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Abstract
In this paper, we propose a noise compensation method for ro-
bust speech recognition in DSR (Distributed Speech Recogni-
tion) systems based on histogram equalization and correlation
information. The objective of this method is to exploit the corre-
lation between components of the feature vector and the tempo-
ral correlation between consecutive frames of each component.
The recognition experiments, including results in the Aurora 2,
Aurora 3-Spanish and Aurora 3-Italian databases, demonstrate
that the use of this correlation information increases the recog-
nition accuracy.
Index Terms: Distributed Speech Recognition, noise compen-
sation, histogram equalization, correlation information

1. Introduction
At present, the voice communication systems tend to take pro-
gressively away from the analogical world toward the digital
world. Cellular phones and voice over IP (VoIP) services work
in this technology, where the analogical voice signal is digi-
tized before transmitting it. This digital processing allows to
implement more and more complex functions that meet new ne-
cessities, such as the automatic speech recognition (ASR). This
function can be very useful in those tasks which have tradition-
ally been accomplished via buttons, but it also opens the doors
to new services.

In practice, the implementation of an ASR system on every
client’s terminal can be unviable. The devices should have
enough storage and processing ability to perform the whole
ASR process, and this isn’t always possible. Distributed Speech
Recognition (DSR) appears to solve this problem, because the
ASR system is distributed between the client and server. In
this client-server architecture, the feature extraction of speech
is performed locally at the client, where they are compressed
and transmitted to a remote server, where the recognition sys-
tem is implemented.

The speech features used are based on the Mel Frequency
Cepstral Coefficients (MFCC) [1], which are the most com-
monly used parameters in currently available speech recogni-
tion systems. Their use achieves very high level of accuracy
in clean speech environment, but results decrease quickly if the
voice signal is affected by additive noise. This is because the
speech recognition systems are generally trained with speech
acquired under clean conditions and this doesn’t model speech
acquired under noisy conditions accurately.

Additive noise causes nonlinear distortion on coefficients
value space and we have to use some compensation method to
minimize this effect. In [2] and [3], MFCCs are compressed by
using linear prediction and in [4], [5] and [6] DCT and 2D DCT

is used. Histogram Equalization has been studied in [7] and [8],
in order to improve the robustness of speech recognition sys-
tems. Other approaches have also been proposed (see for exam-
ple [9]) that differ in the domain of application of HEQ. In [10],
the authors show that the information of interframe correlation
is very useful to improve the recognition.

In this paper, we propose a noise compensation method
based on histogram equalization. This equalization is based on
the hypothesis that, sorting the local coefficient values of the
current frame, the position of the current frame in this order
doesn’t change significantly when the speech signal is affected
by an additive noise. In other words, although noise changes all
individual coefficient values, their local order statistics remain
similar. This can be represented as a histogram, or cumulative
distribution function.

Moreover, in order to exploit existing correlation between
coefficients, it is logical to use a histogram-based vector quan-
tization to quantize together each pair of MFCC parameters, as
it is exposed in [8]. Additionally, another implicit information
exists in MFCC values and it can be used to improve the quanti-
zation. It is the temporal correlation, or interframe correlation,
between values of each coefficient. This is the main contribu-
tion of this paper. In a first step, we prove that this information
by itself improves the quantization, since it increases the recog-
nition accuracy. In a second step, we propose a method that uses
both correlations (temporal correlation and correlation between
coefficients), in order to improve the recognition performance
as much as possible using all the information available.

The layout of this paper is as follows: in Section 2 the
quantization method is described detailedly; Section 3 shows
and discuss the results obtained with the Aurora 2, Aurora 3-
Spanish and Aurora 3-Italian databases; finally, in Section 4 we
expose the conclusions.

2. Description of the Method
As it has been commented, the proposed equalization is based
on the hypothesis that, for each coefficient, the position that a
frame has inside a sorted list of the values of its local frames
isn’t significantly changed by the presence of noise. Graphi-
cally, it can be shown as a histogram or a cumulative distribu-
tion function created by sorting the values of N frames around
the current one. An example is shown in Figure 1, where we
suppose that we have N frames from a clean utterance, and the
same frames if some noise is added to the voice signal. Graphic
F1(x) represents the cumulative distribution function of the N
values from the clean utterance, and F2(x) match with the noisy
utterance. According to this, if we only can see noisy values and
the current frame has the value x2, the best estimation we can



Figure 1: Example that shows the fundamentals of the
histogram-based equalization.

do about the respective value in the clean utterance is x1.
Nevertheless, in practice we don’t have the cumulative dis-

tribution function of each clean utterance, we only have the
noisy one, so that we can’t estimate this value x1 directly. The
proposed solution is to use the same reference function in all
equalizations, that is also used to equalize clean training ut-
terances. As shown in Figure 1, if we equalize the value x1

from the clean training utterance with the reference histogram
Fref (x) we get x3, and this is the value used to train the ASR
system instead of x1. In the recognition stage, the value x2

from the noisy utterance is equalized with the same reference
histogram Fref (x), so that we also get the value x3.

