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A NOTE ON I4-SURFACES WITH BOUNDARY 

R a f a e l  L S p e z  1 

In this note, we prove that  a constant mean curvature compact embedded surface with planar 
boundary, which is a graph near the boundary, over the compact planar domain determined 
by the boundary, is indeed a graph globally. 

1. I N T R O D U C T I O N  A N D  P R E L I M I N A R I E S  

The structure of the space of compact constant mean curvature surfaces with prescribed 

boundary is not known, even in the simplest case: when the boundary is a round circle with, 

for instance, unit  radius. Heinz [3] found that a necessary condition for existence in this 

situation is that  IH[ < 1. The only known examples, excluding the trivial minimal case, are 

the following: the two spherical caps with radius 1/IH I, which are the only umbilical ones 

and some non-embedded surfaces of genus bigger than two whose existence was proved by 

Kapouleas in [4]. 

We shall refer to connected compact constant mean curvature surfaces as H-surfaces, H the 

constant value of the mean curvature. We note that if H ~ 0, the surface lies in the convex 

hull of its boundary, and therefore, if the boundary is planar, then the surface is also planar. 

Hence we assume in this paper that  H ~ 0. 

When the surface is embedded, the Alexandrov reflection method is a powerful tool [1]. 

So, if the surface E is embedded with planar convex boundary and it is over the plane P 

containing the boundary, then E inherits all symmetries of its boundary: see [5] for the 

compact case and [8] for the non-compact one. Then, if the boundary 0E is a circle, the 

surface is a spherical cap or a Delaunay surface. 

1This paper has been partially supported by a DGICYT Grant No. PB94-0796 
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For this reason, it is important  to put  hypothesis to assure that the surface is over the plane 

P. For example, in [2] it is proved that  an embedded H-surface with convex planar boundary 

that  is in a halfspace near the boundary, is completely contained in this halfspace. Also, in 

[5] it has been proved that  if the surface does not intersect the outside of the boundary in 

the plane P,  then the surface is over P. 

In this paper, we give sufficient conditions to get an embedded H-surface in a halfspace, 

more precisely, we shall give conditions to be a graph. We state 

T H E O R E M .  Let E be an embedded H-surface with boundary aE a Jordan curve included 

in a plane P .  Let D C P be the domain bounded by BE in P .  I rE  A D = ~ and E is locally 

a graph over D around BE, then F. is a graph. 

The proof uses the Alexandrov reflection method with planes parallel to the plane P,  joined 

with a certain "balancing formula" for H-surfaces. A consequence of this theorem is the 

following result on embedded H-surfaces included in a halfspace, which is proved in [7]: 

C O R O L L A R Y  1. Let ~ be an embedded H-surface with boundary BE a Jordan curve 

included in a plane P.  Let D C P be the bounded domain by BE in P.  I f  ~ is included in 

one of the two halfspaces determined by P and it is locally a graph over D around BE, then 

is a graph. 

Finally, we get the result stated in the summary of this paper. 

C O R O L L A R Y  2. Let E be an embedded H-surface with boundary BE a Jordan curve 

included in a plane P.  Let D C P be the bounded domain by BE in P.  If  E is locally a graph 

over D around ~E~ then E is a graph. 

2. P R O O F  OF T H E  R E S U L T S  

To prove the Theorem, we will need a certain flux formula due to Rob Kusner which appears 

in [6]: 

B A L A N C I N G  F O R M U L A .  Let E be an embedded H-surface in 1t~ 3 with boundary a 

Jordan curve included in a plane P.  Then, if a E 1R 3, 

'" SoI o, oi.., 

where H > O, ~(s) is the interior conormal to E along BE, D is the bounded domain in P 

by BE and lID is the unit normal vector field to D, induced by the orientation of the cycle 

E U D when E is oriented by its mean curvature vector. 

Without  loss of generality, we assume that P is the plane P = (x = (xl, z:, xs) E L~3; x3 = 0} 

and E is included in /R 2 • [0, ~ )  in a neighbourhood of c0E. Let a be the vector (0, 0, 1). 
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We define the embedded and closed surface T = E U D and let W C J~t 3 be the bounded 

domain determined by T. We orient T to have H > 0 on E. If N is the Gauss map of E, 

then N points towards W. First, we prove that (N, a} < 0 along 0E. If u is the interior 

conormal of E along 0E, the balancing formula gives 

2H fD(~D,a)= fo (u(s),a}ds. 

