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ABSTRACT

Signal representation is an important aspect to be taken into
account for pattern classification. Recently, discriminative
training methods have been applied to feature extraction for
speech recognition. In this paper, we apply the Minimum
Classification Error estimation to train the parameters of a
feature extractor. This feature extractor is a linear transfor-
mation of the original representation space. The new repre-
sentation of the speech signal makes easier the recognition
task and the performance of the different tested recognizers
is improved as the experimental results show.

1 INTRODUCTION

Feature extraction is very important for the speech recog-
nizer design. An appropriate representation of the patterns
simplifies the recognition task, and this could improve the
recognizer performance. The most widely used speech signal
representations are based on considerations such as speech
production models, auditory models, phonetic or acoustic
considerations, etc. So, after years of research about this,
cepstrum-LPC or bank-of-filter based representations are
nowadays very utilized.

However, the use of signal transformations for enhanc-
ing the most discriminative features is a necessary step. The
comparison of two speech signals (a test signal and a refer-
ence one) is performed by using a distance measure in the
representation space. A linear transformation of the feature
space modifies the distance measure and, therefore, the per-
formance of the recognizers. The application of a liftering
window can be interpreted as a diagonal transformation of
the cepstral vectors which represent the speech signal. Juang
et al. [1] have studied the cepstrum-LPC representation and
the importance of applying a liftering window to enhance the
most discriminant components of the cepstral vector. The
importance of this operation is shown by two well-known
results: first, the performance of speech recognizers is very
sensitive to the lifter and second, the ideal lifter depends
strongly on the noise conditions [2].

Recently, a feature extractor design based on the Mini-
mum Classification Error (MCE) estimation [3] has been pro-
posed. This method of selecting an adequate representation
space is called Discriminative Feature Extraction (DFE).
Biem and Katagiri have applied DFE to compute liftering
windows [4] and to design a filter bank [5]. Bacchiani and
Aikawa have optimized the parameters of a dynamic cep-
strum lifter array [6] and Paliwal et al. have proposed the
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simultaneous training of the feature extractor and the pat-
tern classifier [7]). In all the cases, DFE has been shown to
be a powerful tool for error-rate reduction. The feature ex-
tractor usually consists of a transformation which is applied
to the original feature space. The application of DFE has
been studied for different input feature spaces and different
restrictions imposed to the transformation.

The DFE strategy presents some problems related to the
MCE training of the feature extractor:

e If the models for the speech units are complex, the train-
ing process and the estimated classifier depend strongly
on the distance measure. This makes necessary the si-
multaneous reestimation of both, the feature extractor
and the classifier.

¢ This scheme of DFE implies an alteration of the training
procedure for the classifier, because it forces the use of
the MCE criterion for the classifier training.

The simultaneous MCE reestimation of classifier and
transformation is not advisable for a complex recognizer,
due to the fact that obtaining an error-rate minimiza-
tion modifying the classifier is easier than modifying the
feature extractor (because a modification of the feature
extractor affects the whole classifier).

e The importance of the initialization is increased as the
classifier or the recognition task are more complex be-
cause of the complexity of the error function (the MCE
algorithm looks for the nearest local minimum).

These problems limit the applicability of DFE, since as the
recognition task or the classifier are more complex the im-
provements are less significative.

In this work we propose a new variant of the DFE strat-
egy in order to avoid these problems. We propose training
the feature extractor, which is a linear transformation, by
using a very simple classifier, and then performing the train-
ing of the definitive classifier using the transformed vectors.
So, the procedures for training the classifier are not modi-
fied. Due to the simplicity of the classifier used for the DFE
training, the error-rate can only be minimized by enhancing
the most discriminative features and by including the fewest
discriminative ones using the appropriate weights. Then, the
new Euclidean distance measure is adapted to the recogni-
tion task and conditions. This improves the recognizer be-
cause all the training process for the definitive classifier are
performed in an optimized feature space from a discrimina-
tive point of view.




In order to evaluate the proposed technique we have de-
veloped several isolated-word speaker independent experi-
ments. The recognition results when the proposed transfor-
mations are applied are compared to the results obtained
by the application of a standard pre-processing technique.
The results show the usefulness of the proposed technique to
improve the speech recognizer performance.

2 DISTANCES AND TRANSFORMATIONS

The cepstrum-LPC1is a widely used representation for speech
recognition. Some authors have proposed the inclusion new
features in addition to cepstrum such as energy, or dynamic
features as delta cepstrum or delta energy [8]. A way to
incorporate the different features into the recognition sys-
tem is the use of a Multi-feature Weighted Distance Measure
(MWDM) [s],

d(xe,%Xr) = pedc(€:, &r) + pacdac(Adr, AC,) +
peds(Er, Er) + papdar(AE:, AE;) (1)

where x; and X, are the test and reference feature vectors,
respectively, d., dac, dg and da g are Euclidean distances for
the liftered cepstrum and delta cepstrum vectors, the energy
and the delta energy, respectively and p., pac, PE and pag
are weights that must be experimentally determined. The
liftering is applied to the cepstral coefficients ¢(n) as,

én)=c(n)w(n) (n=1,...,L) (2)

where w(n) is the liftering window and L the window length.
The delta cepstral coefficients are liftered like the cepstral
ones, by using the same liftering window.