As it has been commented, a histogram is created by order-
ing N local values of a MFCC coefficient and it is important
to choose properly this number N. With the used databases, we
have found empirically that the best results are reached with
N=150. This way, for the short utterances of the database (100-
200 frames) we use all frames of the utterance to create the his-
tograms, but for long utterances we split them into segments of
150 frames.

In order to calculate the reference histogram of each MFCC
coefficient, we use the information of the clean training ut-
terances of the respective database. We get all possible his-
tograms from these utterances according to the specified num-
ber of frames N, and the reference histogram of each coeffi-
cient is calculated averaging them. We use these reference his-
tograms to equalize the value of the coeficients of any utterance.
This equalization is applied to noisy test utterances for the noise
compensation, but it is also used with clean training utterances,
because the values used to train the ASR system have to be also
transformed into the range of values defined by the reference
histogram.

Before the transmision of the equalized values from the
client to the server of the DSR system, we need to apply a quan-
tization. We have to define some quantization levels with their
respective centroids, and the previously mentioned correlation
information is used here. Depending on the amount of infor-
mation used, we have proposed four different methods detailed
below.

2.1. 1D quantization

This is the most simple case, because each coefficient is quan-
tized individually and we don’t use any correlation information.
The objective is to calculate a reference value of the recogni-

Figure 2: Cloud of points for the pair C0/logE.

tion accuracy that can be used to compare with the results of
the following cases in order to check the increases introduced
by the correlation information. It’s very simple to calculate the
quantization levels by using the reference histogram. We take
equidistant points on the vertical scale and the correspondences
on the horizontal scale based on the histogram are the centroids.

2.2. 2D quantization

The quantization of the equalized MFCC coefficients is per-
formed in pairs to exploit the correlation between them. This
information is contained in the position of the centroids and the
clean training utterances are used to calculate them. For each
frame we take each pair of equalized coefficients obtaining a
two-dimensional point in the plane. By doing this for every
frame of all the utterances we get a cloud of points that pro-
vides information about the probability of the values and their
correlation. Figure 2 shows an example of this cloud of points
for a pair of coefficients. Then we use the LBG [11] algorithm
to calculate the centroids based on this probability distribution
with the values previously normalized.

2.3. 2DT quantization

The main idea is that the value of a frame and the value of the
next frame are connected. In this case the coefficients are taken
individually, but we use the value of the current frame and the
difference with the value of the previous frame in order to ex-
ploit the temporal correlation. As in 2D case, this information

Figure 3: Cloud of points for the pair C0/difference with the
previous frame.



is also contained in the position of the centroids. The first step
is to calculate the reference histogram of the difference between
frames, because these values must be also equalized. In order
to calculate the centroids we also get a cloud of points from the
clean training utterances and use the LBG algorithm. The dif-
ference is that in this case each point match with the equalized
value of a coefficient and the equalized value of the difference
with the previous frame. For that reason, the distribution of
these points provides information about temporal correlation.
Figure 3 shows an example of this cloud of points.

The DSR server receives each quantization number and
searches for the respective centroid in the look-up table, that
has two parts: the value of the coefficient and the value of the
difference. We need to reconstruct only the MFCC coefficients,
but we use the difference to refine the estimated value of the co-
efficient in the previous frame. If the centroid of the coefficient
C in the previous frame (t−1) is centt−1 = (coeft−1, dift−1)
and the centroid in the current frame t is centt = (coeft, dift),
we say that C(t) = coeft and the difference dift is used to re-
fine the estimated value of the coefficient in the previous frame
C(t− 1) = coeft−1. According to the current frame, the coef-
ficient in the previous frame must be C(t−1) = (coeft−dift),
so that we take an average of both estimated values:

C(t− 1) = (coeft−1 + (coeft − dift))/2

In the next frame (t+1), the value of the difference dift+1

will be used to refine the estimated value of the coefficient in
the current frame C(t) = coeft.

2.4. 4D quantization

We take the coefficients in pairs, as in 2D case, but the differ-
ence with the previous frame is also calculated for every coeffi-
cient, as in 2DT case, so we obtain points in a four-dimensional
space. We also use the clean training utterances to obtain the
information about temporal correlation and correlation between
coefficients, that is used to find the centroids. In quantization
phase we calculate the distance to every centroid and the small-
est one is taken. Empirically we have proved that, instead of us-
ing euclidean distance (each component of the distance vector
is squared), better results are obtained raising each component
to the power of four.

