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Abstract
In this paper we apply a model-based compensation method
to cancel the effect of the additive noise in Automatic Speech
Recognition systems. The method is formulated in a statistical
framework in order to perform the optimal compensation of the
noise effect given the observed noisy speech, a model describ-
ing the statistics of the speech recorded in a clean reference en-
vironment and the estimation of the noise in the noisy recogni-
tion environment. The noise is estimated using the first frames
of the sentence to be recognized and a frame-by-frame noise
compensation algorithm is performed, so that the compensation
procedure does not constrain real-time speech recognition sys-
tems and is compatible with emerging technologies based on
distributed speech recognition.

We have performed recognition experiments under noise
conditions using the AURORA II database for the recognition
tasks developed for this database as a standard reference. Ex-
periments have been carried out including both, clean and mul-
ticondition training approaches. The experimental results show
the improvements in the recognition performance when the pro-
posed model-based compensation method is applied.

1. Introduction
Noise degrades significantly the performance of Automatic
Speech Recognition (ASR) systems running in real conditions
[1]. Usually methods to compensate the effect of noise must
be applied in order to perform an accurate enough recognition
process. Otherwise, the degradation of the performance due to
the noise would cause an improper operation of the ASR based
application. The degradation of the recognizers is mainly due to
the mismatch between training and recognition conditions and
most of the methods for robust speech recognition are focused
in the minimization of the mismatch and can be categorized in
one of these groups [2]:

� Robust parameterizations: the speech signal is repre-
sented using parameters that are minimally affected by
the noise.

� Compensation of the noise effect over the representation
of the speech: these methods try to remove the noise
from the parameters representing the speech.

� Adaptation of the models to noise conditions: the models
in the recognizer are contaminated in order to properly
model the noisy speech.

This way, for example, front-ends based on Mel Frequency
Cepstral Coefficients (MFCC) are widely extended since these
parameters are shown to be robust against different kinds of
noise [3]. In the second category, methods like Cepstral Mean

Normalization or Spectral Subtraction [3] [4] have been con-
sidered to compensate the effect of the noise, and methods like
Parallel Model Combination [5] are useful to adapt the speech
pattern to noise conditions.

In this paper we present a model-based noise compensation
method to remove the effect of the noise over the representation
of the speech signal. The method is based on a statistical for-
mulation and provides the expected value of the clean speech
representation given (a) the noisy speech, (b) an estimation of
the noise and (c) a model describing the clean speech. The clean
speech model is based on a set of multivariate Gaussian pdf’s
and have a precedent in the Vector Taylor Series approach [6]
[7] [8]. The compensation procedure is performed in the loga-
rithmic filter-bank energies (log-FBE) domain, and is compati-
ble with filter-bank based representations, like the MFCC front-
end. We have combined the model-based noise compensation
method with a band pass filtering procedure in the log-FBE do-
main in order to reduce the residual noise.

The compensation method has been tested under several
noise conditions using the AURORA II database and task set.
The speech recognition experiments have been carried out for
clean and multicondition training conditions as proposed in the
AURORA test. The results presented in this work show that
important improvements in the recognition performance can be
obtained when the proposed compensation method is applied.

2. Effect of the additive noise in ASR
In real applications of speech recognition, the speech signal is
usually affected by additive background noise, due to other au-
dio sources in the environment where the speaker is. Assuming
that the speech and noise signals are uncorrelated, the output
energy of the filter b in the filter bank at frame t, correspond-
ing to the noisy speech Yb(t) can be written as a function of the
energy of the clean speech Xb(t) and the noise Nb(t),

Yb(t) = Xb(t) +Nb(t) (1)

and the relation in the log-FBE domain (xb = log(Xb)) is de-
scribed by the equation,

yb(t) = log[exp(xb(t)) + exp(nb(t))] (2)

Therefore, the effect of the additive noise consists of a non-
linear transformation of the representation space in the log-FBE
domain which is propagated to the MFCC-based representation,
producing a mismatch between the clean and the noisy condi-
tions. This degrades the performance of the recognizer when it
is trained with clean speech and the the recognition is performed
using speech acquired in noisy environments.
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Additionally, as the noise is a random process, the additive
noise affecting a band, nb(t) does not take a constant value,
and therefore the relation between xb(t) and yb(t) cannot be
described as a deterministic transformation, but in a probabilis-
tic framework. From the noisy signal, an estimation of some pa-
rameters describing the noise statistics p(nb) is possible, but not
the estimation of the exact value nb(t) of the noise in the band b
at frame t. So, given a value of the observed noisy speech yb(t),
and an estimation of the noise statistics p(nb), a proper compen-
sation method should estimate the expected value of the clean
speech parameters constrained to the observed noisy speech and
the noise statistics. In addition, the use of a model describing
the statistics of the clean speech p(xb) would provide a more ac-
curate estimation of the clean speech, that should be calculated
as the expected value x̂b(t) = E[xbjyb(t); p(nb); p(xb)].

