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Abstract. This paper proves that an embedded compact surface in the Euclidean space with constant
mean curvature H # 0 bounded by a circle of radius 1 and included in a dlab of width 1/|H]| is
a spherical cap. Also, we give partial answers to the problem when a surface with constant mean
curvature and planar boundary lies in one of the halfspaces determined by the plane containing the
boundary, exactly, when the surface isincluded in aslab.
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0. Introduction

A constant mean curvature surface immersed in Euclidean three-space R® can be
viewed as a surface where the exterior pressure and the surface tension forces
are balanced. Until 1986, the only known examples of closed (compact without
boundary) constant mean curvature surfaces were the round spheres. Wente [17]
constructed examples of constant mean curvature tori which are non-embedded.
Oneyear later, Kapouleas[10] did the same for generabigger than 2. These results
activatedin aremarkableway the research in this subject and gavetheir exact value
to the two principal theorems about closed constant mean curvature surfaceswhich
were known at that moment: the Hopf theorem, which assertsthat the sphereisthe
only example of genus zero [9] and the Alexandrov theorem, which says us that
the sphereis the only embedded example [1].

When the considered surface X is compact and with non-empty boundary 0%,
and particulary if 9% is aJordan curve, the problem of existence has been studied
by many authors. The existence of small solutions is due to Hildebrandt [8] and
the search of a second solution was culminated by Brézis and Coron [5].

With respect to the study of the space of compact constant mean curvature
surfaceswith prescribed boundary, we do not know its structureevenin the simplest
case: when 0% is around circle with, for instance, unit radius. Heinz found that
anecessary condition for existence in this situation is that |H| < 1, where H is
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the mean curvature. The only known examples, excluding the trivial minimal case,
are the following: the two spherical caps with radius 1/|H|, which are the only
umbilical ones and some non-embedded surfaces of genus bigger than 2 whose
existence was showed by Kapouleasin [10].

The lack of examples and the analogy with the closed case allow us to believe
that the following statements are true.

CONJECTURE 1. An embedded compact surface with non-zero constant mean
curvature bounded by a circleis a spherical cap.

CONJECTURE 2. Animmersed disc with non-zero constant mean cur vature bound-
ed by acircleisa spherical cap.

Partial answersto Conjecture 1 have been given in [4] and [6]. With respect to
Conjecture 2, some progress was done by S. Montiel and the author in [13] and
about the study of constant mean curvature surfaces with small volume was done
in[14].

We shall consider aconnected compact surface ¥ and ¢: ¥ — R animmersion
of constant mean curvature H # 0 such that ¢ takes 9% diffeomorphically onto
$(0%). We will say in this situation that > is an H-surface with boundary T',
where ' = ¢(0%) (we note that if H = 0, the surface lies in the convex hull of
its boundary and therefore, if the boundary is planar, the surfaceis also planar). If
thereis no confusion, weidentify > with ¢(3).

This paper is motived by a height estimate due to Meeks. In [15] he gets, using
the Alexandrov reflection method, the following estimate: if X isan embedded H-
surface with boundary contained in a plane P, it can rise at most 2/|H| above P,
i.e. X iscontained in aslab symmetric to P with width 4/|H |. We study embedded
H-surfacesincluded in an arbitrary slab, not necessarily parallel to the plane P.

Barbosa studied the case when the boundary is a circle and the surface ¥,
assumed only immersed, is included in a ball of radius 1/|H| and he showed,
without any further hypothesis, that the surface must be a spherical cap ([2]). Later
([3]) he established an extension of this result for the case in which the surface
is contained in a solid cylinder of radius 1/|H|. In both results, three or two
independent directions of the immersion are bounded. So it is natural to ask about
immersions with only one bounded direction, i.e. surfaces included in a dlab. In
this direction we state.

‘The spherical caps are the only embedded H -surfaceswith boundary a circle
of radius 1 and included in a slab of width 1/|H|.

