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Abstract. This paper proves that an embedded compact surface in the Euclidean space with constant
mean curvature H 6= 0 bounded by a circle of radius 1 and included in a slab of width 1=jHj is
a spherical cap. Also, we give partial answers to the problem when a surface with constant mean
curvature and planar boundary lies in one of the halfspaces determined by the plane containing the
boundary, exactly, when the surface is included in a slab.
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0. Introduction

A constant mean curvature surface immersed in Euclidean three-space R3 can be
viewed as a surface where the exterior pressure and the surface tension forces
are balanced. Until 1986, the only known examples of closed (compact without
boundary) constant mean curvature surfaces were the round spheres. Wente [17]
constructed examples of constant mean curvature tori which are non-embedded.
One year later, Kapouleas [10] did the same for genera bigger than 2. These results
activated in a remarkable way the research in this subject and gave their exact value
to the two principal theorems about closed constant mean curvature surfaces which
were known at that moment: the Hopf theorem, which asserts that the sphere is the
only example of genus zero [9] and the Alexandrov theorem, which says us that
the sphere is the only embedded example [1].

When the considered surface � is compact and with non-empty boundary @�,
and particulary if @� is a Jordan curve, the problem of existence has been studied
by many authors. The existence of small solutions is due to Hildebrandt [8] and
the search of a second solution was culminated by Brézis and Coron [5].

With respect to the study of the space of compact constant mean curvature
surfaces with prescribed boundary, we do not know its structure even in the simplest
case: when @� is a round circle with, for instance, unit radius. Heinz found that
a necessary condition for existence in this situation is that jHj � 1, where H is
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the mean curvature. The only known examples, excluding the trivial minimal case,
are the following: the two spherical caps with radius 1=jHj, which are the only
umbilical ones and some non-embedded surfaces of genus bigger than 2 whose
existence was showed by Kapouleas in [10].

The lack of examples and the analogy with the closed case allow us to believe
that the following statements are true.

CONJECTURE 1. An embedded compact surface with non-zero constant mean
curvature bounded by a circle is a spherical cap.

CONJECTURE 2. An immersed disc with non-zero constant mean curvature bound-
ed by a circle is a spherical cap.

Partial answers to Conjecture 1 have been given in [4] and [6]. With respect to
Conjecture 2, some progress was done by S. Montiel and the author in [13] and
about the study of constant mean curvature surfaces with small volume was done
in [14].

We shall consider a connected compact surface� and � : �! R
3 an immersion

of constant mean curvature H 6= 0 such that � takes @� diffeomorphically onto
�(@�). We will say in this situation that � is an H-surface with boundary �,
where � = �(@�) (we note that if H = 0, the surface lies in the convex hull of
its boundary and therefore, if the boundary is planar, the surface is also planar). If
there is no confusion, we identify � with �(�).

This paper is motived by a height estimate due to Meeks. In [15] he gets, using
the Alexandrov reflection method, the following estimate: if � is an embedded H-
surface with boundary contained in a plane P , it can rise at most 2=jHj above P ,
i.e. � is contained in a slab symmetric to P with width 4=jHj. We study embedded
H-surfaces included in an arbitrary slab, not necessarily parallel to the plane P .

Barbosa studied the case when the boundary is a circle and the surface �,
assumed only immersed, is included in a ball of radius 1=jHj and he showed,
without any further hypothesis, that the surface must be a spherical cap ([2]). Later
([3]) he established an extension of this result for the case in which the surface
is contained in a solid cylinder of radius 1=jHj. In both results, three or two
independent directions of the immersion are bounded. So it is natural to ask about
immersions with only one bounded direction, i.e. surfaces included in a slab. In
this direction we state.

‘The spherical caps are the only embedded H-surfaces with boundary a circle
of radius 1 and included in a slab of width 1=jHj.’
The width of a slab is the distance between the planes which define the slab.

As a consequence of the proof of this statement, we also get some results about
embedded H-surfaces with boundary a planar convex curve and on immersed H-
surfaces with boundary a circle and included in a slab of width 1=jHj parallel to
the boundary.
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1. The Main Theorem

An important ingredient is a result established by Koiso [11]. She proved that
an embedded H-surface with boundary a Jordan curve � contained in a plane P
which does not intersect P outside of the region bounded by �, it is included
in one of the two halfspaces determined by the plane P . Then the Alexandrov
reflection technique immediately proves that the surface inherits the symmetries of
its boundary. Hence, if � is a circle, � is a surface of revolution and, therefore, is a
spherical cap (by Delaunay’s classification of constant mean curvature surfaces of
revolution). Therefore, it is interesting to obtain natural geometric conditions that
forces an embedded H-surface to be contained in a halfspace. It is still an opened
question (see [4]) whether an embedded H-surface bounded by a plane convex
curve and contained in one halfspace defined by the plane containing the boundary,
has genus zero or not.