3. Model-based compensation of the
additive noise

The compensation method we propose is based on a statistical
model describing the distribution of the clean speech in the log-
FBE domain as a K-Gaussians mixture,

p(x) =
KX

k=1

P (vk)N (x; �x;k;�x;k) (3)

where vk is the k-th Gaussian pdf, with mean �x;k and covari-
ance matrix �x;k (assumed to be diagonal). From the equation
(2), the relation between xb and yb can be written in vectorial
notation,

y(x;n) = x+ g(x;n) (4)

where the mismatch function is,

gb(x;n) = log[1 + exp(nb � xb)] (5)

and the definition of an auxiliary function f(x;n) with the com-
ponents,

fb(x;n) =
1

1 + exp(xb � nb)
(6)

is useful since @gb=@nb = �@gb=@xb = fb. By applying a 1st
order Taylor series approach to the equation (4), it is possible to
estimate how the mean and covariance matrix �x;k and �x;k of
the Gaussian vk are affected by an additive noise with mean �n
and covariance matrix �n,

�y;k(b) � �x;k(b) + gb(�x;k; �n) (7a)

�y;k(b; b) � [1� fb(�x;k; �n)]
2�x;k(b; b)+

[fb(�x;k; �n)]
2�n(b; b) (7b)

where b denotes the component associated to the band b in the
filter bank and the covariance matrices are assumed to be diag-
onal. The estimation of the contaminated Gaussians allows an
estimation of the clean speech given the observed contaminated
speech, the clean speech model and an estimation of the noise,

x̂(t) = E[xjy(t); p(x); p(n)] = E[y� gjy(t); p(x); p(n)]

� y(t)�
KX

k=1

P (vkjy(t))g(�x;k; �n) (8)

where the probabilities P (vkjy(t)) are estimated using the
Gaussian pdfs contaminated according to the equations (7a) and
(7b),

P (vkjy) =
P (vk)N (y; �y;k;�y;k)PK

k0
=1

P (vk0)N (y; �y;k0 ;�y;k0)
(9)

In contrast to the iterative algorithm proposed in [6] [7] [8]
we estimate the noise parameters using the first 10 frames of
signal (that are assumed to be silence) which allow the parame-
terization and the compensation procedures to run in real time.
This provides an accurate enough estimation of the mean vector
of the noise in the log-FBE domain. However the accuracy in
the estimation of the covariance matrix is very poor.

4. Band pass filtering
According to a previous analysis of the distribution of the mu-
tual information between the phonetic classes and the param-
eters in the logarithmic filter-bank energies domain, most of
the acoustic information is contained in the frequency range be-
tween 2 and 15 Hz. Variations in the log-FBE domain slower
than 2 Hz are associated to the average energy of the back-
ground noise and those variations faster than 15 Hz are mainly
due to the random behavior of the noise. For this reason, we
have combined the model-based noise compensation method
with a band pass filtering procedure in the log-FBE domain in
order to reduce the residual noise that the compensation method
cannot remove. We have applied a 41 coefficients FIR band pass
filter with a band between 2 and 15 Hz to each component of the
compensated vectors in the log-FBE domain.

5. Experimental results
5.1. The recognition task

The model-based compensation method has been tested with
the AURORA II database and the standard recognition tasks
prepared for this database. This database contains English con-
nected digits recorded in clean environments. Three sets of
sentences (set A, set B and set C) have been prepared for the
recognition experiments. The sentences have been artificially
contaminated by adding noise recorded under several conditions
(subway, babble, car, exhibition, restaurant, etc.). The sentences
are contaminated for different noise levels, with SNRs ranging
from -5 dB to 20 dB. Recognition experiments using clean sen-
tences (no noise added) have also been carried out.

The recognition systems used as reference are based on
continuous hidden Markov models (CHMM). One CHMM has
been trained for each digit. Both, training and recognition pro-
cesses are performed using the HMM Tool Kit (HTK) software,
as proposed in the AURORA II documentation. The speech
parameterization used for the reference experiments is based
on standard Mel Frequency Cepstral Coefficients (MFCC). Two
groups of experiments have been performed: (a) using a recog-
nizer trained with clean speech (Clean training) and (b) training
the recognizer with sentences contaminated with different kinds
and levels of noise (Multicondition training).

