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Abstract. A new Bispectra Analysis application is presented is this pa-
per. A set of bispectrum estimators for robust and effective voice activity
detection (VAD) algorithm are proposed for improving speech recogni-
tion performance in noisy environments. The approach is based on fil-
tering the input channel to avoid high energy noisy components and
then the determination of the speech/non-speech bispectra by means of
third order auto-cumulants. This algorithm differs from many others in
the way the decision rule is formulated (detection tests) and the do-
main used in this approach. Clear improvements in speech/non-speech
discrimination accuracy demonstrate the effectiveness of the proposed
VAD. It is shown that application of statistical detection test leads to
a better separation of the speech and noise distributions, thus allowing
a more effective discrimination and a tradeoff between complexity and
performance. The algorithm also incorporates a previous noise reduction
block improving the accuracy in detecting speech and non-speech. The
experimental analysis carried out on the AURORA databases and tasks
provides an extensive performance evaluation together with an exhaus-
tive comparison to the standard VADs such as ITU G.729, GSM AMR
and ETSI AFE for distributed speech recognition (DSR), and other re-
cently reported VADs.

1 Introduction

Speech/non-speech detection is an unsolved problem in speech processing and
affects numerous applications including robust speech recognition [1], discon-
tinuous transmission [2, 3], real-time speech transmission on the Internet [4] or
combined noise reduction and echo cancellation schemes in the context of tele-
phony [5]. The speech/non-speech classification task is not as trivial as it ap-
pears, and most of the VAD algorithms fail when the level of background noise
increases. During the last decade, numerous researchers have developed different
strategies for detecting speech on a noisy signal [6, 7] and have evaluated the
influence of the VAD effectiveness on the performance of speech processing sys-
tems [8]. Most of them have focussed on the development of robust algorithms
with special attention on the derivation and study of noise robust features and
decision rules [9, 10, 11]. The different approaches include those based on energy
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thresholds [9], pitch detection [12], spectrum analysis [11], zero-crossing rate [3],
periodicity measure [13], higher order statistics in the LPC residual domain [14]
or combinations of different features [3, 2].

This paper explores a new alternative towards improving speech detection
robustness in adverse environments and the performance of speech recognition
systems. The proposed VAD proposes a noise reduction block that precedes
the VAD, and uses Bispectra of third order cumulants to formulate a robust
decision rule. The rest of the paper is organized as follows. Section 2 reviews
the theoretical background on Bispectra analysis and shows the proposed signal
model. Section 3 analyzes the statistical tests used in this aproach and compare
the speech/non-speech distributions for our decision function based on bispectra
and when noise reduction is optionally applied (see section 4). Section 5 describes
the experimental framework considered for the evaluation of the proposed end-
point detection algorithm. Finally, section 6 summarizes the conclusions of this
work.

2 Model Assumptions

Let {x(t)} denote the discrete time measurements at the sensor. Consider the
set of stochastic variables yk, k = 0, ±1 . . . ± M obtained from the shift of the
input signal {x(t)}:

yk(t) = x(t + k · τ) (1)

where k · τ is the differential delay (or advance) between the samples. This
provides a new set of 2 · m + 1 variables by selecting n = 1 . . .N samples of the
input signal. It can be represented using the associated Toeplitz matrix:

Tx(t0) =

⎛
⎜⎜⎝

y−M (t0) . . . y−m(tN )
y−M+1(t0) . . . y−M+1(tN )

. . . . . . . . .
yM (t0) . . . yM (tN )

⎞
⎟⎟⎠ (2)

Using this model the speech-non speech detection can be described by using two
essential hypothesis(re-ordering indexes):

Ho =

⎛
⎜⎜⎝

y0 = n0
y±1 = n±1

. . .
y±M = n±M

⎞
⎟⎟⎠ (3)

H1 =

⎛
⎜⎜⎝

y0 = s0 + n0
y±1 = s±1 + n±1

. . .
y±M = s±M + n±M

⎞
⎟⎟⎠ (4)

where sk’s/nk’s are the speech (see section /refsec:speech) /non-speech (any
kind of additive background noise i.e. gaussian) signals, related themselves with
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some differential parameter. All the process involved are assumed to be jointly
stationary and zero-mean. Consider the third order cumulant function Cykyl

defined as:
Cykyl

≡ E[y0ykyl] (5)

and the two-dimensional discrete Fourier transform (DFT) of Cykyl
, the bispec-

trum function:

Cykyl
(ω1, ω2) =

∞∑
k=−∞

∞∑
l=−∞

Cykyl
· exp(−j(ω1k + ω2l))) (6)

2.1 Bispectrum Estimators

The set of estimators used in the statistical tests of section 3 are described in
the following1.

