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Abstract—An effective voice activity detection (VAD) algorithm
is proposed for improving speech recognition performance in
noisy environments. The approach is based on the determination
of the speech/nonspeech divergence by means of specialized order
statistics filters (OSFs) working on the subband log-energies.
This algorithm differs from many others in the way the decision
rule is formulated. Instead of making the decision based on the
current frame, it uses OSFs on the subband log-energies which
significantly reduces the error probability when discriminating
speech from nonspeech in a noisy signal. Clear improvements
in speech/nonspeech discrimination accuracy demonstrate the
effectiveness of the proposed VAD. It is shown that an increase of
the OSF order leads to a better separation of the speech and noise
distributions, thus allowing a more effective discrimination and
a tradeoff between complexity and performance. The algorithm
also incorporates a noise reduction block working in tandem with
the VAD and showed to further improve its accuracy. A previous
noise reduction block also improves the accuracy in detecting
speech and nonspeech. The experimental analysis carried out on
the AURORA databases and tasks provides an extensive perfor-
mance evaluation together with an exhaustive comparison to the
standard VADs such as ITU G.729, GSM AMR, and ETSI AFE for
distributed speech recognition (DSR), and other recently reported
VADs.

Index Terms—Noise reduction, robust speech recognition,
speech/nonspeech detection, subband order statistics filters.

1. INTRODUCTION

URRENTLY, there are technical barriers inhibiting speech
Crecognition systems from meeting the requirements of
modern applications. An important drawback affecting most
of the applications is the environmental noise and its harmful
effect on the system performance. Examples of such systems
are the new wireless communications voice services or digital
hearing aid devices.

Numerous techniques have been derived to palliate the
effect of noise on the system performance. Most of the noise
reduction algorithms often require an estimate of the noise
statistics by means of a precise voice activity detector (VAD).
Speech/nonspeech detection is an unsolved problem in speech
processing and affects numerous applications including robust
speech recognition [1], [2], discontinuous transmission [3], [4],
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real-time speech transmission on the Internet [5] or combined
noise reduction and echo cancellation schemes in the context
of telephony [6], [7]. The speech/nonspeech classification task
is not as trivial as it appears, and most of the VAD algorithms
fail when the level of background noise increases. During the
last decade, numerous researchers have developed different
strategies for detecting speech on a noisy signal [8]-[11] and
have evaluated the influence of the VAD effectiveness on the
performance of speech processing systems [12]. Most of them
have focussed on the development of robust algorithms with
special attention on the derivation and study of noise robust
features and decision rules [13]-[15]. The different approaches
include those based on energy thresholds [13], pitch detection
[16], spectrum analysis [15], zero-crossing rate [4], periodicity
measure [17], higher order statistics in the LPC residual domain
[18] or combinations of different features [3], [4], [19].

A representative set of the reported VAD methods formu-
lates the decision rule on a frame by frame basis using instan-
taneous measures of the divergence between speech and noise
[8], [13]. Recently, it has been shown that VAD robustness can
be improved by using long-term information about the speech
signal to formulate the decision rule [2], [20], [21]. An inter-
esting approach is the endpoint detection algorithm proposed
by Li [14], which is based on the optimal edge detector first es-
tablished by Canny [22], and uses optimal FIR filters for edge
detection. However, alternative approaches such as nonlinear
filters are still a non fully developed research topic for speech
end-point detection. Order statistic filters (OSFs) have been pro-
posed for many applications including edge detection in images
[23] and the optimal design of a class of OSFs called L-filters
has been studied [24]. The design of an optimal L-filter is not a
trivial task and simplified design procedures are normally used.
A first approach is the use of moving quasirange filters [25]
that are defined as the difference between symmetric rank-order
filters. Although these techniques were developed mainly for
image processing, several authors have studied them for ro-
bust speech/nonspeech discrimination. Cox [26] studied a non-
parametric rank-order statistical signal detection scheme. This
method is based on a four-channel filter bank decomposition
with the ranking operation being performed in the time domain
over 15-ms speech frames and involving samples of the four
channels. Although the algorithm performed well and showed
to be robust against noise, it suffers several drawbacks that need
to be addressed. First, it is computationally intensive since it re-
quires ranking a 400-sample data set every 15 ms. Second, the
decision procedure was only adequate for white noise and would
fail when other noises with a low-pass spectral profile such as
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car noise are considered. All these preliminary results motivated
further studies in this field and the exploration of its application
to related areas such as effective voice activity detection in noisy
environments.

On the other hand, noneffective speech/nonspeech detection
is an important source of performance degradation in automatic
speech recognition (ASR) systems. There are two main motiva-
tions for that.

i) Most of the speech enhancement algorithms make use of
the VAD module in order to estimate the statistics of noise.
Therefore, the effectiveness of the noise compensation al-
gorithms is strongly affected by the accuracy of the VAD.

ii) Frame-dropping (FD) is a frequently used technique in
speech recognition to reduce the number of insertion er-
rors. Since it is based on the VAD, speech frames in-
correctly labeled as silence causes unrecoverable deletion
errors, and silence frames incorrectly labeled as speech
could increase the insertion errors.