The width of a dab is the distance between the planes which define the slab.
As a consequence of the proof of this statement, we also get some results about
embedded H -surfaces with boundary a planar convex curve and on immersed H -
surfaces with boundary a circle and included in a slab of width 1/|H| parallel to
the boundary.
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1. TheMain Theorem

An important ingredient is a result established by Koiso [11]. She proved that
an embedded H -surface with boundary a Jordan curve I contained in a plane P
which does not intersect P outside of the region bounded by T, it is included
in one of the two halfspaces determined by the plane P. Then the Alexandrov
reflection technique immediately provesthat the surface inherits the symmetries of
itsboundary. Hence, if I isacircle, X is a surface of revolution and, therefore, isa
spherical cap (by Delaunay’s classification of constant mean curvature surfaces of
revolution). Therefore, it isinteresting to obtain natural geometric conditions that
forces an embedded H-surface to be contained in a halfspace. It is still an opened
guestion (see [4]) whether an embedded H-surface bounded by a plane convex
curve and contained in one halfspace defined by the plane containing the boundary,
has genus zero or not.

Ancther preliminary result in this paper is a kind of uniqueness for embedded
surfacesincluded in aright cylinder. Exactly, if €2 isabounded domainincludedin
aplane P, itisclassical that if thereisagraph on 2 with constant mean curvature
and boundary 052, then there are no other graphs in © with the same boundary
and mean curvature ([7]). From the Alexandrov reflection method and the Koiso's
result, it is easy to show that an embedded H-surface with boundary 052, and
included in the solid cylinder C' orthogonal to P determined by €2, is a graph (a
detailed proof of this fact, together with several related results, can be viewed in
[12]).

In [14], using a flux formula, it is proved that if there is an H-graph G on 2
and an embedded H-surface ¥ included in ', with the same boundary 052, then
Y =4G.

Now we prove the main result of this paper.

THEOREM 1. Let 3> be an embedded H -surfacewith boundaryacircleI” of radius
1. If ¥ isincluded in a solid slab with width 1/|H|, then ¥ is a spherical cap of
radius1/|H|.

Remark. Among the two possible spherical caps, the only one contained in a
slab with width 1/| H | is the small spherical cap.

Proof. The proof is similar to Theorem 3.1 in [3]. For completeness, we shall
follow the analogous steps. We choose the normal vector field NV of X to have
H > 0. We denote by S the slab containing the surface. Let v be a unit vector
parallel to S. Let C, bethe closed halfcylinder not bounded of radius1/(2H) with
axisparalel to S, perpendicular to the vector v and 0C,, C 9S. Theset C,, splits.S
in two components. We suppose that v points towards the non-convex component
and we consider the direction of v as upward and the direction of —v asdownward.
First of al, move C', upward until it does not intersect 3. Thisis possible since &
is a compact surface. Now, we move C,, downward until it touches X for the first
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time. Inthis position, X liescompletely in the closed convex region of S below C,,.
We want to apply the Hopf maximun principle to compare C', and % (see [16]).

LEMMA 2. Thereisno point p interior to 3 such that p belongsto C, and X lies
below C,,.

Proof (of the lemma). Because X lies below C', and p belongsto C,, N ¥, then
C, and 3} aretangent at p. Thisis true even when p € 9C,,, because in this case,
the point p will aso belong to the boundary of the slab S. Hence 32 will be tangent
to the boundary of the slab at p and, hence, will be tangent to C, at p. To apply
the maximun principle, the unit normal vector fields of ¥ and C,, must agree at p.
If they do, then C, and X2 must intersect along an open set. By analyticity of the
solutions of the equation H = constant, we conclude that > must be a subset of
the halfcylinder C,, of radius 1/(2H), which is not possible. If the Gauss maps of
> and C,, do not agree at p, then they must be opposite. In this case, we consider
in X the Gauss map — N and then the mean curvature is negative, in contradiction
with the maximum principle. O

LEMMA 3. Under the hypothesis of Theorem 1, thereisno point p of 9% such that
p belongsto theinterior of C,, whereX and C, aretangent at p and assuming that
Y liesbelow C,,.

Proof (of the lemma). Thislemma can be proved in the sameway asthe previous
one, because the extra hypothesis guarantees that > and C,, are comparable as the
above lemma ([16]). O

From both lemmas it follows that C', touches 3> only at points of I". These points
are either points of 9C, or points of C, where 3 and C,, are not tangent. If we
take all vectorsv in the set of parallel vectorsto S, we concludethat X liesin the
convex K determined by the sets C,, (we remark that C,, and C'_,, can intersect).
In this moment, we have two possibilities:

(A) The plane P is orthogonal to S. Let v be an orthogonal direction to P and
then, parallel to S. We consider the halfcylinders C, and C_,,. Then X lies
in the convex domain K, determined by C, and C_, in S. Because v is
orthogonal to P, by symmetry with respect to the plane P, the points of
contact between C,, and C_, with 3 arethe same. Thus, C,, and C_, intersect
too. Therefore K, isincluded in asolid cylinder of radius 1/(2H) parallel to
C,.As1/(2H) < 1/H, Theorem 3.1 of [3] asserts that > is a spherical cap
and the theorem has been proved.