Indirect Methods: Sampling the equation 6 and assuming a finite number of
samples, the “indirect” bispectrum estimator can be written as:

Ĉykyl
(n, m) =

M∑
k=−M

M∑
l=−M

Cykyl
· w(k, l) · exp(−j(ωnk + ωml)) (7)

where ωn,m = 2π
M (n, m) with n, m = −M, . . . , M are the sampling frequen-

cies, w(k, l) is the window function (to get smooth estimates [15]) and Cykyl
=

1
N

∑N−1
i=0 y0(ti)yk(ti)yl(ti) = 1

N y0ykyl|t0 . Under the assumption that the bis-
pectrum Cykyl

is sufficiently smooth, the smoothed estimate is known to be
consistent, with variance given by:

var
(
Ĉykyl

(n, m)
)

=
1
N

Sy0Syk
Syl

∫ ∫
w(t, s)dtds (8)

where S is the power spectrum. That is, the data are segmented into possibly
overlapping records; biased or unbiased sample estimates of third-order cumu-
lants are computed for each record and then averaged across records; a lag win-
dow is applied to the estimated cumulants, and the bispectrum is obtained as
the 2−D FFT (fast fourier transform) of the windowed cumulant function. This
is the classical method for estimating the Bispectrum function which is known to
be consistent. An alternative approach is to perform the smoothing W (ωn, ωm)
in the frequency domain.

Direct Methods: The “direct” class of methods for higher-order spctrum
estimation are similar to the “averaged periodogram” or Welch method for
power spectrum estimation [16]. In this approach the data are segmented into

1 A deep discussion can be found in the “HOSA” software toolbox (Higher-Order
Spectral Analysis Toolbox User’s Guide) by Ananthram Swami, Jerry M. Mendel
and Chrysostomos L. (Max) Nikias. http://www.mathworks.com/hosa.html
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possibly overlapping records; the mean is removed from each record, and the
FFT computed; the bispectrum of the Kth record is computed as:

ĈK
ykyl

(n, m) = YK(m)YK(n)YK(m + n) (9)

where YK denotes the FFT of the Kth record. The bispectral estimates are aver-
aged across records, and an optional frequency-domain smoother is also applied.
Brillinger [17] pointed out that the higher order periodogram is asymptotically
“unbiased”, and “consistent” if neighbor frequency smoothing is applied.

Integrated Bispectrum: Various VAD algorithms used to date use an aver-
aged Bispectrum function to obtain the decision rule, i.e. in [18, 19]. The follow-
ing estimation based on Tugnait’s work [20] where the connection between the
cross-spectrum of a given signal x(t) and its square y(t) = x2(t) − E(x2(t)) and
the integrated bispectrum of the signal is established:

Syx(ω) =
1
2π

∫ π

−π

Cx(ω, ω̃)dω̃ =
+∞∑

k=−∞
E(y(t)x(t + k)) exp(jω)dω (10)

This implementation improves VAD efficiency and reduces computational effort
since just a single FFT has to be computed.

The estimation of the bispectrum is deep discussed in [21] and many others,
where conditions for consistency are given. The estimate is said to be (asymptot-
ically) consistent if the squared deviation goes to zero, as the number of samples
tends to infinity.

3 Detection Tests for Voice Activity

The decision of our algorithm is based on statistical tests including the Gen-
eralized Likelihood ratio tests (GLRT) [22] and the Central χ2-distributed test
statistic under HO [23]. We will call them GLRT and χ2 tests. The tests are
based on some asymptotic distributions and computer simulations in [24] show
that the χ2 tests require larger data sets to achieve a consistent theoretical
asymptotic distribution.