The methods explored to improve the recognition perfor-
mance under noise conditions only affects the front-end. There-
fore, all the procedures for training and recognition are identical
to the reference experiments with the exception of the front-end,
which includes the model-based compensation procedure.

5.2. Band Pass Filtering of log-FBE parameters

We have performed a preliminary recognition experiment (only
for set A) in order to understand the effect of the band pass
filtering over the log-FBE parameters. In this experiment, the
log-FBE parameters are filtered with a 2-15 Hz band pass filter
before computing the Mel-cepstrum parameters, and no other
compensation method is considered. Figure 1 compares the per-
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formance of the recognizer when Band Pass Filtering is applied.
This results are the average over the different noise types con-
sidered in set A. As can be observed an improvement is pro-
vided by the Band Pass Filtering under Clean Training condi-
tions and the performance is similar to the reference for Mul-
ticondition Training conditions. Therefore, we can conclude
that the selected band preserves most of the discriminative in-
formation relevant for speech recognition and reduces part of
the noise effects. For this reason, we have combined the Band
Pass Filtering and the Model-Based Compensation method in
the following experiments.

5.3. Model-Based Compensation of the noise

We have applied the model-based noise compensation method
described in section 3 in order to compensate the effect of the
noise over the log-FBE representation of the speech. The noise
parameters are estimated using the first 10 frames of the sig-
nal (100 ms) which are assumed to be silence. This allow the
compensation procedure to run in real time. Even though this
provides an accurate enough estimation of the mean vector of
the noise in the log-FBE domain, the accuracy in the estimation
of the covariance matrix is very poor. For this reason, we only
apply a 0th order Taylor series approach and we compensate the
mean of the Gaussians according to equation (7a) but the co-
variance matrices of the Gaussians are not modified. We have
estimated a set of 128 diagonal Gaussian pdfs in the log-FBE
domain as a clean speech model to be used for the model-based
compensation procedure. The Gaussians has been estimated us-
ing the Clean conditions training database of AURORA II.

Figure 2 shows the recognition results (averaged over the
sets A, B and C and different types of noises) as a function
of the SNR. The results applying the model-based compensa-
tion method and the band pass filtering are compared to the
reference. An important improvement with respect to the ref-
erence can be observed for Clean training conditions. However,
a degradation with respect to the reference is appreciated for
Multicondition training.

We have investigated which factors are involved in this
degradation in the Multicondition training case. We have ob-
served that in the Multicondition case, the rates of correct words
are similar for both, with and without compensation, and the
degradation observed in the Word Accuracy is mainly due to an
increment in the number of insertions when the compensation
method is applied. We have also observed that the increment
in the number of insertions is associated to improper estimation
of the noise level affecting each band in the filter bank. This is
due to the fact that most of the considered noises are not sta-
tionary. We have observed important differences between the
noise levels at the beginning (first 10 frames) and at the end
(last 10 frames) of the sentence: the typical difference between
the noise estimation at the beginning and at the end is 2 dB,
but there are sentences for which the difference exceeds 10 dB.
This means that using a constant value for the noise level along
all the sentence leads to an improper estimation of the noise in
some parts of the sentence and therefore to an improper behav-
ior of the compensation procedure.

5.4. Linear interpolation of the estimation of the noise

In order to deal with a non-stationary noise contaminating the
speech signal, we have estimated the noise at the beginning and
at the end of the sentence (using the first and last 10 frames,
which are assumed to be silence) and we have estimated the
noise affecting each frame as a linear interpolation between
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Figure 1: Recognition results when the Band Pass Filtering is
applied (only for set A).
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Figure 2: Recognition results when the Model-Based Compen-
sation method is applied (average over sets A, B, C). The com-
pensation method is combined with Band Pass Filtering.

these values. This method for the noise estimation provides
a more accurate model of the noise, specially interesting for
non-stationary noises, but present the drawback that the com-
pensation cannot be performed until all the sentence has been
recorded, which should be considered for real-time applica-
tions. In addition, since the estimated noise level is different for
each frame, the set of noisy Gaussians must be re-computed for
each frame, and this increases significantly the computing load
of the procedure. The experimental results when the linear in-
terpolation is used for the noise estimation are shown in Figure
3. As can be observed, this approach improves the performance
of the model-based compensation procedure.

5.5. Summary of recognition results

The results are summarized in Tables 1 and 2. Table 1 presents
the recognition results averaged over the SNR range 0 - 20 dB
and Table 2 shows the performance of the studied methods rel-
ative to the reference system (Mel-cepstrum front-end).

