for test. Recordings have been made
at a sampling frequency of 8 KHz in PCM format with 16 bits.
The mean SNR is 43 dB. Training is always performed in clean
condition. For recognition, an artificially corrupted version of
test partition is built by mixing the four noises from AURORA
v2.0 database test set a (SUBWAY, BABBLE, CAR and EXHI-
BITION) at SNR’s between 20 dB and -5 dB.

Recognition is performed using HTK with a 16 emitting
states 5 mixtures continuous HMM model for each digit (si-
lence model has only 3 emitting states). Basic parameterization
consist of log FBE from 15 mel spaced filters as implemented in
HTK. The length of the analysis window is 30 ms an the frame
rate is 100 Hz. In the reference test, MFCC 0 D A is used with
13 cepstral coefficients (including C0) augmented with delta
and acceleration coefficients with regression lengths of 3 and
2 respectively.

Table 1 shows the word accuracy averaged over the 4 noise
conditions. Columns two and three correspond to standard
MFCC 0 D A and TF-LDA with same number of features (39).
Effectiveness of bidimensional LDA is stated as the only situ-
ation in which it performs worse than the standard is the clean
condition (only 0.04% of absolute degradation). In any other
situation, TF-LDA performs better, specially at 15 dB where
the relative error reduction is of 51.88%.

4. Feature selection in CTM domain
As described in the previous section, an alternative approach is
to perform the feature extraction in the transformed CTM do-
main. The first approach we have evaluated is to use a sub-
matrix selection criterion. We have used the same basic param-
eterization as in the former case, and then we have generated
CTM matrices with 9 × 4 and 13 × 3 components obtained
from TF matrices in a temporal interval of 15 frames. In the
frequency axis, a DCT is applied and we keep the cepstral coef-
ficients CF (0)−CF (8) or CF (0)−CF (12), and in time we ap-
ply DCT and the coefficients CT (1)−CT (4) or CT (1)−CT (3)
are kept, respectively. This amounts to 36 or 39 features, respec-
tively.

The results obtained over the same evaluation database are

SNR MFCC D A TF-LDA CTM-9x4 CTM-13x3

clean 99.42% 99.38% 99.50% 99.17%
20dB 90.35% 96.18% 95.26% 95.36%
15dB 73.15% 87.04% 85.64% 85.61%
10dB 51.53% 66.38% 60.72% 62.80%
5dB 27.54% 40.36% 29.37% 32.96%
0dB 13.48% 22.50% 11.90% 15.06%
-5dB 9.26% 13.65% 7.39% 8.29%

Table 1: MFCC D A, TF-LDA and CTM performance

shown in table 1. A comparison with the previously presented
results shows that, with the exception of the clean conditions,
the TF-LDA method outperforms CTM. The improvement is
due to the fact that CTM is implemented using a temporal in-
terval of 150 ms, while TF-LDA extracts the features from a
temporal interval of 410 ms, which allow the inclusion of more
discriminative information.

4.1. LDA in CTM domain

If the temporal range considered for CTM is extended to 410
ms, CTM and TF are domains related by the bidimensional
DCT transform. In this situation, obtaining a simple feature se-
lection criterion is difficult, due to the high number of involved
components. Preliminary tests for feature selection in order to
reduce to 39 the number of components based on a criterion
of maximum mutual information did not provide proper results.
However, the application of LDA in this domain generates a set
of eigenvalues and eigenvectors that are, in theory, identical to
those obtained by TF-LDA, since CTM and TF are related by
an orthonormal transform.

In order to evaluate CTM-LDA, we have considered the
transformation of the matrices S (in the TF domain) to C in
the CTM domain through a bidimensional DCT. Only the rows
of C corresponding to the first 13 cepstrum (including C0) and
the columns corresponding to the modulation frequencies be-
tween 0 and 25 Hz (20 first columns) are preserved. After
an index reassignment, the resulting vector dimensionality is
13×20 = 260 (significantly lower than in the case of TF-LDA,
where the dimensionality is 15 × 41 = 615).