GRLT: Consider the complete domain in bispectrum frequency for 0 ≤ ωn,m ≤
2π and define P uniformly distributed points in this grid (m, n), called coarse
grid. Define the fine grid of L points as the L nearest frequency pairs to coarse
grid points. We have that 2M + 1 = P · L. If we reorder the components of
the set of L Bispectrum estimates Ĉ(nl, ml) where l = 1, . . . , L, on the fine
grid around the bifrequency pair into a L vector βml where m = 1, . . . P in-
dexes the coarse grid [22] and define P-vectors φi(β1i, . . . , βPi), i = 1, . . . L;
the generalized likelihood ratio test for the above discussed hypothesis testing
problem:

H0 : µ = µn against H1 : η ≡ µT σ−1µ > µT
n σ−1

n µn (11)
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where µ = 1/L
∑L

i=1 φi and σ = 1/L
∑L

i=1(φi − µ)(φi − µ)T are the maximum
likelihood gaussian estimates of vector C = (Cykyl

(m1, n1) . . .Cykyl
(mP , nP )) ,

leads to the activity voice detection if:

η > η0 (12)

where η0 is a constant determined by a certain significance level, i.e. the proba-
bility of false alarm. Note that:

1. We suppose independence between signal sk and additive noise nk bispec-
trum coeffcients2 thus:

µ = µn + µs; σ = σn + σs (13)

2. The right hand side of H1 hypothesis must be estimated in each frame
(it’s unknown a-priori). In our algorithm the approach is based on the
information in the previous non-speech detected intervals.

These assumptions are very restrictive, indeed, somehow the results shown
in the experimental section allow them. The statistic considered here η is dis-
tributed as a central F2P,2(L−P ) under the null hypothesis. Therefore a Neyman-
Pearson test can be designed for a significance level α.

χ2 Tests: In this section we consider the χ2
2L distributed test statistic[23]:

η =
∑
m,n

2M−1|Γykyl
(m, n)|2 (14)

where Γykyl
(m, n) = |Ĉykyl

(n,m)|
[Sy0(m)Syk

(n)Syl(m+n)]0.5 which is asymptotically distributed

as χ2
2L(0) where L denotes the number of points in interior of the principal

domain. The Neyman-Pearson test for a significant level (false-alarm probability)
α turns out to be:

H1 if η > ηα (15)

where ηα is determined from tables of the central χ2 distribution. Note that the
denominator of Γykyl

(m, n) is unknown a priori so they must be estimated as
the bispectrum function (that is calculate Ĉykyl

(n, m)). This requires a larger
data set as we mentioned above in this section.

4 Noise Reduction Block

Almost any VAD can be improved just placing a noise reduction block in the
data channel before it. The noise reduction block for high energy noisy peaks,
consists of four stages and was first developed in [25]:

i) Spectrum smoothing. The power spectrum is averaged over two consecutive
frames and two adjacent spectral bands.

2 Observe that now we do not assume that nk k = 0 . . . ± M are gaussian.
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ii) Noise estimation. The noise spectrum Ne(m, l) is updated by means of a
1st order IIR filter on the smoothed spectrum Xs(m, l), that is, Ne(m, l) =
λNe(m, l − 1) + (1 − λ)Xs(m, l) where λ = 0.99 and m= 0, 1, ..., NFFT/2.

iii) Wiener Filter (WF) design. First, the clean signal S(m, l) is estimated by
combining smoothing and spectral subtraction and then, the WF H(m, l) is
designed. The filter H(m, l) is smoothed in order to eliminate rapid changes
between neighbor frequencies that may often cause musical noise. Thus, the
variance of the residual noise is reduced and consequently, the robustness
when detecting non-speech is enhanced. The smoothing is performed by
truncating the impulse response of the corresponding causal FIR filter to
17 taps using a Hanning window. With this operation performed in the time
domain, the frequency response of the Wiener filter is smoothed and the
performance of the VAD is improved.

iv) Frequency domain filtering. The smoothed filter Hs is applied in the fre-
quency domain to obtain the de-noised spectrum Y (m, l) = Hs(m, l)X(m, l).

Fig. 1 shows the operation of the proposed VAD on an utterance of the Span-
ish SpeechDat-Car (SDC) database [26]. The phonetic transcription is: [“siete”,
“θinko”, “dos”, “uno”, “otSo”, “seis”]. Fig 1(b) shows the value of η versus
time. Observe how assuming η0 the initial value of the magnitude η over the
first frame (noise), we can achieve a good VAD decision. It is clearly shown how
the detection tests yield improved speech/non-speech discrimination of fricative
sounds by giving complementary information. The VAD performs an advanced
detection of beginnings and delayed detection of word endings which, in part,
makes a hang-over unnecessary. In Fig 2 we display the differences between noise
and voice in general and in figure we settle these differences in the evaluation of
η on speech and non-speech frames.