This paper explores a new alternative toward improving
speech detection robustness in adverse environments and the
performance of speech recognition systems. The proposed
VAD includes a noise reduction block that preceeds the VAD,
and uses OSFs to formulate a robust decision rule. The rest of
the paper is organized as follows. Section II reviews the theo-
retical background on OSFs and shows the proposed algorithm.
Section III analyzes the motivations for the proposed algorithm
by comparing the speech/nonspeech distributions for different
filter lengths and when noise reduction is optionally applied.
Section IV describes the experimental framework considered
for the evaluation of the proposed endpoint detection algorithm.
Finally, Section V summarizes the conclusions of this work.

II. ORDER STATISTICS FILTERS FOR ENDPOINT DETECTION

Nonlinear filters including OSFs [24], also known as L-fil-
ters, have been shown to be more effective and robust than linear
filters in many applications [27]-[30]. As an example, filters
based on order statistics have been successfully employed in
restoration of signals and images corrupted by additive noise.
The most common OSF is the median filter that is easy to im-
plement and exhibits good performance in removing impulsive
noise. The output of an L-order OSF is defined on the data set
{x(l = N),...,z(l),...,z(l + N)} by

L
y(l) = aixg (1)
=1

where L = 2N + 1 and x(;) represents the past data set rear-
ranged in ascending order, that is

{og) Sz <o Sy, ) )

Note that T(1) is the minimum, T(L) is the maximum, and
T(N+1) is the median. The weights a; define the OSF. As an
example, the median filter is a special type of L-filter whose
coefficients are a; = 1if : = N + 1 and a; = 0 otherwise.
This paper addresses the use of OSFs for endpoint detection.
The proposed approach is defined to operate on the subband
log-energies. Noise reduction is performed first and the VAD
decision is formulated on the de-noised signal. The noisy speech
signal x(n) is decomposed into 25-ms frames with a 10-ms
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Fig. 1. Block diagram of the proposed OSF-based VAD.
window shift. Let X (m,[) be the spectrum magnitude for the
mthband (m = 0,1,...,NFFT — 1) at frame [. The design of
the noise reduction block is based on Wiener filter (WF) theory
whereby the attenuation is function of the signal-to-noise ratio
(SNR) of the input signal. A block diagram of the system is
shown in Fig. 1. Note that the VAD decision is formulated in
terms of the de-noised signal, being the subband log-energies
processed by means of order statistics filters.

A. Noise Reduction Block

The noise reduction block consists of four stages.

i) Spectrum smoothing. The power spectrum is averaged
over two consecutive frames and two adjacent spectral
bands.

ii) Noise estimation. The noise spectrum N.(m,l) is
updated by means of a Ist order IIR filter on the
smoothed spectrum Xg(m,!l), that is, N.(m,l) =
AN (m,l — 1)+ (1 — X\)Xs(m,l) where A = 0.99 and
m=0,1,...,NFFT/2.

iii) WF design. First, the clean signal S(m, () is estimated by
combining smoothing and spectral subtraction:

S(m,l) =S (m,l —1)
+ (1 = y) max(X,(m,l) — Ne(m,1),0) (3)
where v = 0.98. Then, the WF H () is designed as

_ n(m,l)
where
S(m,l
n(m,l) = max [—Ne(gln,;)7nmin:| @)

and 7)nmin 1s selected so that the filter H yield a 20 dB
maximum attenuation. Note that S’(m, [) is the spectrum
of the cleaned speech signal, assumed to be zero at the
beginning of the process and needed for designing the WF
through (3) to (5). It is given by

S'(m,1) = H(m, )X (m,1). (6)

The filter H (1, 1) is smoothed in order to eliminate rapid
changes between neighbor frequencies that may often
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cause musical noise. Thus, the variance of the residual
noise is reduced and consequently, the robustness when
detecting nonspeech is enhanced. The smoothing is
performed by truncating the impulse response of the
corresponding causal FIR filter to 17 taps using a Han-
ning window. With this operation performed in the time
domain, the frequency response of the Wiener filter is
smoothed and the performance of the VAD is improved.

iv) Frequency domain filtering. The smoothed filter H is
applied in the frequency domain to obtain the de-noised
spectrum Y (m, 1) = Hs(m, )X (m,1).

B. OSF-Based Endpoint Detection

Once the input speech has been de-noised, the log-energies
for the [th frame, F(k, ), in K subbands (k = 0,1,..., K—1),
are computed by means of

K mg-+1—1
E(k,1) = log (m > |Y<m,l)|2>

m=my

{NFFT
mr =

e ka:0717...7K—1 7)

where an equally spaced subband assignment is used.