(B) If theplane P isnot orthogonal to S and becauseI isacircle, the contact points
between C,, and C'_,, with I" are opposite pointsin the circle I'. Therefore, for
any parallel direction, we have two opposite pointsin I". Hence if we take all
parallel directionsto S wehavethat I' C 0K. Let Q2 bethedisc bounded by I'
intheplane P. Because Y C K and K isaconvex set, then (P — Q) NY = .



SURFACES OF CONSTANT MEAN CURVATURE BOUNDED BY CONVEX CURVES 259

On the other hand, by [11], one knows that X N Q = (). Thus, the surface is
included in one of the two halfspaces determined by P. Therefore, by [11], it
isaspherical cap. O

Remark 1. In step (A), the hypothesis of embeddedness has not been used, i.e.
this part is true for immersed surfaces.

Remark 2. To use the result of Koiso, the hypothesis of embeddedness has been
used only at the end of step (B).

With these remarks, we have the following consequence:

COROLLARY 4.Let 3 bean H-surfacewith boundaryacircleof radius1included
inaplane P. If thesurfaceisincluded inaslab .S of width 1/|H |, then in any next
cases the immersion describes a spherical cap:

(1) Sisorthogonal to P.
(2 14| < 3.

Proof. (1) This is step (A) in the proof of Theorem 1 and the above
Remark 1.

(2) Inthis case, the convex set K, in the proof of Theorem 1isincluded in a
right cylinder orthogonal to S and with radius 1 + 1/(2|H|). Because | H| < 3

14 1 _2|H|+1< 2 1
2|H| 2[H| ~ 2|H| [H]
and then thisradiusislessthan 1/|H|. Now we can apply [3]. O

2. Other Related Results

The proof of Theorem 1 also givesthe following generalization when the boundary
['isnot acircle.

COROLLARY 5. Let ¥ bean H-surfacein R® with boundary a convex curveI in
aplane P. If ¥ liesin a slab of width 1/| H| symmetric with respect to P, then the
surfaceisincluded in the solid cylinder determined by I" and orthogonal to P. In
the case that X is embedded, thenit isa graph.

Proof. If we repeat the proof of Theorem 1, we get, with the same notation, that
for any parallel direction v, the halfcylinders C,, touch at X in boundary points.
Moreover, since I' is convex, for any point in I" there is one direction v such that
C, touches X in this point.

Taking al v, using that the slab is symmetric with respect to P and I" isaplanar
convex curve, we conclude that X isincluded in the solid cylinder orthogonal to .S
and determined by I
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If the surface is embedded, it is easy to show that it is agraph using the Alexan-
drov reflection method with planes paralel to P ([1]). O

When the surfaceis embedded, we can further state: from the proof of Corollary 5,
if S'isnot necessarily symmetric with respect to P, but only parallel, the surface
has no pointsin the outside of the bounded domain defined by I" in P. Thus, from
[11], the surface lies in one of the two halfspaces determined by P.

It is possible to obtain uniqueness in the last corollary for immersed surfaces
with small H. Exactly

COROLLARY 6. Let I" be a closed convex curve in a plane P. Then there is
Hjp > 0, depending only on T, such that, for any H € R with 0 < |H| < Hy, the
only H-surface with boundary I" and included in the slab symmetric with respect
to P and with width 1/| H| isa graph.

Proof. Let 2 be the domain determined by I in P. By the Implicit Function
Theorem [7], there is Ho > 0 (depending only on I') such that for any H € R,
|H| < Ho, thereisan H-graph on €2 with boundary 02 = T".

Let X be an H-surface with boundary I and included in the slab .S symmetric
with respect to P and with width 1/|H|. Also, let G be an H-graph on © with
boundary I". From the above corollary, X is contained in the cylinder determined
by €2 and orthogonal to P. It remainsto provethat X isG or thereflection G* of G
with respect to P: that is a uniqueness result given in [13] and, for completeness,
we give the proof.