As in 2DT case, the value of the difference is used in the
DSR server to refine the estimated value of the coefficient in
the previous frame. The same equation as in 2DT case is used
for each of the two coefficients of each pair.

3. Results and Discussion
Digit recognition experiments were done with Aurora 2, Au-
rora 3 Spanish and Aurora 3 Italian databases. In the first case,
training was performed on clean data and testing was done with
the 10 different types of noise that are considered in this data-
base (grouped in sets A, B and C). In each type SNR from 20dB
to 0dB were tested. With Aurora 3 Spanish and Aurora 3 Ital-
ian databases, we used the training/test conditions from High-
Mismatch (HM) experiment.

The ETSI DSR standard Aurora front-end [12] was used
for the MFCC feature extraction, obtaining 14 coefficients to
be quantized (C1-C12, together with C0 and logarithmic frame
energy (logE)). For the recognition process the software HTK
3.2 has been used. It takes 13 coefficients (C0 is excluded),
together with their corresponding delta and acceleration coeffi-
cients. The final feature vector dimension is 39.

Table 1: Results with Aurora 2, detailed for sets A, B and C.

Table 2: Results with Aurora 2, detailed for the different SNR
values.

The computational complexity of the proposed method is
the same of that of the AFE in the 2D case and twice in the 4D
case for an equal number of centroids.

3.1. Experiments with Aurora 2

Table 1 lists the accuracy recognition results of HTK with Au-
rora 2 testing sets (A,B and C). The first row lists the results us-
ing original MFCCs, without any noise compensation method.
The second row lists the results using 1D quantization method
with 32 levels, and the performance is better because of the
histogram-based equalization. In each case the number of quan-
tization levels has been choosen to achieve the best results. For
2D quantization with 64 levels, in the third row, the recogni-
tion increases in comparison with 1D quantization because of
the use of the correlation information. The last three rows list
the most interesting results of this paper. For 2DT quantization
with 64 levels the results increase in comparison with 1D quan-
tization. This confirm that the use of the temporal correlation
information improve the recognition accuracy. Moreover, the
use of both correlations in 4D quantization improve the previ-
ous results. In addition to the recognition accuracy, the last col-
umn lists the ”Relative Improvement” that is the relative error
reduction over the MFCC baseline.

Table 2 lists the detailed results for all SNR values from
20dB to 0dB that is very interesting. We can see that in the first
three rows, with non-critical noise (20dB, 15 dB and 10dB),
the temporal correlation don’t cause significant improvements.
However, in the last row (under very poor SNR conditions)
the use of the temporal correlation information is very notable
and we get a considerable increase of recognition accuracy for
2DT and 4D quantizations in comparison with 1D quantiza-
tion. Therefore, the temporal correlation information used in
this method introduces robustness against noise.

3.2. Experiments with Aurora 3 Spanish

Table 3 lists the recognition accuracy results with this database
under HM conditions. As with Aurora 2, we show in different
rows the results with MFCC directly and 1D, 2D, 2DT, 4D-256
and 4D-512 quantizations. In this case, besides the recognition
accuracy (”Accuracy”), the table lists the percentage of digits



Table 3: Results with Aurora 3 Spanish.

Table 4: Results with Aurora 3 Italian.

correctly recognized (”%Correct”) that doesn’t take in mind the
number of insertions. As we can see for 2DT and 4D quanti-
zations the use of the temporal correlation information improve
the recognition accuracy. Also, we wish to emphasize that the
increase of results is quite larger for ”%Correct”. The insertions
problem is essentially caused by utterances with long inter-digit
silences. The great level of noise that are added in those mo-
ments leads the ASR system into error, because it finds digits
where there isn’t any. The last column lists the ”Relative Im-
provement”.

3.3. Experiments with Aurora 3 Italian

As we can see in Table 4, the increase in recognition accuracy
for 2DT and 4D quantizations is even higher than with the other
two databases. We deduce that temporal correlation is more
useful in this database than in the others and we confirm the
good performance of the method.

We don’t show the result with 4D-512 quantization because
with this database the recognition doesn’t increase if we use
more than 256 levels.

4. Conclusions
According to the results, we can assert that the proposed ob-
jective has been achieved. We have proved that the inclusion
of the temporal correlation information increases the recogni-
tion accuracy in a histogram-based noise compensation method.
Some secondary objectives have been achieved for this:

1. We have developed a histogram-based noise compensa-
tion method with 1D quantization and we have proved
that the recognition increases in comparison with the use
of the original MFCCs.

2. The previous method has been changed in order to in-
clude the correlation between coefficients in the 2D
quantization and we have proved that the performance
is better than in 1D quantization.

3. We have changed the 1D quantization method in order
to include the temporal correlation information. We have
proved that this information increases the recognition ac-
curacy.

4. Finally, both previous methods have been combined and
we have proved that this 4D quantization increases the
reconition accuracy.
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