The noise suppression block performs noise reduction of
the block {X(m,l — N),X(m,l — N + 1),...,X(m,l —
1), X(m,l), X(m,l + 1),...,X(m,l + N)} before the sub-
band log-energies E(k, ) are computed. This is carried out as
follows. During the initialization process, the noise suppres-
sion algorithm is applied to the first 2N + 1 frames and, in
each iteration, the (I + N + 1)th frame is de-noised, so that
Y (m,l + N + 1) become available for the next iteration. It
is worthwhile clarifying that the noise spectrum estimated up
to the /th frame, which does not depend on future frames, is
used for denoising IV frames forward and that this estimate is
updated if the VAD decides the [th frame to be a noise-only
frame. The only assumption that is made here is that the noise
spectrum does not change significantly within an N-frame
neighborhood of the /th frame.

The algorithm uses two OSFs for the multiband quan-
tile (MBQ) SNR estimation. The implementation of both
OSFs is based on a sequence of 2N + 1 log-energy values
E(k,l—N),...,E(k,0),...,E(k,l+ N) around the frame
to be analyzed. The rth order statistics of this sequence,
E(y(k,1), is defined as the rth largest number in algebraic
order. A first OSF estimates the subband signal energy by
means of

Qp(k )=(1- f)E(s)(k7 1)+ fE(erl)(k?l) (3

where @, (k,1) is the p sampling quantile, s = |2pN| and f =
2pN — s.
Finally, the SNR in each subband is measured by

QSNR(k, 1) = Qy(k,1) — Ex(k) ©

where F (k) is the noise level in the kth band that needs to
be estimated. For the initialization of the algorithm, the first
N frames are assumed to be nonspeech frames and the noise
level in the kth band, En(k), is estimated as the median of the
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set {E(0,k),E(1,k),...,E(N —1,k)}. In order to track non-
stationary noisy environments, the noise references are updated
during nonspeech periods by means of a second OSF (a median
filter)

EN(]{}) = aEN(k) + (1 — OK)Q()_{)(k'J)

k=0,1,....,K—1 (10)

where Qo 5(k, ) is the output of the median filter and o« = 0.97
was experimentally selected. On the other hand, the sampling
quantile p = 0.9 is selected as a good estimation of the subband
spectral envelope.

The decision rule is then formulated in terms of the average
subband SNR

1 K-1

SNR(I) = 2 > QSNR(k,1). (11)
k=0

If the SNR is greater than a threshold 7, the current frame is
classified as speech, otherwise it is classified as nonspeech. The
algorithm for fixing the threshold is similar to that used in the
AMRI standard [3]. It is assumed that the system will work
at different noisy conditions and that an optimal threshold can
be determined for the system working in the cleanest (1) and
noisiest conditions (7). Thus, the threshold is adaptive to the
measured full-band noise energy F

7o E < Eo
n:{ﬁ(E—Eo)—l—no Ey<ELE; (12)
m FEi < E

thus enabling the VAD selecting the optimum working point for
different SNR conditions. Note that, the threshold is linearly
decreased as the noise level is increased between (Ey, 7)) and
(E1,m1) which represent optimum thresholds for the cleanest
and noisiest conditions defined by the noise energies E, and
F4, respectively. The sensitivity of the proposed VAD to the
adaptive threshold update is not an important issue for several
reasons: i) the use of an adaptable threshold is only meant for
improving the performance of the VAD in low noise conditions.
Increasing the detection threshold when the noise level is low
helps to better identify nonspeech periods without damaging
the performance of the VAD under high-noise conditions, ii) in
order to reduce the sensitivity of the VAD to the noise level,
the threshold is bounded to be linear between 0 and 1 in a pre-
determined interval of noise energy values, and iii) its use has
reported benefits but it is not the key for the high performance
achieved by the proposed VAD. Moreover, the experiments con-
ducted on up to five different databases lead to high levels of
performance maintained for all the noises and SNR conditions.

The proposed algorithm takes advantage of the noise reduc-
tion block for improving its robustness against the background
noise. It is worth clarifying here how the convergence of the
feedback loop shown in Fig. 1 has been guaranteed. The solution
adopted has been to assume that each utterance of the database
contains a noise-only period at the beginning of the sentence for
the initialization of the feedback. If the utterance does not start
with a nonspeech period the algorithm could fail at the begin-
ning to evaluate the noise spectrum and the detection afterwards
could be totally erroneous. However, reported VAD algorithms
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Fig. 2. Operation of the VAD on an utterance of Spanish SDC database.

(a) SNR and VAD Decision. (b) Subband SNRs.

need an estimation of the noise parameters and normally make
these assumptions for their initialization. After the initialization,
an incorrect estimation of the noise statistics when the VAD fails
is a common problem to most of the VADs and needs to be ad-
dressed. The results presented in the next sections will show the
effectiveness of the proposed VAD that is free of convergence
problems.

On the other hand, the performance improvements are only
damaged by the N-frame delay that is required for the operation
of the VAD. This fact can be an implementation obstacle for
several applications, but for others, such as speech recognition,
the benefits in robustness will justify its use as it will be shown
in the next sections.