Let o be a unit vector orthogonal to P. We suppose that G is over P (with
respect to a) and we orient it by a Gauss map N¢; sothat H > 0. Then N points
downwards. (N¢,a) < 0. We move G up so that it does not touch 3 and then,
we move it down to touch X. If there is a point of contact (interior or boundary)
and because N points downwards, then ¥ = G (maximum principle). We can
do similar arguments with G*. Then we have two possibilities: ¥ is G or G* or,
otherwise, Y. isbetween G and G*. Inthiscase, if we comparetheinterior conormal
of ¥ and G, vy, v, dong I', we have the inequality

(v, a)| < (va,a).

But a‘balancing’ formula given for H-surfaces (see for instance [4], [10]) asserts

that
= /<V07a>7
r

‘/F(V&CO

giving acontradiction. ThereforeX = G or X = G*. O

We remark that if H is small, the width of the slab in the above corollary is
large. Fixing aslab, we can paraphrase the above result in the following way:
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‘Let I be a closed planar convex curve included in a plane P and let S be a
slab containing P. Then thereisa number Ho = Ho(T", S) > 0 such that, for
any H € R, 0 < |H| < Ho, theonly H-surface with boundary I" and included
in S'isagraph!

To end this paper, wereturn to Theorem 1. The difference between this theorem
and theresults of [2] and [3] isthe extra hypothesis about the embeddedness of the
surface. It would be nice to changein Theorem 1 the words ‘ embedded H -surface’
to immersed H -surface. We study immersed surfaces bounded by acircle included
in adlab paralel to the plane which contains the circle. Changing coordinates, we
assumethat theslab S isdefined by theplanesz = —1/(2|H|) andz = 1/(2|H|).

THEOREM 7. Let ¥ be an H-surface such that ¢(X) C S, denoting by ¢ the
immersion and

p(0¥) =T = {(a;,y,—ﬁ) e R 22 + 4% = 1}.

If H2 < 2, then ¢(%) is a spherical cap of radius.

Proof. We assume the orientation in the surface ¢(X) is chosen to get a positive
mean curvature H. From Corollary 4, it is only necessary to prove the theorem for
vauesof H intheinterval (3, v/3/2].

We are going to consider a family of arcs of circles in the plane xz passing
by the points (1,1/(2H)) and (1, —1/(2H)), starting from the original circle of
radius 1/(2H) centred at the point (1, 0) and becoming less and less curved until
reaching the circle whose centre is at the origin. Each of these surfaces can be
parametrized by areal variable ¢t as

t — (u,0,0) + r(cost,0,sint),

where r = \/(1 — 1)? +1/4H? and t € [—to, to], in Which o is the solution of
the equation r sinto = 1/(2H ), and x isany number in the interval [0, 1].

For each of these curves, one considers the revolution surface generated by
its rotation around the z-axis, and the three-dimensional region K, bounded by
this surface and the planes z = 1/(2H) and z = —1/(2H). The mean curvature
function H,, of the non-flat part of 9K, is given by

q — p + 2r cost _i(z_ 1 )
o 2r(p+rcost)  2r p+rcost)’

We know that ¢(X) is contained in K3 and that the contact points among ¢(32)
and the boundary 0 K1 of K belong either to T" or to the flat part of 0K;. We also
know that, at such points, K1 and ¢(X) are not tangent.
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Under our hypothesis, as we move ¢ from 1 to 0, we are going to show the
existence of anumber 1o such that, for 1 > n > o we havethat H,, is kept larger
than or equal to H. The centre of the arc of radius » which determines the surface
of revolution for the variable ; goesfrom = 110 po = (3 — 4H?)/8H (1 — H).
Exactly, it will prove that we can consider all casesup to 10 +ro = 1/H . Because
p—+rcost > 1,

2 H

- P >2
p+ rcost —

Thus, to show that H,, > H we need to prove 2 — ;. > 2Hr. Squaring, we have
to show that 1 — puo < 2/(4H? — 1). Because 1 — p < 1 — puo, We get the wanted
inequality if 1 — uo < 2/(4H? — 1). But thisistruefor any H € (3,/3/2].
Because of the maximum principle it can be deduced that ¢(X) is never tan-
gent to the non-flat part of 0K, for each 1 > p > po, thus ¢(X) C K. Since
po+ro=1/H, K,, and so, ¢(X) iscontained in acylinder of radius 1/H. Thus,
by [3], it must be a spherical cap. O

The question is: What happens when 3 < H? < 1? Related with the Theo-
rems 1 and 7 we state the following

CONJECTURE. An H-surface immersed in R® included in a slab of width 1/|H |
bounding a circle of radius 1 is a spherical cap.
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