Thus, the distance measure obtained after the liftering
and weighting is the Euclidean distance between the vectors
transformed by a matrix V,

d(Xs,%p) = ||&: ~ %[> where % =Vx 3)
The V matrix is diagonal and its form is,
n#p

VPe - w(n) if

- VPac-w(n— L) if

m =\ VpE if
VPaE - if

(4)

The determination of an adequate liftering window and
weights (or the V matrix) constitutes an important prob-
lem because they determine how the different features are
incorporated into the distance measure [1], [2], [8], [9]. The
performance of a recognition system could be improved by
the application of an adequate transformation to the feature
vectors.

Unp =0 if

n=1,...,L
n=L+1,...,2L
n=2L+1
n=2L+2

3 COMPUTING THE MCE TRANSFORMA-
TION

Our goal is to obtain a linear transformation V' of the rep-
resentation space adapted to the recognition task and ac-
quisition conditions in order to improve the recognizer per-
formance. According to the DFE strategy, the V matrix
is trained by using the MCE criterion. The elements v, p
are computed iteratively to minimize a cost function I that
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represents the classification error. At iteration k, v, is
computed by gradient descent of the cost function,

k k-1 oL

Ynp = Unp — 17

)

vy p

where 7 is the convergence coefficient. Let us suppose we

have a set of training sequences, {X1,..., Xa}, and a set of
classes {A1,...,Ar}; the cost function can be defined as,
M
L=) ln(Xm) (6a)
m=1
In(Xm) = 1 6b
m m) = 1 +e_adm(xm) ( )
dm(Xm) = ~grm) + 1 log L E P9 (6c)
: mT g | T-1

J#Ek(m)

where g; = gi(Xm, Ai) are the discriminant functions (the
recognized class is the one whose discriminant function is
the greatest); Ax(m) is the correct class for the sequence X.
Thus, d, < 0 (and I, — 0) if the classification is clearly
correct, and d,, > 0 (and I, — 1) if clearly incorrect (I,
is a smooth and derivable classification error function for
sequence Xm). Factor # determines the contribution of the
incorrect classes to d,, and « is the transition parameter
from correct to incorrect classification. In order to compute
the partials L/dvy, p, it is necessary to know the form of
the discriminant functions g;.

The conventional DFE strategy proposes to use the g;
functions of the classifier used for recognition. Using a com-
plex classifier, the cost function is minimized by the adap-
tation of the distance measure to this classifier. This way
of estimating the classifier and the transformation is not op-
timal because the classifier is trained in the original (not
optimized) representation space, and the training process
strongly depends on the distance measure (i.e. if a clustering
process is performed). Moreover, in the case of a simulta-
neous reestimation of both the classifier and the transfor-
mation, the problems discussed in the introduction lead to
a non optimal transformation. We propose another way of
computing the V transformation:

¢ A very simple classifier (with no clustering process for its
training) is used for the MCE estimation of the transfor-
mation. Using a simple classifier for the transformation
estimation, the cost function could only be minimized
by applying a transformation which leads to an optimal
(from a discriminative point of view) distance measure.
Moreover, using a simple classifier the problems related
to the MCE estimation of the transformation are min-
imized. The obtained transformation is not adapted to
the classifier and then it could be successfully applied
to a more complex classifier.

o The transformation and the definitive classifier are in-
dependently trained. Thus, all the training processes
for the definitive classifier are performed in the new op-
timized representation space.

The classifier we propose for the MCE estimation of the
transformation models the production of the feature vectors
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that belong to each class A; by one spherical Gaussian prob-
ability density function,

P = g owe (-3 EZHE)

2
o

~ - 1 .

Vi =Eil%] of = 5Eilllx - il’) (7b)
where d is the dimensionality of the representation space,
and F;[-] means average over all the vectors that belong to
the class A;. According to this model, for a given sequence
Xm = X1,...,XT, the discriminant functions are constructed
as,

T
3:(Xmli) = log P(Xm[Xs) = 7 3 log P(clAs)  (8)

t=1

From the definition of the cost function, and taking into
account that X = Vx, it is possible to compute 8L/0vn p,
and this allows the iterative estimation of the transforma-
tion by using equation (5). Using this classifier for the MCE
algorithm we obtain a transformation of the representation
space where the Euclidean distance between vectors that be-
long to the different classes is maximized. The new repre-
sentation makes the recognition task easier, independently
of the recognizer configuration.