Fig. 2 shows the operation of the proposed VAD on an
utterance of the Spanish SpeechDat-Car (SDC) database [31].
The phonetic transcription is [“siete”, “f#inko”, “dos”, “uno”,
“otSo0”, “seis”]. For this example, K = 2 subbands were used
while N = 8. The optimal selection of these parameters will
be studied later in this paper. It is clearly shown how the SNR
in the upper and lower band yields improved speech/nonspeech
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Fig. 3. Sampling quantile variance for N = 8.
discrimination of fricative sounds by giving complementary
information. The VAD performs an advanced detection of
beginnings and delayed detection of word endings which, in
part, makes a hang-over unnecessary.

C. OSF Selection

The selection of the OSFs used below can be justified as fol-
lows. Let X1, Xo,..., Xon41 be a set of uniformly distributed
random variables with probability distribution function (pdf)
f(z). From the asymptotic theory for order statistics [32], the
variance of the rth order statistic X,y defined by

o_%((r) = / (z - ur)zfX(r) (z)dx (13)

J —oo

can be approximated for N sufficiently large by means of

sz _ pl-p)
Yo = ()

where 4, is the mean of the rth order statistics, fx,,, () is the
pdf of the ordered variable X,y and F~*(p) is the quantile func-
tion evaluated at p.

Fig. 3 shows the variance of the p sampling quantiles for a
set of uniformly distributed random variables with zero mean
and unity variance Gaussian pdf. The variance reaches the min-
imum value for p = 0.5, that is, the median is the minimum
variance order statistic. In this way, the median filter used for
the estimation of the noise level in each subband provides a ro-
bust estimation of the noise statistics with the minimal variance.
On the other hand, for the purpose of detecting speech in noise,
a higher quantile is needed. The maximum X3y 1) could be
a candidate but its performance is far from being optimal be-
cause of its high variance as shown in Fig. 3, which normally
leads to high false alarm rates. Then, a good compromise be-
tween detectability of speech in noise and low false alarm rates
is to select a reduced variance quantile like the p = 0.9 sam-
pling quantile. That is the reason for the selection of (g 5 and
Q.9 in the proposed VAD.

(14)

III. SPEECH/NON-SPEECH DISTRIBUTIONS

In order to clarify the motivations for the algorithm proposed,
the distributions of the SNR defined by (11) were studied as
a function of the OSF length. A hand-labeled version of the
Spanish SDC database [31] was used in the analysis. This
database contains recordings from close-talking and distant mi-
crophones at different driving conditions: a) stopped car, motor
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Fig. 4. Speech/nonspeech distributions and error probabilities of the optimum
Bayes classifier for N = 1, 3,5, and 8.

running, b) town traffic, low speed, rough road, and c) high
speed, good road. The most unfavorable noise environment
(high speed, good road and distant microphone) with an average
SNR of about 5 dB was selected for the experiments. Thus,
the V-order SNR was measured during speech and nonspeech
periods, and the histogram and probability distributions were
built. Fig. 4 shows the distributions of speech and noise for
N = 1,3,5, and 8. When the length of the OSFs increases,
the noise variance decreases and the speech distribution is
shifted to the right being more separated from the nonspeech
distribution. Thus, the distributions of speech and nonspeech
are less overlapped and consequently, the error probabilities
are reduced. As a result, it is clearly shown that the speech
and noise distributions are better discriminated when more
log-energy observations are considered, thus increasing the
VAD robustness against environmental noises.

The reduction of the distribution overlap yields improvements
in speech/pause discrimination. This fact can be shown by cal-
culating the misclassification errors of speech and noise for an
optimal Bayes classifier. Note that Fig. 4 also shows the areas
representing the probabilities of incorrectly detecting speech
and nonspeech and the optimal decision threshold. Fig. 5(a)
shows the independent decision errors for speech and nonspeech
when the noise reduction block is optionally applied. The speech
detection error is clearly reduced when increasing the length of
the window while the increased robustness is only damaged by
a moderate increase in the nonspeech detection error. These im-
provements are achieved by reducing the overlap between the
distributions when N is increased as shown in Fig. 4. Increasing
the length of the window is beneficial in high noise environ-
ments since the VAD introduces an artificial “hang-over” period
which reduces front and rear-end clipping errors. This saving
period is the reason for the increase of the nonspeech detection
error shown in Fig. 5(a). On the other hand, if no noise reduc-
tion is performed, the speech detection error is reduced from
25% to 10% when the order of the VAD is increased from 1 to 8
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Fig.5. Probability of error as a function of N. (a) Speech and nonspeech errors.
(b) Total classification error of speech and nonspeech.

frames. Further reductions of the speech detection error ranging
from 20% to 9% are achieved if denoising is considered prior
to OSF-based endpoint detection. As as result, if the noise re-
duction block is considered, the speech classification errors are
reduced, thus increasing the VAD robustness against noise.
Fig. 5(b) shows the total error defined as the average of
speech and nonspeech errors weighted by the a priori speech
and nonspeech probabilities. The total error is reduced with the
increasing length of the OSFs and exhibits a minimum value
for a fixed order. If no noise reduction algorithm is applied
before endpoint detection, the minimum error is 11.39% for
N = 7 while the minimum error is 10.01% for N = 5 if noise
reduction is performed. Thus, the delay of the algorithm is
reduced by incorporating a preceeding noise reduction stage
as described in Section II.A. According to Fig. 5, the optimal
value of the order of the VAD would be N = 8. Therefore,
using a noise reduction block previous to endpoint detection
together with a long-term measure of the SNR using OSFs
reports important benefits for detecting speech in noise since
misclassification errors are significantly reduced.

