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Introduction
% Results for Noisy TI-Digits at ICASSP’02

* Histolglram Equalization (HE) can reduce the mismatch of noisy
speech better than CMS and CMVN

* Its performance is increased when applied over partially
compensated speech features

< Results for AURORA 2 and 3 at ICSLP’2002

* Feature extraction combining spectral noise reduction and cepstral
histogram equalization for robust ASR

% In this work we explore CDF-matching performance in
combination with Wiener filtering




Outline

% System description

< Front-End Spectral Noise Reduction
* Speech/Non-Speech Detection
* Spectral noise reduction

% Back-End Processing
* Frame-Dropping
* Feature Normalization

< Experimental set-up

¢ Results and discussion
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Speech/Non-Speech Detection (I)

% Long Term Spectral Estimation VAD algorithm
% LTSE estimation using a sliding window of 3 frames
|=+N
LTSE(K) = max{X (k,n+1)} ="}

< Decision rule

N== ] 2
LTSD =10log,, 1 > LTSZE (9
NFFT & Ne*(k)

% LTSD is compared with an adaptive threshold v




Speech/Non-Speech Detection (1)

% Threshold y function of the noise energy

Yo E<E,
y={L0 "N (E_E)+y, E,<E<E,"
EO_El
71 E>E

% VAD parameters
N=3 NFFT = 256

7,=50B E,=30dB (low noise energy)
y,=150B E =50dB (high noise energy)

% Adaptive VAD to time varying noise environments

% Details of the algorithm

* A New Adaptive Long-Term Spectral Estimation Voice Activity
Detector (EUROSPEECH’03)




Speech/Non-Speech Detection (111)
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Spectral noise reduction

% Noise reduction implementation as in the first stage of
the ETSI ES 202 050 without mel-scale warping.

% Temporal and frequency smoothing of the magnitude
spectrum of the noisy frames is applied.
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» Maximum attenuation is fixed at 22dB.
» FIR filter with 17 taps is obtained.

% Noise of spectrum estimation as (with A =0.99)
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Back-end processing

Racog.

< Frame Dropping

* Remove all the frames labeled as non-speech

< Feature Normalization
* ECDF-matching




Feature Normalization (I)

% CDF-matching for non-linear distortion compensation
* Given a zero-memory one-to-one general transformation y=T][x]
X = px (%) y=Tlx]—>py(I1x]) = py(y)

Cy(x)= _[_xoo px(u) du Cy(y)= J._yoo py (1) du

Cy(x) =Cy(y) = x=T'[yl=C;(Cy(y))




Feature Normalization (II)

% CDF-matching for feature normalization

* A predefined Cy(x) is selected (usually Gaussian)

* For both training and test, features are transformed to match the
reference distribution using an estimate of C,(y)

* Can be viewed as an extension of CMVN

% Implementation details

* CDF-matching is applied in the cepstrum domain in a feature
transformation scheme

* Each cepstral coefficient is transformed independently to match a
Gaussian reference distribution




Feature Normalization (I11)
% Ecdf Algorithm:

* Temporal buffer for a given distorted features

Yt :{y_T,...,yt’...,yT}

* Order statistics of data
Yo =<Yoo = S Y S Yora

* Asymptotically unbiased point estimation of the CDF

& _ 1A _ -1 r(yt)_0-5
X =G, (C(yt))—Cx( S j

* Estimation of the transformed value of the distorted feature

C(y(r))z—Jr'1 r=1---,2T +1




Feature Normalization (IV)




Experimental set-up (I)

% Database end-pointing

* Noisy TI—di%its and SpeechDat Car databases have been
automatically end-pointed

* SND algorithm is used on clean speech (channel 0) utterances
* 200ms of silence have been added at the end-points

<+ Acoustic features
* Standard front-end: 12 MFCC + logE

* Delta and acceleration coefficients are appended at the recognizer
with regression lengths of 7 and 11 frames respectively

% Acoustic modeling
* One 16 emitting states left-to-right continuous HMM per digit
* 3 Gaussian mixture per state for AURORA 3
* 20 Gaussian mixture per state for AURORA 2




Experimental set-up (1)

% Batch implementation

* Using all the features of a given input utterance to perform the
normalization

% Segmental implementation

* Non-stationary noise
* Using a short temporal window around the frame to be normalized

* 121 frames of temporal window




Experimental Results (1)

% Results with Batch implementation
* Comparative results over the previous system (ICSLP’02)

Aurora 2 Relative Improvement
— [SetA [setB [setC overal |
Multi | 16,47%| 2179%| 20,70%| 19,44%
30,46%| 30,59%| 28,78%| 30,18%
23,46%| 26,19%| 24,74%| 24,81%

| |Finnish_[Spanish |German |Danish [Average

® Spectral Subtraction =~ ----- Wiener filtering
® Quantile based VAD  -—-- LTSD VAD
® Histogram Equalization ----- ECDF




* Comparative results over AFE

Aurora 2 Word Error Rate
| IsetA [setB  [setc  [overall |
Multi | 6,16% 7.27% 6,52%
12,83%| 12,07%| 13,63%| 12,69%
9.49% 9,28%| 10,45% 9,60%

Aurora 2 Relative Improvement
SetA [SetB [setC [overal

859%| -421%| -3.86%| -5,89°
50%

I!I

lean "4,46%)|_-13,54%
-9,72%

Aurora 3 Word Error Rate

Finnish | Spanish | German | Danish | Average
Well (x40%) 414%]  313%| 437%] 6.01%] 4,41%
Mid (x35%) | 10.60%| 643%| 10,10%| 14.31%| 10,36%
High (x25%) | 12.69%| 10,20%] 8,93%| 21.07%| 13,22%
8,54%| 6,05%| 7,52%| 12,68%| 8,70%

Aurora 3 Relative Improvement
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| [Finnish _[Spanish |German [Danish |Average |
Well (x40%) 6,85%| 10,63%| 9.35%| 5,24%

Mid (x35% 44 44%| -576%| -10,26%| 22.69%| 12,78%
High (x25% 523%| -20,71%]| -2,06%| -3,23%| -5,19%)

1451%| -4,45%| 0,15%| 10,87%| 5.27%




% Segmental Implementation

Aurora 2 Word Error Rate

| setA  |setB |setc  |overall |
MUl | 6.33%] 655%| 751%] 665%

Aurora 2 Relative Improvement

 [SetA [SetB [setC [Overal _
Multi | -12,68%| -7.21%| -887%| -9.73%
-20,73%] -10,86%| -8,99%| -14,43%

|| Finnish | Spanish | German | Danish | Average
11.27%] 16.86%| 11,34%
13.25%| 8.99%| 10,78%| 20,44%] 13,37%)

| [Finnish |Spanish [German [Danish |Average |
Well (x40%) -5,88%| 1,49%| -4,09%| -0,75%] -2,31%)
44.44%| -8,72%| -23,03%] 8,91%| 5,40%




Conclusions

% Feature extraction algorithm based on the combination of
spectral noise reduction and nonlinear features
normalization

% New VAD based on Long Term spectral envelope
* Improve the noise estimation
* Frame dropping
* Better discrimination speech/noise

% More computational efficiency of the feature normalization
algorithm

% Segmental version of the feature normalization algorithm
* Performance is only slightly worse

% Results presented for AURORA 2 and AURORA 3
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