The eigenvalues obtained for TF-LDA and CTM-LDA are
roughly similar, with the exception of the first one, for which
TF-LDA provides a value (3.068) slightly higher than that for
CTM-LDA (2.988). This difference is due to the elimination of
the CTM columns for modulation frequencies over 25 Hz.

With respect to the performance in noise conditions, table
2 shows the results obtained for CTM-LDA (sing 39 features).
The results are similar as those obtained for TF-LDA. We think
the slight differences in favor of CTM-LDA are due to the bet-
ter estimation of the eigenvectors thanks to the dimensionality
reduction when the CTM columns are truncated (which intro-
duces a 25 Hz low-pass filtering).

5. Cascade of unidimensional LDA
In spite of the use of more than a million of frames for the esti-
mation of the covariance matrices for the LDA analysis, the ob-
tained eigenvalues are rather noisy, as observed in figure 2. The
imprecise estimation of eigenvectors introduce imprecisions in
the features obtained as a projection over them and this degrades
the recognition performance. This situation has been previously
reported by Kajarekar et al [11] when bidimiensional LDA anal-
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SNR CTM-LDA TF-CLDA

clean 99.33% 98.75%
20dB 96.16% 97.09%
15dB 87.70% 91.14%
10dB 68.18% 72.18%
5dB 40.79% 41.72%
0dB 21.51% 17.86%
-5dB 12.39% 10.56%

Table 2: CTM-LDA and TF-CLDA performance

ysis is applied to the OGI Stories database, using vectors with
1515 components.

An alternative solution to avoid this problem is the inde-
pendent design of the LDA transformations for time and fre-
quency. However, this approach does not allow to use the time-
frequency cross correlations. In order to preserve these correla-
tions, we apply a cascade LDA (CLDA). Firstly a LDA trans-
formation is estimated for log-FBE components in the current
frame (delay τ = 0), and the 13 first eigenvectors are consid-
ered to project the log-FBE in the new component set. Sec-
ondly, a temporal LDA analysis is performed, independently
for each of the new components, and the first 3 eigenvectors
are considered. The combination of the 13 frequency-domain
eigenvectors and the correspondent 3 time-domain eigenvectors
provides a feature set with 39 parameters.

Figure 3 shows the first 6 eigenvectors obtained with cas-
cade LDA approach in TF domain (TF-CLDA). The compari-
son of these eigenvectors to the ones obtained by bidimensional
LDA over TF (TF-LDA figure 2) shows the new ones are less
noisy. The TF-CLDA approach provides better recognition per-
formance in the range from 20 dB to 5 dB as observed in the
last column of table 2.

6. Conclusion
This work presents a study about the distribution of mutual in-
formation between spectral observations and phonetic classes
for Spanish, obtained by means of an automatic segmentation
of a large Spanish phonetic database. The obtained distribution
is qualitatively similar to that previously reported for English
using hand-labeled databases.

Making use of a bidimensional LDA analysis as a feature
extraction method we have derived a set of robust features. The
recognition experiments under additive noise conditions show
that this parameterization is more robust than the standard one
based on static plus dynamic cepstral coefficients.

We have also studied the transformed domain CTM, show-
ing that it is equivalent to the TF domain as a start point for
LDA. The information distribution in the CTM domain is used
in order to perform a reduction of the space dimensionality pre-
vious to the LDA analysis. This dimensionality reduction leads
to a better estimation of the discriminative transformation, pro-
viding better recognition results.

Alternatively to the feature reduction in the whole cepstral-
time vectorial space, LDA has been also applied in cascade to
each dimension of TF domain. Even though the joint LDA is
theoretically a better approach, the cascade LDA method pro-
vides better recognition results in practical applications, mainly
because of the limitations of the available data for the analysis.
However, when the mismatch between training and test condi-
tions is more important (very low SNR) joint LDA is better than
cascade LDA.

TF−CLDA 1
(MI=0.800 bits)

TF−CLDA 2
(MI=0.718 bits)

TF−CLDA 3
(MI=0.691 bits)

TF−CLDA 4
(MI=0.370 bits)

TF−CLDA 5
(MI=0.338 bits)

TF−CLDA 6
(MI=0.229 bits)

Figure 3: Eigenvectors TF-CLDA.
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