IV. EXPERIMENTAL FRAMEWORK

Several experiments are commonly conducted to evaluate the
performance of VAD algorithms. The analysis is mainly fo-
cussed on the determination of the error probabilities or clas-
sification errors at different SNR levels [15], and the influence
of the VAD decision on the performance of speech processing
systems [12]. Subjective performance tests have also been con-
sidered for the evaluation of VADs working in combination with
speech coders [33]. The experimental framework and the objec-
tive performance tests conducted to evaluate the proposed algo-
rithm are described in this section.

A. Speech/Nonspeech Discrimination Analysis in Noise

First, the proposed VAD was evaluated in terms of the
ability to discriminate speech from nonspeech at different
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(a) Speech hit-rate (compared to standard VADs). (b) Nonspeech hit-rate
(compared to standard VADs).

SNRs. The original AURORA-2 database [34] was used. The
clean TIdigits database consisting of sequences of up to seven
connected digits spoken by American English talkers is used
as source speech, and a selection of eight different real-world
noises are artificially added at SNRs from 20 dB to —5 dB.
These noisy signals represent the most probable application
scenarios for telecommunication terminals (suburban train,
babble, car, exhibition hall, restaurant, street, airport and train
station). The clean TIdigits database was manually labeled for
reference and detection performance was assessed as a function
of the SNR in terms of the nonspeech hit-rate (HRO) and the
speech hit-rate (HR1) which are defined as the fraction of all
actual nonspeech or speech frames that are correctly detected
as nonspeech or speech frames, respectively. Fig. 6 compares
the performance of the proposed VAD to standard G.729, AMR
and AFE VADs for clean conditions and SNR levels ranging
from 20 to —5 dB. These results are averaged over the entire
set of noises. Note that results for the two VADs defined in the
AFE standard for distributed speech recognition (DSR) [35] for
noise spectrum estimation in Wiener filtering and nonspeech
FD are also provided.

The proposed VAD scheme (MBQW: multiband quantile
VAD with Wiener filtering) achieves the best compromise
among the different VADs tested. It yields good results in
detecting nonspeech periods and exhibits a very slow perfor-
mance degradation at unfavorable noise conditions in speech
detection. G.729 VAD suffers poor speech detection accuracy
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TABLE 1
AVERAGE SPEECH/NON-SPEECH HIT RATES FOR SNRs BETWEEN CLEAN
CONDITIONS AND —5 dB. COMPARISON OF THE PROPOSED MBQW VAD
TO STANDARD AND RECENTLY REPORTED VADs

G.729 | AMRI | AMR2 | AFE (WF) | AFE (FD)
HRO (%) 31.77 31.31 42.77 57.68 28.74
HR1 (%) 93.00 98.18 93.76 88.72 97.70

Woo Li Marzinzik Sohn MBQW
HRO (%) | 5540 | 57.03 52.69 43.66 49.27
HR1 (%) | 8341 | 83.65 93.04 94.46 97.64

with the increasing noise level while nonspeech detection is
good in clean conditions (85%) and poor (20%) in noisy con-
ditions. AMR1 has an extreme conservative behavior with high
speech detection accuracy for the whole range of SNR levels but
very poor nonspeech detection results at increasing noise levels.
Although AMR1 seems to be well suited for speech detection
at unfavorable noise conditions, its extremely conservative be-
havior results in only 10% of the actual nonspeech frames get-
ting correctly detected, making it of little use in practical speech
processing system. AMR?2 leads to considerable improvements
over G.729 and AMR1 yielding better nonspeech detection ac-
curacy, but still suffering fast degradation of the speech de-
tection ability at unfavorable noisy conditions. The VAD used
in the AFE standard for estimating the noise spectrum in the
Wiener filtering stage is based on the full energy band and yields
a poor speech detection performance with a fast decay of the
speech hit-rate at low SNR values. On the other hand, the VAD
used in the AFE for FD achieves a high accuracy in speech de-
tection but moderate results in nonspeech detection.

Table I summarizes these results and the benefits reported by
the proposed VAD in terms of the average speech/nonspeech
hit-rates (for all the noises and SNR conditions). Note that, re-
sults for recently reported VAD methods [8], [13]-[15] are also
included. The proposed VAD yields a 49.27% HRO average
value, while the G.729, AMR1, AMR2, WF, and FD AFE VADs
yield 31.77%, 31.31%, 42.77%, 57.68%, and 28.74%, respec-
tively. On the other hand, MBQW attains a 97.64% HR1 average
value in speech detection while G.729, AMR1, AMR2, WF
and FD AFE VADs provide 93.00%, 98.18%, 93.76%, 88.72%,
and 97.70%, respectively. Marzinzik’s VAD [15] tracking the
power spectral envelope dynamics is the one of the four non-
standard VADs that yields the best compromise between speech
and pause hit rates followed by the Sohn’s [8], Woo’s [13] and
Li’s [14] algorithms.