Another preliminary result in this paper is a kind of uniqueness for embedded
surfaces included in a right cylinder. Exactly, if 
 is a bounded domain included in
a plane P , it is classical that if there is a graph on 
 with constant mean curvature
and boundary @
, then there are no other graphs in 
 with the same boundary
and mean curvature ([7]). From the Alexandrov reflection method and the Koiso’s
result, it is easy to show that an embedded H-surface with boundary @
, and
included in the solid cylinder C orthogonal to P determined by 
, is a graph (a
detailed proof of this fact, together with several related results, can be viewed in
[12]).

In [14], using a flux formula, it is proved that if there is an H-graph G on 


and an embedded H-surface � included in C , with the same boundary @
, then
� = G.

Now we prove the main result of this paper.

THEOREM 1. Let� be an embeddedH-surface with boundary a circle� of radius
1. If � is included in a solid slab with width 1=jHj, then � is a spherical cap of
radius 1=jHj.

Remark. Among the two possible spherical caps, the only one contained in a
slab with width 1=jHj is the small spherical cap.

Proof. The proof is similar to Theorem 3.1 in [3]. For completeness, we shall
follow the analogous steps. We choose the normal vector field N of � to have
H > 0. We denote by S the slab containing the surface. Let v be a unit vector
parallel to S. Let Cv be the closed halfcylinder not bounded of radius 1=(2H) with
axis parallel to S, perpendicular to the vector v and @Cv � @S. The set Cv splits S
in two components. We suppose that v points towards the non-convex component
and we consider the direction of v as upward and the direction of�v as downward.
First of all, move Cv upward until it does not intersect �. This is possible since �
is a compact surface. Now, we move Cv downward until it touches � for the first
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time. In this position,� lies completely in the closed convex region of S belowCv .
We want to apply the Hopf maximun principle to compare Cv and � (see [16]).

LEMMA 2. There is no point p interior to � such that p belongs to Cv and � lies
below Cv .

Proof (of the lemma). Because � lies below Cv and p belongs to Cv \ �, then
Cv and � are tangent at p. This is true even when p 2 @Cv , because in this case,
the point p will also belong to the boundary of the slab S. Hence � will be tangent
to the boundary of the slab at p and, hence, will be tangent to Cv at p. To apply
the maximun principle, the unit normal vector fields of � and Cv must agree at p.
If they do, then Cv and � must intersect along an open set. By analyticity of the
solutions of the equation H = constant, we conclude that � must be a subset of
the halfcylinder Cv of radius 1=(2H), which is not possible. If the Gauss maps of
� and Cv do not agree at p, then they must be opposite. In this case, we consider
in � the Gauss map �N and then the mean curvature is negative, in contradiction
with the maximum principle. 2

LEMMA 3. Under the hypothesis of Theorem 1, there is no point p of @� such that
p belongs to the interior of Cv where � and Cv are tangent at p and assuming that
� lies below Cv .

Proof (of the lemma). This lemma can be proved in the same way as the previous
one, because the extra hypothesis guarantees that � and Cv are comparable as the
above lemma ([16]). 2

From both lemmas it follows that Cv touches � only at points of �. These points
are either points of @Cv or points of Cv where � and Cv are not tangent. If we
take all vectors v in the set of parallel vectors to S, we conclude that � lies in the
convex K determined by the sets Cv (we remark that Cv and C�v can intersect).
In this moment, we have two possibilities:

(A) The plane P is orthogonal to S. Let v be an orthogonal direction to P and
then, parallel to S. We consider the halfcylinders Cv and C�v . Then � lies
in the convex domain Kv determined by Cv and C�v in S. Because v is
orthogonal to P , by symmetry with respect to the plane P , the points of
contact betweenCv and C�v with � are the same. Thus,Cv and C�v intersect
too. Therefore Kv is included in a solid cylinder of radius 1=(2H) parallel to
Cv . As 1=(2H) < 1=H , Theorem 3.1 of [3] asserts that � is a spherical cap
and the theorem has been proved.