4 EXPERIMENTS AND RESULTS

We have developed several isolated-word speaker indepen-
dent recognition experiments. The vocabulary is composed
of 16 words (10 Spanish digits and 6 keywords) and the data
base is composed of 3 repetitions of every word recorded from
40 speakers (20 men and 20 women). The speech signal has
been sampled (sample frequency f, = 8k H =) and segmented
into frames of 32ms, overlapped 16ms. We have computed
14 cepstral coefficients {from 10 LPC coefficients), 14 delta
cepstral ones, energy and delta energy for every frame of
speech.

Taking into account the small correlation between these
features, we have simplified the problem with the restric-
tion that V is a diagonal matrix. Thus, we have only com-
puted the elements in the main diagonal v,, = v,. We
have obtained two MCE transformations, labelled MCE-1
and MCE-2, from two different initializations. For the sec-
ond initialization, a higher weight has been applied to the
delta cepstral coefficients. The recognition results when the
MCE transformations are applied are compared with the re-
sults of a standard pre-processing (given by equation (4)),
using a raised-sine liftering window [1], and computing the
experimental weight as proposed in [9]. The experiments for
the standard transformation are labeled as MWDM.

Figure 1 shows the v, weights for the three transfor-
mations we have applied. The first 14 weights are applied
to cepstrum, the next 14 ones to delta cepstrum, and the
last 2 ones, to the energy and delta energy. The weights for
delta cepstrum are significatively greater than the weights
of the cepstrum because of the differences between their
variances (a normalization before computing the MWDM or
MCE transformations is necessary).

The resulting liftering windows from MCE transforma-
tions are very similar to raised-sine for the lower cepstral
coefficients. Important differences can be observed in the
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Figure 1: MWDM, MCE-1 and MCE-2 transformations.

delta cepstral liftering window. Delta cepstral weights are
greater for MCE-2 due to the initialization.

We have developed the recognition experiments us-
ing two types of HMM-based speech recognizers: Discrete
Hidden Markov Models (DHMM) [10] and Multiple Vec-
tor Quantization Hidden Markov Models (MVQHMM) [11].
These recognizers have been tested for different codebook
sizes. Four DHMM recognizers have been implemented, us-
ing 64, 128, 256 and 512 centroids. Since there are 16 words
in the vocabulary and MVQHMM uses independent code-
books for every class, in this case the experiments have been
developed using 4, 8, 16 and 32 centroids per word, in order
to compare this experiments to the DHMM ones.

The recognition results for the DHMM system are shown
in figure 2 (error-rate versus codebook size). Figure 3 shows
the error-rate for the MVQHMM system, for the different
transformations.
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Figure 2: DHMM recognition error-rate versus codebook size
of the VQ codebook, by applying the MWDM, MCE-1 and .
MCE-2 transformations.

The recognition results suggest the following comments:

1. Both MCE transformations lead to significative im-
provements of the recognizer performance with respect
to MWDM, for both types of recognizers, DHMM and
MVQITMM.

W

. The improvements are observed for all the codebook
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Figure 3: MVQHMM recognition error-rate versus codebook
size of the VQ codebook by applying the MWDM, MCE-1 and
MCE-2 transformations.

sizes. Even though the MCE transformations are com-
puted using a very simple classifier, they lead to im-
provements independently of the complexity of the de-
finitive classifier.

3. For the MVQHMM recognizer, the classification score
is a composition of a quantization score (provided by
the codebooks of each class) and a generation score
(provided by the HMM’)[11]. The MCE representa-
tion (where the distance between the vectors belonging
to different classes is maximized) improves directly the
quantization score. For this reason, the improvements
are more important for the MVQHMM recognizer.

4. Since the transformation is applied at the beginning of
the classifier training procedure (in contrast to conven-
tional DFE), all the classifier training steps are per-
formed in a more discriminative space. l.e. obtained
clustering is better adapted for the discrimination than
the one obtained using the MWDM transformation.
Thus, the performance is improved by application of the
MCE transformations even in the case that the quanti-
zation score is not used (as in DHMMs).

5. The MWDM used as reference is the result of a complex
process of selection: a wide set of liftering windows has
been tested and the estimation of the MWDM weights
has required a lot of recognition experiments. The es-
timation of the MCE transformation does not imply a
high computational cost because of the use of a simple
classifier for its training.

6. The proposed techniqne does not increase the compu-
tational cost of the recognition systems, and does not
modify the training process, since the MCE transfor-
mation is computed in a pre-training stage.

7. The obtained MCE transformations suggest that using
the same liftering window for cepstrum and delta cep-
strum is not optimal for speech recognition.

5 CONCLUSIONS

The MCE algorithm has been applied to compute trans-
formations of the feature space for improving the speech
recognizers. We have proposed a new variant of DFE that
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consists of computing a MCE-estimated transformation in a
pre-training stage by using a very simple classifier. Indepen-
dent training of both the transformation and the definitive
classifier presents some advantages with respect to conven-
tional DFE. This method has been successfully applied to
speaker-independent isolated word recognition. The applica-
tion of the MCE transformations improves the performance
of the recognizers with respect to standard pre-processing
techniques, for all the tested configurations.
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