Because (u(s),a) >__ 0 and H > 0, then r/D = a. Since~D points towards W and E is a 

graph near the boundary, then (N, a) < 0. Remark that  E is not tangent to D in any point 

p E 0E, because in this case, E and D have a common boundary arc near p, D is locally 

above E near p respect to N(p) = - a  and then the mean curvature of D should be bigger 

that  the mean curvature of E, in contradiction with H > 0. Then we have (N, a} < 0 along 

c~E. Therefore, the domain W, near D, lies above D, i.e., there is e > 0 such that  

w n (D • ( -~ ,  c)) = W n (D • (0, c)) ( ,) .  

To use the Alexandrov reflection method, we introduce notation. For any t E/R,  we denote 

Pt = {x3 = t}. If A C ]R 3, let A} be the reflection of A respect to Pt, i.e., 

Set 

A} = {(Xl, x2, z3) E L~3; (Xl, x2, 2~ - z3) e A}. 

At+ = {x E A;x3 > t} At- = {x C A;x~ < t} 

and A~+ = (At+)~, At- = (At-)~. If B is a subset of /R 3, we say that  A _> B is for 

x E A ,  y E B  w i t h x l = y l ,  x2=y2 ,  thenx3_>y3.  

Now let b < 0 such that  

~0-  u % c {x3 > ~} (**) 

and we consider the part of the solid cylinder below D given by X -- D • [b, 0]. Define a 

bounded domain Z in /R 3 by Z = W U X  and denote by ~ the boundary of Z. The set 

is an embedded closed surface and included in the union of the sets E with the piece of 

cylinder cgE • [b, 0] and the disc D • {b}. 

We orient ~ by the Gauss map N of E and since N points towards W then N points inside 

Z. Now we apply to the surface ~ the Alexandrov reflection principle by horizontal planes 

Pt coming down from above. Because ~ is compact, let t be a large positive number such 

that  Pt M ~ = 0. Translate Pt down until the first height to > 0 at which it first touches ~. 

Thus the plane Pro touches ~ in points of E and since E is embedded, for small 6 > 0 we 

have 

/t~to_~)+ >/t(to_~i )- and ~to-~)+ C Z. 
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Now we dec rea se t  to get the first t i m e t l  < to such tha t  * C Z but  ~tt§ ~ Z for t < tl.  

Then there exists a point  p E g~t + such tha t  the reflected point p* of p with respect to the 

plane Ptl is a touching point between f~t* + and ftti-. 

Let  us prove tha t  t l  > 0 is impossible. In this case, this implies that  the point  p lies in the 

surface E and according to the parts  of f~ we have three possibilities about  the point  p*: 

1. The  point  p* is an interior point of E. Then ft t)  and fiti- , around the point  p*, are 

domains of E and then, they are tangent at p*; moreover the Gauss maps of both 

surfaces point  towards Z and they agree at  p. Then the maximum principle [9] gets 

tha t  Ptl is a plane of symmetry of E (if p* E Ptl, we apply the boundary version of the 

maximum principle). But this is impossible, because tl is positive and the boundary  of 

E is below Ptl. 

2. The point  p* belongs to DE • [b, 0]. Since t l  is the t ime of the first contact and we come 

from above then p* E BE x {0} = cgE. In this case, the segment joining p with p* is 

included in Z N {x3 >_ 0}. But by (*) the piece of cylinder cgE x (0, e) does not  intersect 

the domain Z, getting a contradiction. 

3. The point p* belongs to D • {b}. This case is impossible by (**). 

Therefore tl = 0 and we can go reflecting the surface E until the height t = 0. As conclusion 

and since E is a locally a graph over c~E around the boundary, we have tha t  E0* is a graph 

over D, E~+ is included in D • [b, 0] and E does not intersect the outside of the domain D 

in the plane P.  Then by [5] the surface E is over P ,  i.e., E = E0+ and we conclude tha t  E 

is a graph over D. 

To prove the Corollary 2, the proof of the Theorem gives tha t  E is never tangent  to D along 

c~E. Then the surface E is transverse to P along cOE. Now the Theorem 2 in [2] gives tha t  

the surface does not  intersect D and we apply the Theorem. 

Acknowledgement. The author thanks to the referee for the suggestions in the  proof  of the  

Theorem. 
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