(B) If the planeP is not orthogonal toS and because� is a circle, the contact points
between Cv and C�v with � are opposite points in the circle �. Therefore, for
any parallel direction, we have two opposite points in �. Hence if we take all
parallel directions to S we have that � � @K . Let 
 be the disc bounded by �
in the plane P . Because � � K and K is a convex set, then (P �
)\� = ;.
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On the other hand, by [11], one knows that � \ 
 = ;. Thus, the surface is
included in one of the two halfspaces determined by P . Therefore, by [11], it
is a spherical cap. 2

Remark 1. In step (A), the hypothesis of embeddedness has not been used, i.e.
this part is true for immersed surfaces.

Remark 2. To use the result of Koiso, the hypothesis of embeddedness has been
used only at the end of step (B).

With these remarks, we have the following consequence:

COROLLARY 4. Let� be anH-surface with boundary a circle of radius 1 included
in a plane P . If the surface is included in a slab S of width 1=jHj, then in any next
cases the immersion describes a spherical cap:

(1) S is orthogonal to P .
(2) jHj � 1

2 .

Proof. (1) This is step (A) in the proof of Theorem 1 and the above
Remark 1.

(2) In this case, the convex set Kv in the proof of Theorem 1 is included in a
right cylinder orthogonal to S and with radius 1 + 1=(2jHj). Because jHj � 1

2

1 +
1

2jHj =
2jHj+ 1

2jHj � 2
2jHj =

1
jHj

and then this radius is less than 1=jHj. Now we can apply [3]. 2

2. Other Related Results

The proof of Theorem 1 also gives the following generalization when the boundary
� is not a circle.

COROLLARY 5. Let � be an H-surface in R3 with boundary a convex curve � in
a plane P . If � lies in a slab of width 1=jHj symmetric with respect to P , then the
surface is included in the solid cylinder determined by � and orthogonal to P . In
the case that � is embedded, then it is a graph.

Proof. If we repeat the proof of Theorem 1, we get, with the same notation, that
for any parallel direction v, the halfcylinders Cv touch at � in boundary points.
Moreover, since � is convex, for any point in � there is one direction v such that
Cv touches � in this point.

Taking all v, using that the slab is symmetric with respect to P and � is a planar
convex curve, we conclude that � is included in the solid cylinder orthogonal to S
and determined by �.

geom1473.tex; 26/08/1997; 12:06; v.7; p.5



260 RAFAEL LÓPEZ

If the surface is embedded, it is easy to show that it is a graph using the Alexan-
drov reflection method with planes parallel to P ([1]). 2

When the surface is embedded, we can further state: from the proof of Corollary 5,
if S is not necessarily symmetric with respect to P , but only parallel, the surface �
has no points in the outside of the bounded domain defined by � in P . Thus, from
[11], the surface lies in one of the two halfspaces determined by P .

It is possible to obtain uniqueness in the last corollary for immersed surfaces
with small H . Exactly

COROLLARY 6. Let � be a closed convex curve in a plane P . Then there is
H0 > 0, depending only on �, such that, for any H 2 R with 0 < jHj � H0, the
only H-surface with boundary � and included in the slab symmetric with respect
to P and with width 1=jHj is a graph.

Proof. Let 
 be the domain determined by � in P . By the Implicit Function
Theorem [7], there is H0 > 0 (depending only on �) such that for any H 2 R,
jHj � H0, there is an H-graph on 
 with boundary @
 = �.

Let � be an H-surface with boundary � and included in the slab S symmetric
with respect to P and with width 1=jHj. Also, let G be an H-graph on 
 with
boundary �. From the above corollary, � is contained in the cylinder determined
by 
 and orthogonal to P . It remains to prove that � is G or the reflection G� of G
with respect to P : that is a uniqueness result given in [13] and, for completeness,
we give the proof.

Let a be a unit vector orthogonal to P . We suppose that G is over P (with
respect to a) and we orient it by a Gauss map NG so that H > 0. Then NG points
downwards: hNG; ai < 0. We move G up so that it does not touch � and then,
we move it down to touch �. If there is a point of contact (interior or boundary)
and because NG points downwards, then � = G (maximum principle). We can
do similar arguments with G�. Then we have two possibilities: � is G or G� or,
otherwise,� is betweenG andG�. In this case, if we compare the interior conormal
of � and G, ��, �G, along �, we have the inequality

jh��; aij < h�G; ai:

But a ‘balancing’ formula given for H-surfaces (see for instance [4], [10]) asserts
that ����

Z
�

h��; ai
���� =

Z
�

h�G; ai;

giving a contradiction. Therefore � = G or � = G�. 2

We remark that if H is small, the width of the slab in the above corollary is
large. Fixing a slab, we can paraphrase the above result in the following way:
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‘Let � be a closed planar convex curve included in a plane P and let S be a
slab containing P . Then there is a number H0 = H0(�; S) > 0 such that, for
any H 2 R, 0 < jHj � H0, the only H-surface with boundary � and included
in S is a graph.’