According to [25], using a noise reduction block previous to endpoint detection
together with a long-term measure of the noise parameters, reports important
benefits for detecting speech in noise since misclassification errors are signifi-
cantly reduced.
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Fig. 1. Operation of the VAD on an utterance of Spanish SDC database. (a) Evaluation
of η and VAD Decision. (b) Evaluation of the test hypothesis on an example utterance
of the Spanish SpeechDat-Car (SDC) database [26].
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Fig. 2. Different Features allowing voice activity detection. (a) Features of Voice
Speech Signal. (b) Features of non Speech Signal.

5 Experimental Framework

Several experiments are commonly conducted to evaluate the performance of
VAD algorithms. The analysis is mainly focussed on the determination of the
error probabilities or classification errors at different SNR levels [11] vs. our VAD
operation point, The work about the influence of the VAD decision on the per-
formance of speech processing systems [8] is on the way. Subjective performance
tests have also been considered for the evaluation of VADs working in combi-
nation with speech coders [27]. The experimental framework and the objective
performance tests conducted to evaluate the proposed algorithm are partially
showed for space reasons (we only show the results on AURORA-3 database)in
this section.

First of all, let’s compare the results we obtain using GLRT over the different
Bispectrum estimators. The results over the Spanish database shows similar
accuracy in voice activity detection depending on the parameters used in each
estimator (resolution or number of FFT points “NFTT”, different smoothing
windows, number of records, etc.) as is shown in 4. Of course the computational
effort of the cross-spectrum estimate, essential in on-line applications, is lower
than the other approaches.
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Fig. 4. Receiving Operating Curve in high noisy condition of Aurora 3 the Spanish-Car
Database using three bispectrum estimators

The ROC curves are frequently used to completely describe the VAD er-
ror rate. The AURORA subset of the original Spanish SpeechDat-Car (SDC)
database [26] was used in this analysis. This database contains 4914 record-
ings using close-talking and distant microphones from more than 160 speakers.
The files are categorized into three noisy conditions: quiet, low noisy and highly
noisy conditions, which represent different driving conditions with average SNR
values between 25dB, and 5dB. The non-speech hit rate (HR0) and the false
alarm rate (FAR0= 100-HR1) were determined in each noise condition being
the actual speech frames and actual speech pauses determined by hand-labelling
the database on the close-talking microphone. These noisy signals represent the
most probable application scenarios for telecommunication terminals (suburban
train, babble, car, exhibition hall, restaurant, street, airport and train station).

In table 1 shows the averaged ROC curves of the proposed VAD (BiSpectra
based-VAD) and other frequently referred algorithms [9, 10, 11, 6] for recordings
from the distant microphone in quiet, low and high noisy conditions. The working
points of the G.729, AMR and AFE VADs are also included. The results show im-
provements in detection accuracy over standard VADs and over a representative
set VAD algorithms [9, 10, 11, 6]. It can be concluded from these results that:

i) The working point of the G.729 VAD shifts to the right in the ROC space
with decreasing SNR.

ii) AMR1 works on a low false alarm rate point of the ROC space but exhibits
poor non-speech hit rate.

iii) AMR2 yields clear advantages over G.729 and AMR1 exhibiting important
reduction of the false alarm rate when compared to G.729 and increased
non-speech hit rate over AMR1.

iv) The VAD used in the AFE for noise estimation yields good non-speech detec-
tion accuracy but works on a high false alarm rate point on the ROC space.
It suffers from rapid performance degradation when the driving conditions
get noisier. On the other hand, the VAD used in the AFE for FD has been
planned to be conservative since it is only used in the DSR standard for that
purpose. Thus, it exhibits poor non-speech detection accuracy working on a
low false alarm rate point of the ROC space.

v) The proposed VAD also works with lower false alarm rate and higher non-
speech hit rate when compared to the Sohn’s [6], Woo’s [9], Li’s [10] and
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Marzinzik’s [11] algorithms in poor SNR scenarios. The BSVAD works ro-
bustly as noise level increases.

