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A robust algorithm for voice activity detection (VAD) is presented.

It defines a likelihood ratio test (LRT) involving multiple and

independent observations of the bispectra. The proposed VAD

provides significant improvements in speech=pause discrimination

when compared to standardised and recently reported VADs.

Introduction: Voice activity detection (VAD) remains a challenging

problem in speech processing and affects a number of applications

including noise reduction for digital hearing aid devices, speech

recognition systems and speech coding for discontinuous speech

transmission (DTX) in mobile and IP networks. During the last

decade, researchers have paid attention to the study of discriminative

features for classification and noise robust decision rules. A highly

cited work is the VAD proposed by Sohn et al. [1], which is based on

the evaluation of a single feature vector likelihood ratio test (LRT) and

assumes a Gaussian model for the noisy signal DFT coefficients. The

proposed algorithm considers a generalised LRT involving multiple

and independent observations of the bispectra. The experimental

analysis shows significant improvements over standardised and

recently reported VAD methods.

Background: Let {x(t), t¼ 1, 2, . . . , N} be a sequence of random

variables with E{x(t)}¼ 0. The third-order cumulant is defined as

Cxk
xl¼E{x0xkxl} where xk denotes the observation vector at lag k

while its 2-D discrete Fourier transform (DFT) is the bispectrum

function:

Cxk xL
ðn;mÞ ¼

PþM

k¼�M

PþM

l¼�M

Cxk xl
e�jðonkþomlÞ n;m ¼ 0; 1; . . . ;M � 1

ð1Þ

where on¼ 2pn=M. Let us define P uniformly distributed points in this

grid (m, n), called a coarse grid, and form the L-point fine grid as the L

nearest frequency pairs to the coarse grid points [2]. If we reorder the

set of bispectrum estimates C(nl, nm) where l¼ 1, 2, . . . , L, in the fine

grid around the bifrequency pair, into a vector bm,l where m¼ 1, 2, . . . ,

P indexes the coarse grid and define P vectors fi¼ {b1,i, b2,i, . . . , bP,i},

i¼ 1, 2, . . . , L, we obtain after averaging over i, the set of P bispectrum

estimates {Y1, Y2, . . . , YP} which are an approximately uncorrelated

and unbiased complex Gausssian vector on the coarse grid [2]. Fig. 1

illustrates the differences that appear in the third-order cumulants and

bispectra of speech and noise and how they are used for speech=pause

discrimination.
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Fig. 1 Third-order cumulants and bispectra of speech and noise

Voice activity detection: Recently, a generalisation of the well known

VAD proposed by Sohn et al., called MO-LRT [3], has been

proposed. This method formulates the decision rule over a sliding

window of multiple and independent observation vectors. The benefits

of this approach are: (i) the optimal behaviour of the decision rule,

and (ii) a multiple observation vector for classification defines a

reduced variance LRT reporting clear improvements in robustness

against the acoustic noise present in the environment. In this Letter we

perform the test in the bispectrum domain where the Gaussian model

better represents the observation vectors. The so-called BLRT

(bispectrum LRT) is defined by means of an LRT defined over

2mþ 1 consecutive observation vectors {ŷl�m, . . . , ŷl�1, ŷl, ŷlþ1,

. . . , ŷl�m}:

‘l;m ¼
Plþm

k¼l�m

ln
Pyk jH1

ðŷk jH1Þ

Pyk jH0
ðŷk jH0Þ

ð2Þ

where l denotes the frame being classified as speech (H1) or non-speech

(H0). Note that ‘l,m can be computed recursively: ‘lþ1,m¼

‘l,m�F(l�m)þF(lþmþ 1), where:

FðkÞ ¼ ln
pyk jH1
ðŷk jH1Þ

pyk jH0
ðŷk jH0Þ

ð3Þ

Thus, if ‘l,m is greater than a fixed threshold Z, the current frame l is

classified as speech, otherwise it is classified as non-speech. In order to

evaluate the proposed BLRT ‘l,m on an incoming signal, an adequate

statistical model for the feature vectors in the presence and absence of

speech needs to be selected. The model selected is similar to that used

by Sohn et al. [1] that assumes the DFT coefficients of the clean speech

(Sj) and the noise (Nj) to be asymptotically independent Gaussian

random variables. In our algorithm, we work with the bispectrum

coefficients instead:

pyjH0
ðŷjH0Þ ¼

Qp�1

j¼0

1

plN ðjÞ
exp �

jYjj
2

lN ðjÞ

( )

pyjH1
ðŷjH1Þ ¼

Qp�1

j¼0

1

p½lN ðjÞ þ lSðjÞ�
exp �

jYjj
2

lN ðjÞ þ lSðjÞ

( ) ð4Þ

where Yj represent the noisy speech bispectrum coefficients, and lN( j)

and lS( j) denote the variances of the bispectrum function of Nj and Sj,

respectively. Thus, evaluating the log-LRT and averaging leads to:

FðkÞ ¼
1

P

Pp�1

j¼0

gk;jxk;j

1þ xk;j

� logð1þ xk;jÞ

" #

ð5Þ

where gk,j and xk,j are the a priori and a posteriori bispectrum SNRs,

which are estimated using the Ephraim and Malah minimum mean-

square error (MMSE) estimator. Note that, gk,j and xk,j have to be

computed m frames in advance. This fact imposes an m-frame delay on

the algorithm that, for several applications including robust speech

recognition, is not a serious implementation obstacle. It is worthwhile

clarifying that, unless the frames do not overlap and the signal and noise

are white, the successive observations may not be independent.

However, the independence assumption enables modelling the joint

probability distribution of the observations more easily [3] and it is

guaranteed by the bispectrum properties as shown in [4].

Results: The ROC curves are used in this Section for the evaluation

of the proposed VAD. These plots describe completely the VAD error

rate and show the trade-off between the speech and non-speech

error probabilities as the threshold Z varies. The Spanish SpeechDat-

Car database was used in the analysis. This database contains

recordings in a car environment from close-talking and hands-free

microphones. Utterances from the close-talking device with an aver-

age SNR of about 25 dB were labelled as speech or non-speech for

reference while the VAD was evaluated on the hands-free micro-

phone. Thus, the speech and non-speech hit rates (HR1, HR0) were

determined as a function of the decision threshold Z for each of the

VAD tested. Fig. 2 shows the ROC curves in the most unfavourable

conditions (high-speed, good road) with a 5 dB average SNR. It is

shown that increasing the number of observation vectors m improves

the performance of the proposed BLRT VAD. This is motivated by a

shift up and to the left of the ROC curve which enables working with

improved speech and non-speech hit rates. The best results are

obtained for m¼ 8 while increasing the number of observations

over this value reports no additional improvements. The proposed
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VAD outperforms the Sohn’s VAD [1], which assumes a single

observation in the decision rule together with an HMM-based

hangover mechanism, as well as standardised VADs such as G.729

and AMR [5, 6]. Fig. 3 compares the proposed BLRT VAD to our

previous work MO-LRT [3], which applies an LRT assuming a

Gaussian model for the noisy speech DFT coefficients, and recently

reported methods [1, 7–9]. Thus, the proposed VAD works with

improved speech=non-speech hit rates when compared to the most

relevant algorithms to date.

Fig. 2 Influence of number of feature vectors m on ROC curves

Fig. 3 ROC curves of proposed BLRT VAD and comparison to standard
and recently reported VADs

Conclusion: A new VAD for improving speech detection robustness

in noisy environments is proposed. The proposed BLRT VAD is

defined as a generalisation of an LRT that considers multiple and

independent observations of the bispectra. The proposed BLRT VAD

outperformed MO-LRT VAD, that uses a similar LRT model of the

DFT spectrum, Sohn’s VAD, that defines the LRT on single observa-

tion, and other methods including the standardised G.729, AMR and

AFE VADs, in addition to recently reported VADs.

Acknowledgments: This work has been funded by the European

Commission (HIWIRE, IST No. 507943) and the Spanish MEC

project TEC2004-03829=FEDER.

# IEE 2005 13 May 2005

Electronics Letters online no: 20051761

doi: 10.1049/el:20051761
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