These results clearly demonstrate that there is no optimal
VAD for all the applications. Each VAD is developed and op-
timized for specific purposes. Hence, the evaluation has to be
conducted according to the specific goal of the VAD. Frequently,
VADs avoid loosing speech periods leading to an extremely con-
servative behavior in detecting speech pauses (for instance, the
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AMRI1 VAD). Thus, in order to correctly describe the VAD per-
formance, both parameters have to be considered. A more accu-
rate analysis of this compromise is conducted in the following
section with the receiver operating characteristic (ROC) curves.

B. Receiver Operating Characteristics Curves

The ROC curves are frequently used to completely describe
the VAD error rate. The AURORA subset of the original Spanish
SpeechDat-Car (SDC) database [31] was used in this analysis.
This database contains 4914 recordings using close-talking and
distant microphones from more than 160 speakers. The files are
categorized into three noisy conditions: quiet, low noisy and
highly noisy conditions, which represent different driving con-
ditions with average SNR values between 25 dB, and 5 dB. The
nonspeech hit rate (HRO) and the false alarm rate (FARO =
100 — HR1) were determined in each noise condition being the
actual speech frames and actual speech pauses determined by
hand-labeling the database on the close-talking microphone.

1) Selection of the Optimum Number of Subbands: Before
showing comparative results, the selection of the optimal
number of subbands is considered. Fig. 7 shows the influence
of the noise reduction block and the number of subbands on the
ROC curves. First, noise reduction is not performed to better
show the influence of the number of subbands. Increasing
the number of subbands improves the performance of the
proposed VAD by shifting the ROC curves in the ROC space.
For more than four subbands, the VAD reports no additional
improvements. This value yields the best trade-off between
computational cost and performance. On the other hand, the
noise reduction block included in the proposed MBQW VAD
reports an additional shift of the ROC curve as shown in Fig. 7.

2) Comparative Results: Fig. 8 shows the ROC curves of
the proposed VAD and other frequently referred algorithms [8],
[13]-[15] for recordings from the distant microphone in quiet,
low and high noisy conditions. The working points of the G.729,
AMR, and AFE VADs are also included. The results show im-
provements in detection accuracy over standard VADs and over
a representative set VAD algorithms [8], [13]-[15]. The fol-
lowing can be concluded from these results.

1) The working point of the G.729 VAD shifts to the right in
the ROC space with decreasing SNR.
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Fig. 8. ROC curves obtained for different subsets of the Spanish SDC database
at different driving conditions: (a) Quiet (stopped car, motor running, 12 dB
average SNR). (b) Low (town traffic, low speed, rough road, 9 dB average SNR).
(c) High (high speed, good road, 5 dB average SNR).

ii) AMRI works on a low false alarm rate point of the ROC
space but exhibits poor nonspeech hit rate.

iii) AMR?2 yields clear advantages over G.729 and AMRI ex-
hibiting important reduction of the false alarm rate when
compared to G.729 and increased nonspeech hit rate over
AMRI.

iv) The VAD used in the AFE for noise estimation yields
good nonspeech detection accuracy but works on a high
false alarm rate point on the ROC space. It suffers from
rapid performance degradation when the driving condi-
tions get noisier. On the other hand, the VAD used in the
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AFE for FD has been planned to be conservative since it
is only used in the DSR standard for that purpose. Thus,
it exhibits poor nonspeech detection accuracy working on
a low false alarm rate point of the ROC space.

v) The proposed VAD also works with lower false alarm
rate and higher nonspeech hit rate when compared to the
Sohn’s [8], Woo’s [13], Li’s [14], and Marzinzik’s [15]
algorithms.

Thus, among all the VAD examined, our VAD yields the
lowest false alarm rate for a fixed nonspeech hit rate and also,
the highest nonspeech hit rate for a given false alarm rate. The
benefits are especially important over G.729, which is used
along with a speech codec for discontinuous transmission, and
over the Li’s algorithm, that is based on an optimum linear
filter for edge detection. The proposed VAD also improves
Marzinzik’s VAD that tracks the power spectral envelopes, and
the Sohn’s VAD, that formulates the decision rule by means of
a statistical likelihood ratio test.

Fig. 8 shows the ability of this VAD to tune the decision
threshold by means of the algorithm described by (12). The
adaptive MBQW VAD defined by thresholds 79 = 2 dB for
Ey =30dB and n; = 1.4 dB for £/; = 50 dB enables working
near the optimal point of the ROC curve for different SNR con-
ditions ranging from 25 to 5 dB. On the other hand, it was found
experimentally that using K = 4 subbands significantly in-
creases the effectiveness of the proposed VAD. This fact is mo-
tivated by a shift up and to the left of the ROC curve when the
number of subbands is increased.