6. Conclusions
In this paper we have presented a model-based noise compen-
sation method for automatic speech recognition systems. This
method estimates the expected value of the clean speech given
the observed noisy speech, an estimation of the noise and an
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Figure 3: Recognition results for Model-Based Compensation
method where the noise level is estimated using a linear inter-
polation between the beginning and at the end of the sentence
(average over sets A, B, C). The compensation method is com-
bined with Band Pass Filtering.

statistical model of the clean speech. The method is combined
with a band pass filtering procedure in the log-FBE domain.

The proposed noise compensation method has been tested
using the AURORA II data base and speech recognition set up.
The method provides important improvements when the recog-
nizer is trained in clean conditions. However, under multicon-
dition training, a degradation is observed with respect to the
reference recognizer. We have found that this degradation is as-
sociated to the evolution of the noise level along the sentence,
due to the non-stationary properties of the noises considered in
the AURORA II recognition test.

We have proposed a method to deal with non-stationary
noises, which estimates the noise for each frame as the linear
interpolation between the noise levels estimated at the begin-
ning and at the end of the sentence. The use of linear interpo-
lation for the estimation of the noise improves significantly the
performance of the recognizer.

The experiments described in this paper shows the impor-
tance of the proper modeling of the noise and the adequate noise
estimation procedures in order to improve the performance of
speech recognizers working under noise conditions.

7. Acknowledgments
This work has been supported by the Spanish Government un-
der the CICYT project TIC99-0583.

8. References
[1] Y. Gong, “Speech recognition in noisy environments: A

survey”, Speech Communication, vol 16, no 3, pp. 261-
291, 1995.

[2] Bellegarda, J. R., “Statistical techniques for robust asr: re-
view and perspectives”, Proc. of EuroSpeech-97, pp. KN
33-36, 1997.

[3] C. Jankowski, J. Hoang-Doan and R. Lippmann, “A com-
parison of signal processing front ends for automatic word
recognition”, IEEE Trans. on Speech and Audio Process-
ing, vol. 3, pp. 286-293, July 1995.

[4] S. Vaseghi and B. Milner, “Noise compensation methods
for hidden markov model speech recognition in adverse

Reference (Mel-cepstrum)
Training mode set A set B set C overall
Multicondition 87.82 86.27 83.78 86.39
Clean only 61.34 55.75 66.14 60.06
Average 74.58 71.01 74.96 73.23
Model-Based Compensation + BP Filt
Training mode set A set B set C overall
Multicondition 85.60 82.85 84.06 84.19
Clean only 79.07 78.42 76.87 78.37
Average 82.33 80.63 80.46 81.28
Model-Based Comp. (linear interp) + BP Filt
Training mode set A set B set C overall
Multicondition 86.81 84.48 85.89 85.69
Clean only 80.08 80.63 78.87 80.06
Average 83.44 82.55 82.38 82.87

Table 1: Performance of the recognition systems averaged over
the SNR range between 0 and 20 dB.

Model-Based Compensation + BP Filt
Training mode set A set B set C overall
Multicondition -18.2% -24.9% 1.7% -16.1%
Clean only 45.9% 55.2% 31.7% 45.8%
Average 13.8% 13.2% 16.7% 14.8%
Model-Based Comp. (linear interp) + BP Filt
Training mode set A set B set C overall
Multicondition -8,3% -13.0% 13.0% -5.1%
Clean only 48.5% 56.2% 37.6% 50.1%
Average 20.1% 21.6% 25.3% 22.5%

Table 2: Performance of the recognition systems relative to the
reference system (Mel-cepstrum).

environments”, IEEE Trans. on Speech and Audio Pro-
cessing, vol. 5, pp. 11-21, Jan. 1997.

[5] M. F. J. Gales and S. J. Young, “HMM recognition in noise
using parallel model combination”, Proc. of EuroSpeech-
93, vol. 2, pp. 837-840, 1993.

[6] P. J. Moreno, “Speech Recognition in Noisy Environ-
ments”, PhD thesis, Carnegie Mellon University, Pitts-
burgh, Pensilvania, April 1996.

[7] P. J. Moreno and B. Eberman, “A new algorithm for ro-
bust speech recognition: the delta vector Taylor series ap-
proach”, Proc. of EuroSpeech-97, vol 5, pp. 2599-2602,
1997.

[8] R. M. Stern, B. Raj, and P. J. Moreno, “Compensation
for environmental degradation in automatic speech recog-
nition”, ESCA-NATO Tutorial and Research Workshop
on Robust Speech Recognition for Unknown Communi-
cation Chanels, pp. 33-42, April 1997.