To end this paper, we return to Theorem 1. The difference between this theorem
and the results of [2] and [3] is the extra hypothesis about the embeddedness of the
surface. It would be nice to change in Theorem 1 the words ‘embeddedH-surface’
to immersedH-surface. We study immersed surfaces bounded by a circle included
in a slab parallel to the plane which contains the circle. Changing coordinates, we
assume that the slab S is defined by the planes z = �1=(2jHj) and z = 1=(2jHj).

THEOREM 7. Let � be an H-surface such that �(�) � S, denoting by � the
immersion and

�(@�) = � =

��
x; y;� 1

2jHj
�
2 R

3 ;x2 + y
2 = 1

�
:

If H2 � 3
4 , then �(�) is a spherical cap of radius.

Proof. We assume the orientation in the surface �(�) is chosen to get a positive
mean curvature H . From Corollary 4, it is only necessary to prove the theorem for
values of H in the interval ( 1

2 ;
p

3=2].
We are going to consider a family of arcs of circles in the plane xz passing

by the points (1; 1=(2H)) and (1;�1=(2H)), starting from the original circle of
radius 1=(2H) centred at the point (1; 0) and becoming less and less curved until
reaching the circle whose centre is at the origin. Each of these surfaces can be
parametrized by a real variable t as

t 7! (�; 0; 0) + r(cos t; 0; sin t);

where r =

q
(1� �)

2
+ 1=4H2 and t 2 [�t0; t0], in which t0 is the solution of

the equation r sin t0 = 1=(2H), and � is any number in the interval [0; 1].
For each of these curves, one considers the revolution surface generated by

its rotation around the z-axis, and the three-dimensional region K� bounded by
this surface and the planes z = 1=(2H) and z = �1=(2H). The mean curvature
function �H� of the non-flat part of @K� is given by

�H� =
�+ 2r cos t

2r(�+ r cos t)
=

1
2r

�
2� �

�+ r cos t

�
:

We know that �(�) is contained in K1 and that the contact points among �(�)

and the boundary @K1 of K1 belong either to � or to the flat part of @K1. We also
know that, at such points, @K1 and �(�) are not tangent.
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Under our hypothesis, as we move t from 1 to 0, we are going to show the
existence of a number �0 such that, for 1 � � � �0 we have that �H� is kept larger
than or equal to H . The centre of the arc of radius r which determines the surface
of revolution for the variable � goes from � = 1 to �0 = (3� 4H2)=8H(1�H).
Exactly, it will prove that we can consider all cases up to �0 + r0 = 1=H . Because
�+ r cos t � 1,

2� �

�+ r cos t
� 2� �:

Thus, to show that �H� � H we need to prove 2 � � � 2Hr. Squaring, we have
to show that 1� �0 � 2=(4H2 � 1). Because 1� � � 1� �0, we get the wanted
inequality if 1� �0 � 2=(4H2 � 1). But this is true for any H 2 (1

2 ;
p

3=2].
Because of the maximum principle it can be deduced that �(�) is never tan-

gent to the non-flat part of @K�, for each 1 � � � �0, thus �(�) � K�0 . Since
�0 + r0 = 1=H , K�0 and so, �(�) is contained in a cylinder of radius 1=H . Thus,
by [3], it must be a spherical cap. 2

The question is: What happens when 3
4 < H2 � 1? Related with the Theo-

rems 1 and 7 we state the following

CONJECTURE. An H-surface immersed in R3 included in a slab of width 1=jHj
bounding a circle of radius 1 is a spherical cap.
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14. López, R. and Montiel, S.: Constant mean curvature surfaces with planar boundary, Duke Math.

J. 85 (1996), 583–604.
15. Meeks, III, W.: The topology and geometry of embedded surfaces of constant mean curvature, J.

Differential Geom. 27 (1988), 539–552.
16. Schoen, R.: Uniqueness, symmetry and embeddedness of minimal surfaces, J. Differential Geom.

18 (1983), 791–809.
17. Wente, H. C.: Counterexample to a conjecture of H. Hopf, Pacific J. Math. 121 (1986), 193–243.

geom1473.tex; 26/08/1997; 12:06; v.7; p.9