It is worthwhile mentioning that the experiments described
above yields a first measure of the performance of the VAD.
Other measures of VAD performance that have been reported
are the clipping errors [33]. These measures provide valuable
information about the performance of the VAD and can be used
for optimizing its operation. Our analysis does not distinguish
between the frames that are being classified and assesses the
hit-rates and false alarm rates for a first performance evaluation
of the proposed VAD. On the other hand, the speech recognition
experiments conducted later on the AURORA databases will be
a direct measure of the quality of the VAD and the application
it was designed for. Clipping errors are evaluated indirectly by
the speech recognition system since there is a high probability
of a deletion error to occur when part of the word is lost after
frame-dropping.

C. Influence of the VAD on an ASR System

Performance of ASR systems working over wireless net-
works and noisy environments normally decreases and nonef-
ficient speech/nonspeech detection appears to be an important
degradation source [1]. Although the discrimination analysis or
the ROC curves are effective to evaluate a given algorithm, this
section evaluates the VAD according to the goal for which it
was developed by assessing the influence of the VAD over the
performance of a speech recognition system.

The reference framework considered for these experiments
was the ETSI AURORA project for DSR [36]. The recognizer
is based on the HTK (Hidden Markov Model Toolkit) software
package [37]. The task consists of recognizing connected digits
which are modeled as whole word HMMs (Hidden Markov
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TABLE 1I
AVERAGE WORD ACCURACY (%) FOR THE AURORA 2 FOR CLEAN AND
MULTICONDITION TRAINING EXPERIMENTS RESULTS ARE AVERGED FOR ALL
THE NOISES AND SNRs RANGING FROM 20 1O 0 db

G.729 | AMRI AMR2 AFE MBQW
WF 66.19 | 74.97 83.37 81.57 84.12
WF+FD 7032 | 74.29 82.89 83.29 86.09

Woo Li Marzinzik | Sohn | Hand-labelled
WF 83.64 | 7743 84.02 83.89 84.69
WF+FD 81.09 | 82.11 85.23 83.80 86.86

Models) with the following parameters: 16 states per word,
simple left-to-right models, mixture of three Gaussians per
state (diagonal covariance matrix) while speech pause models
consist of three states with a mixture of six Gaussians per
state. The 39-parameter feature vector consists of 12 cepstral
coefficients (without the zero-order coefficient), the logarithmic
frame energy plus the corresponding delta and acceleration
coefficients. Two training modes are defined for the experi-
ments conducted on the AURORA-2 database: i) training on
clean data only (Clean Training), and ii) training on clean
and noisy data (multicondition training). For the AURORA-3
SpeechDat-Car databases, the so called well-matched (WM),
medium-mismatch (MM) and high-mismatch (HM) condi-
tions are used. These databases contain recordings from the
close-talking and distant microphones. In WM condition, both
close-talking and hands-free microphones are used for training
and testing. In MM condition, both training and testing are
performed using the hands-free microphone recordings. In
HM condition, training is done using close-talking microphone
material from all driving conditions while testing is done using
hands-free microphone material taken for low noise and high
noise driving conditions. Finally, recognition performance is
assessed in terms of the word accuracy (WAcc) that considers
deletion, substitution and insertion errors.

An enhanced feature extraction scheme incorporating a noise
reduction algorithm and nonspeech FD was built on the base
system [36]. The noise reduction algorithm has been imple-
mented as a single Wiener filtering stage as described in the
AFE standard [35] but without mel-scale warping. No other mis-
match reduction techniques already present in the AFE standard
have been considered since they are not affected by the VAD
decision and can mask the impact of the VAD precision on the
overall system performance.

Table II shows the recognition performance achieved by the
different VADs that were compared. These results are averaged
over the three test sets of the AURORA-2 recognition experi-
ments and SNRs between 20 and 0 dBs. Note that, for the recog-
nition experiments based on the AFE VADs, the same configu-
ration of the standard [35], which considers different VADs for
WF and FD, was used. The proposed VAD outperforms the stan-
dard G.729, AMR1, AMR2 and AFE VADs in both clean and
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TABLE 1II
AVERAGE WORD ACCURACY (%) FOR THE SDC DATABASES AND TASKS
Base | Woo Li Marzinzik | Sohn | G.729 | AMR1 | AMR2 | AFE | MBQW