The benefits are especially important over G.729, which is used along with a
speech codec for discontinuous transmission, and over the Li’s algorithm, that
is based on an optimum linear filter for edge detection. The proposed VAD also
improves Marzinzik’s VAD that tracks the power spectral envelopes, and the
Sohn’s VAD, that formulates the decision rule by means of a statistical likelihood
ratio test.

It is worthwhile mentioning that the experiments described above yields a first
measure of the performance of the VAD. Other measures of VAD performance
that have been reported are the clipping errors [27]. These measures provide
valuable information about the performance of the VAD and can be used for
optimizing its operation. Our analysis does not distinguish between the frames
that are being classified and assesses the hit-rates and false alarm rates for a first
performance evaluation of the proposed VAD. On the other hand, the speech
recognition experiments conducted later on the AURORA databases will be a
direct measure of the quality of the VAD and the application it was designed for.
Clipping errors are evaluated indirectly by the speech recognition system since
there is a high probability of a deletion error to occur when part of the word is
lost after frame-dropping.

Performance of ASR systems working over wireless networks and noisy en-
vironments normally decreases and non-efficient speech/non-speech detection
appears to be an important degradation source [1]. Although the discrimina-
tion analysis or the ROC curves are effective to evaluate a given algorithm, this
section evaluates the VAD according to the goal for which it was developed by

Table 1. Average speech/non-speech hit rates for SNRs between 25dB and 5dB. Com-
parison of the proposed BSVAD to standard and recently reported VADs.

(%) G.729 AMR1 AMR2 AFE (WF) AFE (FD)
HR0 55.798 51.565 57.627 69.07 33.987
HR1 88.065 98.257 97.618 85.437 99.750
(%) Woo Li Marzinzik Sohn χ2/GLRT
HR0 62.17 57.03 51.21 66.200 66.520/68.048
HR1 94.53 88.323 94.273 88.614 85.192/90.536

Table 2. Average Word Accuracy (%) for the Spanish SDC databases and tasks

Base Woo Li Marzinzik Sohn G.729 AMR1 AMR2 AFE GLRT

Sp.

WM 92.94 95.35 91.82 94.29 96.07 88.62 94.65 95.67 95.28 96.28
MM 83.31 89.30 77.45 89.81 91.64 72.84 80.59 90.91 90.23 92.41
HM 51.55 83.64 78.52 79.43 84.03 65.50 62.41 85.77 77.53 86.70
Ave. 75.93 89.43 82.60 87.84 90.58 75.65 74.33 90.78 87.68 91.80
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assessing the influence of the VAD over the performance of a speech recognition
system. The reference framework considered for these experiments was the ETSI
AURORA project for DSR [28]. The recognizer is based on the HTK (Hidden
Markov Model Toolkit) software package [29].

Table 2 shows the recognition performance for the Spanish SDC databases
for the different training/test mismatch conditions (HM, high mismatch, MM:
medium mismatch and WM: well matched) when WF and FD are performed
on the base system [28]. Again, the VAD outperforms all the algorithms used
for reference, yielding relevant improvements in speech recognition. Note that
the SDC databases used in the AURORA 3 experiments have longer non-speech
periods than the AURORA 2 database and then, the effectiveness of the VAD
results more important for the speech recognition system. This fact can be clearly
shown when comparing the performance of the proposed VAD to Marzinzik’s
VAD. The word accuracy of both VADs is quite similar for the AURORA 2
task. However, the proposed VAD yields a significant performance improvement
over Marzinzik’s VAD for the SDC databases.

6 Conclusions

This paper presented a new VAD for improving speech detection robustness in
noisy environments. The approach is based on higher order Spectra Analysis
employing noise reduction techniques and order statistic filters for the formu-
lation of the decision rule. The VAD performs an advanced detection of begin-
nings and delayed detection of word endings which, in part, avoids having to
include additional hangover schemes. As a result, it leads to clear improvements
in speech/non-speech discrimination especially when the SNR drops. With this
and other innovations, the proposed algorithm outperformed G.729, AMR and
AFE standard VADs as well as recently reported approaches for endpoint de-
tection. We think that it also will improve the recognition rate when it was
considered as part of a complete speech recognition system.
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