WM 92.74 | 86.81 | 85.60 93.73 93.84 | 88.62 94.57 95.52 | 94.25 94.70
Finnish

MM 80.51 | 66.62 | 55.63 76.47 80.10 | 67.99 81.60 79.55 | 82.42 80.08

HM 40.53 | 62.54 | 58.34 68.37 75.34 | 65.80 77.14 80.21 56.89 83.67

Average 71.26 | 71.99 | 66.52 79.52 83.09 | 74.14 84.44 85.09 77.85 86.15

WM 92.94 | 95.35 | 91.82 94.29 96.07 | 88.62 94.65 95.67 | 95.28 96.79
Spanish

MM 83.31 | 89.30 | 77.45 89.81 91.64 | 72.84 80.59 90.91 90.23 91.85

HM 51.55 | 83.64 | 78.52 79.43 84.03 | 65.50 62.41 85.77 77.53 87.25

Average 75.93 | 89.43 | 82.60 87.84 90.58 | 75.65 74.33 90.78 | 87.68 91.96

WM 91.20 | 91.59 | 89.62 91.58 93.23 | 87.20 90.36 92.79 93.03 93.73
German

MM 81.04 | 80.28 | 70.87 83.67 83.97 | 68.52 78.48 83.87 | 85.43 87.40

HM 73.17 | 78.68 | 78.55 81.27 82.19 | 7248 66.23 81.77 | 83.16 83.49

Average 81.80 | 83.52 | 79.68 85.51 86.46 | 76.07 78.36 86.14 87.21 88.21
Average 76.33 | 81.65 | 76.27 84.29 86.71 | 75.29 79.04 87.34 | 84.25 88.77

multi condition training/testing experiments. When compared TABLE 1V

to recently reported VAD algorithms, the proposed one yields
better results being the one that is closer to the “ideal” hand-la-
beled speech recognition performance.

Table III shows the recognition performance for the
Finnish, Spanish, and German SDC databases for the dif-
ferent training/test mismatch conditions (HM, high mismatch,
MM: medium mismatch and WM: well matched) when WF
and FD are performed on the base system [36]. Again, the VAD
outperforms all the algorithms used for reference, yielding
relevant improvements in speech recognition. Note that the
SDC databases used in the AURORA 3 experiments have
longer nonspeech periods than the AURORA 2 database and
then, the effectiveness of the VAD results more important for
the speech recognition system. This fact can be clearly shown
when comparing the performance of the proposed VAD to
Marzinzik’s VAD. The word accuracy of both VADs is quite
similar for the AURORA 2 task. However, the proposed VAD
yields a significant performance improvement over Marzinzik’s
VAD for the SDC databases.

Finally, in order to compare the proposed method to the best
available results, the VADs of the full AFE standard [35] (in-
cluding both the noise estimation and FD VADs) were replaced
by the proposed MBQW VAD and the AURORA 3 experiments
were conducted again. Table IV shows the recognition results
in terms of the word error rates. A significant performance
improvement which is consistently maintained for all the
databases is observed. The improvements were particularly

‘WORD ERROR RATES (%) FOR THE AURORA 3 DATABASES. RESULTS FOR THE
FuLL AFE AND THE MODIFIED AFE WITH THE PROPOSED VAD BEING
USED FOR NOISE ESTIMATION AND FRAME DROPPING

Finnish | Spanish | German | Danish | Average

AFE

WM(x0.40) 3.96 3.39 4.87 6.02 4.56
MM(x0.35) 19.49 6.21 10.40 22.49 14.65
HM(x0.25) 14.77 9.23 8.70 20.39 13.27
Overall 12.10 5.84 7.76 15.38 10.27
AFE + MBQW

WM(x0.40) 4.00 3.09 4.75 6.15 4.50
MM(x0.35) 16.97 6.94 10.92 20.43 13.82
HM(x0.25) 11.03 7.22 8.46 17.03 10.94
Overall 10.40 5.51 7.84 13.88 9.38

important in high mismatch experiments. Furthermore, the
average word error rate is significantly reduced and yields an
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overall relative improvement of about 8.67%, when using the
proposed MBQW VAD instead of the original AFE. These
improvements are achieved by replacing the VADs of the AFE
by the proposed one, without altering any of the remaining
signal processing functions. Moreover, the significance level
of these improvements makes the probability that the proposed
MBQW VAD improve over AFE is over 99.999%.

As a conclusion, the performance of the VAD has a strong
impact in an ASR system. If speech pauses are very long and
dominant over speech periods, insertion errors are an important
error source. On the other hand, if pauses are short, maintaining
a high speech hit rate can be beneficial to reduce the number
of deletion errors since the insertion errors are not significant
in this context. The mismatch between training and test condi-
tions also affects the influence of the VAD on the overall system
performance and when the system suffers a high mismatch be-
tween training and test, an effective VAD can be more important
for increasing the performance of speech recognizers. This fact
is mainly motivated by the efficiency of the nonspeech FD stage
and the efficient application of the noise reduction algorithms.

V. CONCLUSION

This paper presented a new VAD for improving speech detec-
tion robustness in noisy environments. The approach is based on
an effective endpoint detection algorithm employing noise re-
duction techniques and order statistic filters for the formulation
of the decision rule. The VAD performs an advanced detection
of beginnings and delayed detection of word endings which, in
part, avoids having to include additional hangover schemes. As
aresult, it leads to clear improvements in speech/nonspeech dis-
crimination especially when the SNR drops. With this and other
innovations, the proposed algorithm outperformed G.729, AMR
and AFE standard VADs as well as recently reported approaches
for endpoint detection. It also improved the recognition rate
when it was considered as part of a complete speech recogni-
tion system. Moreover, when the proposed VAD replaced the
AFE VADs, a significant reduction of the word error rate was
obtained.
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